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Abstract1 

In this paper, we survey the relationship between 
the similarity measure and dissimilarity measure for 
fuzzy sets. First, we design a similarity measure using 
a distance measure for fuzzy sets and prove its 
usefulness. From this result, we assert that the 
similarity between two complementary fuzzy sets 
satisfies the fuzzy entropy definition. We also show 
that the summation of the similarity and dissimilarity 
measures between two membership functions of fuzzy 
sets constitute all the information of the fuzzy set 
itself. We then extend our results to two data group 
fuzzy sets. Data similarity and dissimilarity measures 
between two fuzzy membership functions satisfy 
complementary. We also verify and discuss the 
characteristics of the relation between the similarity 
measure and dissimilarity measure with illustrative 
example.  

Keywords: Similarity measure, distance measure, fuzzy 
entropy. 
 

1. Introduction 
 

The similarity or dissimilarity between two data sets is 
commonly measured by statistical analyses, i.e., on the 
basis of average values or standard deviations. These 
approaches present information from different 
perspectives and are therefore sometimes at odds with 
the heuristic point of view. In order to analyze 
ambiguous data, we must consider the data set as a fuzzy 
set with a degree of membership. The analysis of 
similarity and dissimilarity is essential to the complete 
study of the data or information in fuzzy sets. The degree 
of similarity between two or more data sets plays a key 
role in the fields of decision-making, pattern 
classification, etc. [1-6]. Numerous researchers have 
explored the design of similarity measures [6-10], which 
is easily achieved with a fuzzy number. Such designed 

similarity measures, however, are restricted to triangular 
or trapezoidal membership functions [6-9]. Similarity 
measures that are based on distance measures are more 
broadly applicable to general fuzzy membership 
functions, including even the non-convex fuzzy 
membership functions [9].  

The determination of the similarity measure and 
dissimilarity measure for a data group is an area of great 
interest. If the similarity measure of a data group is 
represented, then it is also possible to represent the 
dissimilarity. Basically, a high degree of similarity data 
indicates a low degree of dissimilarity. Hence, we also 
surveyed the relationship between the similarity measure 
and the dissimilarity measure. For a given data group, in 
order to determine the similarity and dissimilarity we 
must compare two sets of data. One is a deterministic 
data set and the second is the complementary data set. 
Similarity and dissimilarity measures are constructed by 
applying the distance measure to the two data sets. The 
dissimilarity measure for the two data sets can be 
regarded as the distance between them. The similarity 
measure is designed by calculating the common area or 
overlap between the two fuzzy membership functions.  

The correlation between similarity and dissimilarity 
has been explored from various viewpoints [11]. Besides 
a physical explanation, Liu proposed a relationship 
between the distance and similarity measures: his paper 
indicates that the summation of the distance value and 
similarity value constitute the totality of information [10]. 
In this paper, we analyze the relationship between 
similarity and dissimilarity for a given data group and its 
corresponding numeric data set or complementary data 
set. The totality of the relational information held by the 
data can be represented in terms of just the similarity and 
dissimilarity values. With the help of the distance 
measure, we can design the similarity measure. The 
similarity measure thereby obtained can be used to 
calculate the dissimilarity measure on the basis of the 
total data summation property. In the following chapter, 
we discuss the similarity measure and dissimilarity 
measure of two fuzzy membership functions. We also 
introduce the previously obtained fuzzy entropy and 
similarity measure. In Chapter 3, we present the 
procedure whereby the dissimilarity measure is obtained 
from the similarity measure, and vice versa. A simple 
example of this is illustrated in Chapter 4. Our 
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conclusions then follow in Chapter 5. Theorem 2.1: For ( )A F X∀ ∈  and crisp set nearA  in Fig. 
1 (a),   

2. Similarity and Dissimilarity Measure 
Analysis 

( , )nears A A = ( ,[0] )near Xd A A∩ +    (1) ( ,[1] )near Xd A A∪

is the similarity measure, where nearA  is one when 
( ) 0.5A xμ ≥ , and is otherwise zero. [0]X  and [1]X  are 

fuzzy sets in which the value of the membership 
functions are zero and one, respectively. The Hamming 
distance is defined by 

( ,[0] )

