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Abstract

The notion of state is a central notion for all branches of physics. Surprisingly
enough, Newton’s notion differs from the nowadays notion. Our review of the
benefits of Newton’s notion comprises Gibbs’s paradox, Einstein’s derivation of
the classical and quantum distribution laws from the energetic spectrum (serving
to remove anthropomorphic elements), the difference between ‘identical’ and
‘indistinguishable’ (being a property of states rather than of particles), a new
physical content of |¢(z,t)| (the invariance of |¢(z, t)| rather than ¢ (x,t) against
permutations yields not only fermions and bosons, but also anyons), and a novel
classification of forces (leading eventually to a derivation of the Maxwell-Lorentz
equations from classical mechanics).

1 Introduction

Classical mechanics is the safest (if not the only safe) ground we can move on.
For this, we will analyze the implications of Newton’s notion of state differ-
ing considerably from the contemporary one for the notions ’equality’, ’iden-
tity’ and ’(in)distinguishability’ playing a paramount role in statistics and in
quantum mechanics. Newton’s notion allows for considering them within classi-
cal point mechanics, what frees the discussion from anthropomorphic elements.
Bach’s (1997) fundamental results are obtained within an elementary dynamical
framework.

2 Newton’s notion of state

Newton’s First Law “Every body perseveres in its state of being at rest or
of moving uniformly straight forward, except insofar as it is compelled to
change its state by forced impressed.” —

Newton’s state corresponds to nowadays’ stationary state.

Newton’s Second Law “A change in motion is proportional to the motive
force impressed and takes place along the straight line in which that force
is impressed.” —

Ap ~ F: Newton’s state variable is the momentum (the conserved quan-
tities).
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Laplace’s demon ” A sufficiently powerful intelligence knowing all loci and
velocities in a mechanical systems at one time is able to calculate the loci
and velocities at all later times.” —

Laplace’s state is nowadays’ state, including both stationary and non-
stationary ones, the state variables are a complete set of independent
dynamical variables.

Advantages of Newton’s notion:
e Easily generalized to classical and quantum systems (not tied to orbits);
e Amount of conserved quantities ~ amount of quantum (state) numbers;

e Symmetry of state = symmetry of state function — gauge symmetry,
geometric phases, ...

Advantages of modern (Laplace’s) notion:
e Complete description of motion;

e Identification of phase space points differing only by interchanging equal
bodies — multiply connected spaces — appropriate topology for anyons.

Disadvantages of modern (Laplace’s) notion:
e The state changes even in absence of causes;

e State at rest is ignored;

Interchange of equal bodies changes state — Gibbs’s paradox;

Inapplicable to quantum systems.

3 Equal bodies in Newtonian states

1. Equal / identical bodies / particles

Equality We call two classical bodies or quantum particles equal, when their
interchange does not change the properties / state / motion of a system.
(¢f Helmholtz, §10)

Identity “Particles are called identical, if they agree in all their intrinsic (i.e.
state independent) properties.” (Bach, p.15)
Remark: The restriction to the intrinsic properties circumvents the con-
flict with the logical notion ‘identical’ (= equal in all properties).

2. Permutation symmetry of Newtonian states

All conserved quantities of a classical-mechanical system: total energy /
momentum / angular momentum / ..., are invariant w.r.t. the permutation
of equal parameters, ie, w.r.t. the permutation of (labels of) equal bodies, ie,
w.r.t. bodies with equal properties concerning the system considered, =



A Newtonian state is invariant against interchanging (labels of) equal
bodies,

e Equal bodies cannot be distinguished or identified by means of the con-
served quantities (Newtonian/ stationary-state variables),

e Anthropomorphic arguments like ‘particle can be marked or not’ are not
relevant points of view (interchanging or marking two resting red balls in
a snooker game does not interfere the game);

e Indistinguishable classical particles have no trajectories (Bach provides
probabilistic proof).

3. Comparison with Laplace’s notion of state (continued)

The locus of a body is that part of space it occupies. Euler’s exclusion
principle (not to be interchanged with Pauli’s exclusion principle!) states, that
no body can occupy more than one locus, and no part of space can be occupied
by more than one body. =

e Equal bodies can, at least in principle, always be distinguished and iden-
tified by means of their locus.

e Equal bodies are distinguishable within Laplace’s notion of state.
o (In)distinguishability is a property of states, not of particles/bodies. (cf
Bach, p.15)
4 Classical and quantum distribution laws
Einstein (1907) has derived the classical and quantum distribution laws using

just the energetic spectra of a classical (continuous spectrum) and a quantum
harmonic oscillator (discrete spectrum):
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(In)distinguishability does not play any role (¢f Bach’s ”Bose-Einstein sta-
tistics as invented by Boltzmann”).
5 New physical content of |¢(x,1)]

FFP5: Quantum-mechanical systems are conservative systems which may as-
sume configurations for which V(z) > E



FEnkl(x) ~ |¢Enkl (x)

= There is an effective potential energy

Vari(x) = Vg, (x) = Fg,,,(x) - V(z) < Epr; —o0 <z < 00 (3)
|2 is a limiting function such, that Vi (z) < E,k even if

V(z) > Eng (— tunnel effect demystified).
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Progress since FFP5:

e Common principles of state change for classical and quantum systems —
Eulerean derivation of time-dependent Schrodinger equation from time-
independent one;

e Fg ., is dimensionless = Fg ,, = Fg,,, (¢/x0): All quantum systems
exhibit characteristic length z;

® Fru (@/20) ~ [¢p(@)* — gauge symmetry;

e Novel classification of fields:
A) Fields being related to total energy, F (accelerating fields like electric
field, E),
B) Fields being related not to E, but to zq (refracting fields like magnetic
field, B),
C) Fields being related neither to F, nor to g (gauge fields, see Aharonov-
Bohm effect);
Remark: The Maxwell-Lorentz equations turn out to be just compatibility
conditions for such fields E and B.

