
Equality and Identity and (In)distinguishability
in Classical and Quantum Mechanics from the
Point of View of Newton�s Notion of State1

Peter Enders
Ahornallee 11, D-15754 Senzig, Germany; enders@dekasges.de

Abstract

The notion of state is a central notion for all branches of physics. Surprisingly
enough, Newton�s notion di¤ers from the nowadays notion. Our review of the
bene�ts of Newton�s notion comprises Gibbs�s paradox, Einstein�s derivation of
the classical and quantum distribution laws from the energetic spectrum (serving
to remove anthropomorphic elements), the di¤erence between �identical� and
�indistinguishable�(being a property of states rather than of particles), a new
physical content of j (x; t)j (the invariance of j (x; t)j rather than  (x; t) against
permutations yields not only fermions and bosons, but also anyons), and a novel
classi�cation of forces (leading eventually to a derivation of the Maxwell-Lorentz
equations from classical mechanics).

1 Introduction

Classical mechanics is the safest (if not the only safe) ground we can move on.
For this, we will analyze the implications of Newton�s notion of state di¤er-
ing considerably from the contemporary one for the notions �equality�, �iden-
tity�and �(in)distinguishability�playing a paramount role in statistics and in
quantum mechanics. Newton�s notion allows for considering them within classi-
cal point mechanics, what frees the discussion from anthropomorphic elements.
Bach�s (1997) fundamental results are obtained within an elementary dynamical
framework.

2 Newton�s notion of state

Newton�s First Law �Every body perseveres in its state of being at rest or
of moving uniformly straight forward, except insofar as it is compelled to
change its state by forced impressed.� �
Newton�s state corresponds to nowadays�stationary state.

Newton�s Second Law �A change in motion is proportional to the motive
force impressed and takes place along the straight line in which that force
is impressed.� �
�~p � ~F : Newton�s state variable is the momentum (the conserved quan-
tities).

1Talk presented at the 6th Int. Symp. Frontiers of Fundamental and Computational
Physics, Udine, Italy, 26-29 Sept. 2004
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Laplace�s demon �A su¢ ciently powerful intelligence knowing all loci and
velocities in a mechanical systems at one time is able to calculate the loci
and velocities at all later times.� �
Laplace�s state is nowadays� state, including both stationary and non-
stationary ones, the state variables are a complete set of independent
dynamical variables.

Advantages of Newton�s notion:

� Easily generalized to classical and quantum systems (not tied to orbits);

� Amount of conserved quantities ~ amount of quantum (state) numbers;

� Symmetry of state = symmetry of state function ! gauge symmetry,
geometric phases, . . .

Advantages of modern (Laplace�s) notion:

� Complete description of motion;

� Identi�cation of phase space points di¤ering only by interchanging equal
bodies ! multiply connected spaces ! appropriate topology for anyons.

Disadvantages of modern (Laplace�s) notion:

� The state changes even in absence of causes;

� State at rest is ignored;

� Interchange of equal bodies changes state ! Gibbs�s paradox;

� Inapplicable to quantum systems.

3 Equal bodies in Newtonian states

1. Equal / identical bodies / particles

Equality We call two classical bodies or quantum particles equal, when their
interchange does not change the properties / state / motion of a system.
(cf Helmholtz, §10)

Identity �Particles are called identical, if they agree in all their intrinsic (i.e.
state independent) properties.� (Bach, p.15)
Remark: The restriction to the intrinsic properties circumvents the con-
�ict with the logical notion �identical�(= equal in all properties).

2. Permutation symmetry of Newtonian states
All conserved quantities of a classical-mechanical system: total energy /

momentum / angular momentum / . . . , are invariant w.r.t. the permutation
of equal parameters, ie, w.r.t. the permutation of (labels of) equal bodies, ie,
w.r.t. bodies with equal properties concerning the system considered, )
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� A Newtonian state is invariant against interchanging (labels of) equal
bodies,

� Equal bodies cannot be distinguished or identi�ed by means of the con-
served quantities (Newtonian/ stationary-state variables),

� Anthropomorphic arguments like �particle can be marked or not�are not
relevant points of view (interchanging or marking two resting red balls in
a snooker game does not interfere the game);

� Indistinguishable classical particles have no trajectories (Bach provides
probabilistic proof).

3. Comparison with Laplace�s notion of state (continued)
The locus of a body is that part of space it occupies. Euler�s exclusion

principle (not to be interchanged with Pauli�s exclusion principle!) states, that
no body can occupy more than one locus, and no part of space can be occupied
by more than one body. )

� Equal bodies can, at least in principle, always be distinguished and iden-
ti�ed by means of their locus.

� Equal bodies are distinguishable within Laplace�s notion of state.

� (In)distinguishability is a property of states, not of particles/bodies. (cf
Bach, p.15)

4 Classical and quantum distribution laws

Einstein (1907) has derived the classical and quantum distribution laws using
just the energetic spectra of a classical (continuous spectrum) and a quantum
harmonic oscillator (discrete spectrum):
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(In)distinguishability does not play any role (cf Bach�s �Bose-Einstein sta-
tistics as invented by Boltzmann�).