 
In this chapter, we survey the relationship between the 

similarity and dissimilarity measure of a given data set 
with respect to the corresponding comparative data set. 
We also consider the fuzzy membership function and 
corresponding membership function in the design of 
similarity and dissimilarity measures. Fuzzy membership 
function pairs are illustrated in Fig. 1. 

near Xd A A∩
1

1 | ( ) 0 |
near

n

A A i
i

x
n

μ ∩
=

= −∑ ( ,[1] )near Xd A A∪.  

is also obtained similarly. 
 Proof: (S1) is clear from (1) itself, and for crisp set , 

it is clear that 
D

( , ) 0Cs D D = . Hence, (S2) is satisfied. It is 
clear that (S3) indicates that the similarity measure of the 
exact two fuzzy sets ( , )s C C  satisfies the maximum 
value among various similarity measures with different 
fuzzy sets A  and , because B ( ,[0]

  
)Xd C C∩  + 

( ,[1] )Xd C C∪ represents the entire region of Fig.1(a). 
Finally (S4) is proved. If , then 1 2near nearA A A⊂ ⊂

1 2( ,[0] ) ( ,[0] )near X near Xd A A d A A∩ ≥ ∩ and 
. It naturally follows 

that 
1 2( ,[1] ) ( ,[1] )near X near Xd A A d A A∪ ≥ ∪

(a) Fuzzy membership functions of A  and nearA  

 1 1 1( , ) ( ,[0] ) ( ,[1] )near near X near Xs A A d A A d A A= ∩ + ∪  
2 2( ,[0] ) ( ,[1] ) ( ,near X near X neard A A d A A s A A≥ ∩ + ∪ = 2 )

)
. 

Similarly, is satisfied by the 
inclusion properties of 

 and 
.             ■ 

1 2 2( , ) ( ,near near nears A A s A A≥

1 2 2( ,[0] ) ( ,[0] )near near X near Xd A A d A A∩ ≥ ∩

1 2 2( ,[1] ) ( ,[1] )near near X near Xd A A d A A∪ ≥ ∪
(b) Fuzzy membership functions of A  and CA  

 
This similarity (1) indicates the common areas of the two 
membership functions. For Fig.1 (b), the similarity 
measure between fuzzy sets A  and CA  is also 
satisfied by (2) similarly as with (1). 

Fig. 1. Fuzzy membership function pairs. 
 

Similarity measure studies are all concerned with the 
design of a similarity measure, which is then applied to 
the computation of degree of similarity on the basis of a 
distance measure. The suggested definitions of similarity 
measure have the same meaning for two data groups or 
fuzzy sets being compared. Liu proposed a definition of 
the axiomatic similarity measure in his paper [10]. The 
similarity measure for , (

( , ) ( ,[0] ) ( ,[1] )C C C
X Xs A A d A A d A A= ∩ + ∪     (2) 

It is logical that there should be numerous expressions 
that satisfy the similarity definition. Proof is obtained as 
it was for Theorem 2.1. We proposed the following 
similarity measure for two arbitrary fuzzy sets in our 
previous work [9, 12]: )A B F X∀ ∈  and  

has four properties, which are as follows: 
( )D P X∀ ∈

For any set ( ),A B F X∈ , if is the Hamming distance, 
then  

d
(S1) ( , ) ( , )s A B s B A= , , ( )A B F X∀ ∈  

( ) [ ]( ) ( ) [ ]( )( , ) 1 , 0 , 1C C
X X

s A B d A B d A B= − ∩ − ∪   (3) (S2) ,   ( , ) 0cs D D = ( )D P X∀ ∈

(S3) ,( , ) max ( , )A B Fs C C s A B∈= , ( )C F X∀ ∈  
(S4) , , ( )A B C F X∀ ∈ , if A B C⊂ ⊂ , then 
( , ) ( , )s A B s A C≥  and ( , ) ( , )s B C s A C≥  

and ( ) [ ]( ) ( ) [ ]( )( , ) 2 , 1 , 0
X X

s A B d A B d A B= − ∩ − ∪   (4) 
are also similarity measures for sets A  and . B
In (3) and (4), fuzzy set  can be replaced by B nearA  
and CA .  

where ( )F X  is a fuzzy set and  is a numeric set. 
The similarity measure between 

( )P X
A  and nearA  is 

proposed in Theorem 2.1. We verify its usefulness by 
proving it.  