Newtonian state variable |¢(z, 1)

1) By virtue of their definition, limiting functions are invariant against permu-
tations of equal particles (omitting z):

Fg(vy,71) = Fp(z1,22) 2 0 (4)

= the most general representation of Fg(x1,xs) reads (mpg entire)

Fp(zi,20) = [W5™ (21, 0)]; (5)
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2) Wigner’s theorem:
If 5™ (21, x2) is eigenfunction, then
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is also eigenfunction = [yg(x2, 1) — vg(x1,z2)] can be absorbed into pp'™ .



3) 2"¢ permutation:

~ A . (1,2) - (1,2) . (2,1)
R (1, w2) = R ™ 4™ (g, 01) = €6 €#e Y (a1,20)  (9)

Standard case:
= ere” =1 p@0 = P yp(ar,e) =0 (10)

= Wave functions are either symmetric (bosons, +) or anti-symmetric (fermi-
ons, —):

vh@a) = = [Dp(ara) £ Dp(rao)] ()

Non-standard, ‘anyonic’ case:
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R =0 cve s £15 pt # —pip® yp(en,m) —yp(ena:) 0 (12)
= If there are topologically inequivalent paths, the wave function is neither
symmetric, nor anti-symmetric, but can exhibit any intermediate behaviour —
anyons (the clue to the fractional quantum Hall effect).

7 About the meaning of ‘identical’ and ‘indis-
tinguishable’

1) Some rigorous definitions

Equal means ‘equal in some well-defined properties such as mass, density,
shape, charge ..., but not in all’
Example: the 2 electrons in the ground state of He (they differ in s,)
‘equal’” depends on the view, ie, which properties one is looking at.

Congruent means ‘equal in all essential (geometric) properties, but not in
locus’
Example: 2 red snooker balls of high quality

Identical means ‘one and the same’, ie, equal in all properties (strictly speak-
ing, no exception at all)
Example: 2 squares of equal side length on the same place of a sheet

Indistinguishable means, that there is no mean (no one differing property/attribute)
for discrimination.

= Indistinguishable things are identical (Leibniz)

2) Questions

If we weaken the definition of ‘identical’, there may be a weakening of ‘dis-
tinguishable’ to ‘identifiable’, so that we are led to the question

e Are there non-classical indistinguishable bodies/particles not being iden-
tical?



e Are there principally distinguishable (ie, not identical) bodies/particles
not being identifiable?

3) Observations

e Quantum particles are identical w.r.t. intrinsic properties and ‘almost
identical” w.r.t. state properties: All electrons (protons, ...) exhibit the
same mass at rest, electrical charge, modulus of spin, etc.;

e Pauli’s exclusion principle: 2 electrons differ in at least one quantum num-
ber — however: it does not say, which electron is in which state (entangle-
ment);

e The quanta occupying an oscillator loose their individuality: Say, 12

quanta in state Fqo occupy all together the one 12-quanta state, not 12
single-quantum states, = they have got no individual properties (parame-
ter values)
(in contrast to electrons, these quanta — Planck’s “energy elements” — oc-
cupy not single-particle, but single-system states); — nevertheless: these
12 quanta are not one and the same (one thing) as we are thinking them
as 12 particles.

e Cluster law: Wave functions of distinct systems need not to be entangled
<> There are distinguishable equal quantum particles.

4) Conclusions

e The notions ‘identical’ or ‘distinguishable’ as used in logics play almost no
role, in fact: the actual physical meaning of ‘distinguishability’ as property
of states is the identifiability;

e ‘Identical’ is meaningful in the sense of Bach (including only intrinsic
properties, eg, spin s — but not s,);

e There is no principal difference between classical bodies, bosons and fermi-
ons w.r.t. these properties.

8 Summary

Newton’s notion of state is an addition to, though not a complete replacement of
Laplace’s notion. Our treatment of equality, identity and (in)distinguishability
accounting for Newton’s notion of state reveals the following advantages and
new results.

e Common treatment of classical bodies and quantum particles;

e Non-probabilistic classification of (bodies/particles in) states;



e The limiting function Fg gives || a new physical meaning as rela-
tive space occupation; both exhibit the same symmetry as Newtonian
(stationary-) state variables (quantum numbers) w.r.t. external fields (—
gauge invariance) and permutations (— fermions, bosons, and anyons);

e Distribution functions can be related to energetic spectra and occupation
= they are independent of (in)distinguishability;

e The meaning of ‘identity’ and ‘indistinguishability’ in physics is partly
at variance with their meaning in logics, hence, careful restrictions are
necessary;

e There are particles exhibiting different extrinsic properties (eg, spin direc-
tion in EPR), but not being identifiable: Equal bodies in symmetric states
cannot be identified, be there different attributes or not.
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