5 New physical content of j (x; t)j
FFP5: Quantum-mechanical systems are conservative systems which may as-
sume con�gurations for which V (x) > E
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) There is an e¤ective potential energy

Vnkl(x) = VEnkl(x) = FEnkl(x) � V (x) � Enkl; �1 <x < +1 (3)

FEnkl(x) �
�� Enkl(x)��2 is a limiting function such, that Vnkl(x) � Enkl even if

V (x) > Enkl (! tunnel e¤ect demysti�ed).
Progress since FFP5:

� Common principles of state change for classical and quantum systems !
Eulerean derivation of time-dependent Schrödinger equation from time-
independent one;

� FEnkl is dimensionless ) FEnkl = FEnkl(x=x0): All quantum systems
exhibit characteristic length x0;

� FE(nkl)(x=x0) � j E(x)j
2 ! gauge symmetry;

� Novel classi�cation of �elds:
A) Fields being related to total energy, E (accelerating �elds like electric
�eld, ~E),
B) Fields being related not to E, but to x0 (refracting �elds like magnetic
�eld, ~B),
C) Fields being related neither to E, nor to x0 (gauge �elds, see Aharonov-
Bohm e¤ect);
Remark: The Maxwell-Lorentz equations turn out to be just compatibility
conditions for such �elds ~E and ~B.

6 Newtonian state variable j (x; t)j
1) By virtue of their de�nition, limiting functions are invariant against permu-
tations of equal particles (omitting x0):

FE(x2; x1) = FE(x1; x2) � 0 (4)

) the most general representation of FE(x1; x2) reads (mE entire)

FE(x1; x2) = j 
;mE (x1; x2)j2 ; (5)
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1p
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i

(6)

2) Wigner�s theorem:
If  
;mE (x1; x2) is eigenfunction, then

R̂ 
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3) 2nd permutation:

R̂2 mE (x1; x2) = R̂ei�
(1;2)
E  
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E ei�
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E  mE (x1; x2) (9)

Standard case:
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E ei�
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(2;1)
E = ��(1;2)E ; 
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) Wave functions are either symmetric (bosons, +) or anti-symmetric (fermi-
ons, �):

 �E(x1; x2) =
1p
2

h
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i
(11)

Non-standard, �anyonic�case:

R̂2 = ei�
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E(x1; x2) 6= 0 (12)

) If there are topologically inequivalent paths, the wave function is neither
symmetric, nor anti-symmetric, but can exhibit any intermediate behaviour !
anyons (the clue to the fractional quantum Hall e¤ect).

7 About the meaning of �identical� and �indis-
tinguishable�

1) Some rigorous de�nitions

Equal means �equal in some well-de�ned properties such as mass, density,
shape, charge . . . , but not in all�
Example: the 2 electrons in the ground state of He (they di¤er in sz)
�equal�depends on the view, ie, which properties one is looking at.

Congruent means �equal in all essential (geometric) properties, but not in
locus�
Example: 2 red snooker balls of high quality

Identical means �one and the same�, ie, equal in all properties (strictly speak-
ing, no exception at all)
Example: 2 squares of equal side length on the same place of a sheet

Indistinguishable means, that there is no mean (no one di¤ering property/attribute)
for discrimination.

) Indistinguishable things are identical (Leibniz)
2) Questions
If we weaken the de�nition of �identical�, there may be a weakening of �dis-

tinguishable�to �identi�able�, so that we are led to the question

� Are there non-classical indistinguishable bodies/particles not being iden-
tical?
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� Are there principally distinguishable (ie, not identical) bodies/particles
not being identi�able?

3) Observations

� Quantum particles are identical w.r.t. intrinsic properties and �almost
identical�w.r.t. state properties: All electrons (protons, . . . ) exhibit the
same mass at rest, electrical charge, modulus of spin, etc.;

� Pauli�s exclusion principle: 2 electrons di¤er in at least one quantum num-
ber �however: it does not say, which electron is in which state (entangle-
ment);

� The quanta occupying an oscillator loose their individuality: Say, 12
quanta in state E12 occupy all together the one 12-quanta state, not 12
single-quantum states,) they have got no individual properties (parame-
ter values)
(in contrast to electrons, these quanta �Planck�s �energy elements��oc-
cupy not single-particle, but single-system states); �nevertheless: these
12 quanta are not one and the same (one thing) as we are thinking them
as 12 particles.

� Cluster law: Wave functions of distinct systems need not to be entangled
$ There are distinguishable equal quantum particles.

4) Conclusions

� The notions �identical�or �distinguishable�as used in logics play almost no
role, in fact: the actual physical meaning of �distinguishability�as property
of states is the identi�ability ;

� �Identical� is meaningful in the sense of Bach (including only intrinsic
properties, eg, spin s �but not sz);

� There is no principal di¤erence between classical bodies, bosons and fermi-
ons w.r.t. these properties.

8 Summary

Newton�s notion of state is an addition to, though not a complete replacement of
Laplace�s notion. Our treatment of equality, identity and (in)distinguishability
accounting for Newton�s notion of state reveals the following advantages and
new results.

� Common treatment of classical bodies and quantum particles;

� Non-probabilistic classi�cation of (bodies/particles in) states;
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� The limiting function FE gives j E j a new physical meaning as rela-
tive space occupation; both exhibit the same symmetry as Newtonian
(stationary-) state variables (quantum numbers) w.r.t. external �elds (!
gauge invariance) and permutations (! fermions, bosons, and anyons);

� Distribution functions can be related to energetic spectra and occupation
) they are independent of (in)distinguishability;

� The meaning of �identity� and �indistinguishability� in physics is partly
at variance with their meaning in logics, hence, careful restrictions are
necessary;

� There are particles exhibiting di¤erent extrinsic properties (eg, spin direc-
tion in EPR), but not being identi�able: Equal bodies in symmetric states
cannot be identi�ed, be there di¤erent attributes or not.
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