In Fig. 1 (b), the similarity measure between A  and 
CA  is defined as ( , )Cs A A . We can now discuss the 
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meaning of ( , )Cs A A .  
( , ) ( ,[1] ) ( ,[0] )C C C

Xs A A d A A d A A= ∪ + ∩ X     (5) 
( , )Cs A A  represents fuzzy entropy; this is proven by 

verifying the properties of fuzzy entropy. We first use 
Liu’s definition of fuzzy entropy, after which proofs 
follow in which the properties (E1)–(E4) are verified 
[10]. 

(E1) ; ( ) 0, ( )e D D P X= ∀ ∈

(E2) ; ( )([1/ 2] ) ( )X A F Xe max ∈= e A

(E3) , for any sharpening *( ) ( )e A e A≤ *A  of A ; 
(E4) ; ( ) ( ), ( )Ce A e A A F X= ∀ ∈
where [1/ 2]X  is the fuzzy set in which the value of 

the membership function is . 1/ 2
For all crisp sets , D

( , ) ( ,[1] ) ( ,[0] )C C C
Xs D D d D D d D D= ∪ + ∩ X

=

X

)C

, 
([1] ,[1] ) ([0] ,[0] ) 0X X X Xd d= + . 

Hence, (E1) is satisfied. For (E2), 
([1/ 2] ,[1/ 2] )C

X Xs  = 
 ([1/ 2] [1/ 2] ,[1] ) ([1/ 2] [1/ 2] ,[0] )C C

X X X X Xd d∪ + ∩

=  ([1/ 2] ,[1] ) ([1/ 2] ,[0] ) 1X X X Xd d+ =
is maximum. (E2) is also satisfied. We now must prove 
(E3). 

* * * * * *( , ) ( ,[1] ) ( ,[0] )C C C
X Xs A A d A A d A A= ∪ + ∩  

( ,[1] ) ( ,[0] ) ( ,C C
X Xd A A d A A s A A≤ ∪ + ∩ = , 

where *A  is greater than A  when ( ) 1/ 2A xμ ≥ , and 
*A ≤ A  when ( ) 1/ 2A xμ ≤ . Finally, (E4) is satisfied 

easily from (5) itself.                           ■ 
From Fig. 1, the relationship between the similarity and 
dissimilarity measures for fuzzy set A  with respect to 

nearA  or CA can be explained by the total area. The total 
area is one (universe of discourse  maximum 
membership value = ); this represents the totality 
of information in the set. Hence, the totality of 
information consists of the similarity measure and 
dissimilarity measure as follows: 

×
1 1 1× =

( , )nears A A +  =1           (6) ( , )nearD A A
( , )Cs A A + ( , )CD A A =1             (7) 

Through a comparison of Figs. 1(a) and (b) and Eqs. 
(4) and (6), we obtain the following proposition.  
Proposition 2.1:  represents the dissimilarity 
measure between fuzzy sets

( , )nearD A A
A and nearA .  

( , )nearD A A ( ) [ ]( ) ( ) [ ](, 1 , 0 1near nearX
d A A d A A= ∩ + ∪ −)X  

With similarity measure (1), the similarity measure 
between fuzzy set A  with respect to the corresponding 
crisp set nearA  can be also formulated. The following 
theorem  proves (6), which represents the relationship 
between similarity and dissimilarity measures.  
Theorem 2.2: The total information in fuzzy set A  and 

the corresponding crisp set nearA , which is equal to the 
summation of similarity and dissimilarity measure.   

( , ) ( , )near nears A A D A A+  
( ,[0] )near Xd A A∩ ( ,[1] )near XA∪+ d A  =

( ) [ ]( ) ( ) [ ]( ), 1 , 0 1near nearX X
d A A d A A+ ∩ + ∪ −

near Xd A A

,   (8) 
is equal to one.  
Proof: (8) says that the summation of similarity measure 
and dissimilarity measure is equal to one, the total region 
in Fig.1 (a). In (8), 

( ,[0] )∩ ( ) [ ]( ), 1 1near X
d A A+ ∩ =  and 

( ,[1] ) ( ) [near Xd A A∪ ]( ), 0 1near X
d A A+ ∪ = . 

Hence, ( , ) ( , ) 1 1 1 1near nears A A D A A+ = + − = .           ■ 
Similarity measure (7) can be proved similarly. It is 

thus made clear that the total information of fuzzy set A  
can be represented by in terms of the similarity and 
dissimilarity measures. 
Proposition 2.2: Following from Proposition 2.1, the 
dissimilarity between A  and CA  is 

( ) ( ) [ ]( ) ( ) [ ]( ), , 1 ,C C C
X X

D A A d A A d A A 0 1= ∩ + ∪ − . 

Hence it is logical that the region not common to both 
represents the dissimilarity between two fuzzy sets A  
and , as follows:  B

( , ) ( , ) ( , )D A B d A A B d B A B= ∩ + ∩ . 
We can now propose a theorem concerning similarity 
and dissimilarity measures.  
Theorem 2.3: Total information in fuzzy sets A  and , 
that is, the summation of similarity and dissimilarity, is  

B

( , ) ( , )s A B D A B+ ( ,[0] )d A B X∩ ( ,[1] )+ Xd A  B∪=
( , ) ( , ) 1d A A B d B A B+ ∩ + ∩ = .       (9) 

Proof: (9) shows that the summation of similarity and 
dissimilarity is equal to one. In (9),  

1

1( , ) | ( ) ( ) |
n

A i A B i
i

d A A B x x
n

μ μ ∩
=

∩ = −∑   

and     
1

1( ,[0] ) | ( )
n

X A B i
i

d A B x
n

μ ∩
=

0 |∩ = ∑ − ,       (10) 

respectively. ( , )d A A B∩  represents the distance 
between ( )A ixμ  and ( )A B ixμ ∩ , ix X∀ ∈ . Furthermore, 

( ,[0] )Xd A B∩  denotes the distance between ( )A B ixμ ∩  
and zero. In (9), all membership functions are defined in 
the same universe of discourse. Hence, it is logical that 

( , )d A A B∩ + ( ,[0] )Xd A B∩  represents ( ,[0] )Xd A . 
Next,  

1

1( , ) | ( ) ( ) |
n

B i A B i
i

d B A B x x
n

μ μ ∩
=

∩ = −∑  

and     
1

1( ,[1] ) | ( )
n

X A B i
i

d A B x
n

μ ∪
=

∪ = −∑ 1| .       (11) 

In (11), ( , )d B A B∩  is the distance between  and 
the minimum value among 

B
A  and . If B
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( )A ixμ ( )B ixμ≥ ,  is equal to zero because it 
is the distance between and itself. Otherwise, it is the 
distance between and 

( , )d B A B∩
B

B A . In this case, 
( )A ixμ ( )B ixμ≤ . Finally, ( ,[1] )Xd A B∪  represents the 

distance between one and the maximum value among A  
and . Therefore, the following equation is satisfied: B

( , )d B A B∩  + ( ,[1] )Xd A B∪  =    (12) ( ,[1] )C
Xd A

Then,  
( ,[0] )Xd A B∩ ( ,[1+ ] )Xd A B∪ ( , ) ( , )d A A B d B A B+ ∩ + ∩  

= ( ,[0] )Xd A + = 1. ( ,[1]C
Xd A )

This result means that the summation of similarity and 
dissimilarity measures equals the whole region—the 
entirety of the information in fuzzy sets A  and . B
 

3. Derivation of Dissimilarity and Similarity 
Measure 

 
Liu insisted that entropy can be calculated from the 

similarity measure and distance measures, which are 
denoted by e s  and [10]. We have 
constructed the similarity measures with distance 
measure , those are Eqs. (1) to (4). In Liu’s results, 

, where  is the dissimilarity measure, which 
makes it logical to obtain following result: 

< > e d< >

d
1s d+ = d

( , ) ( , ) ( , )D A B d A A B d B A B= ∩ + ∩ 1 ( , )s A B= −  
Therefore, we propose that the similarity measure 

1 ( , ) ( , )s d d A A B d B A< >= − ∩ − ∩ B         (13) 
satisfies the relation 1s d= − . 
At this point, it is interesting to explore whether (13) 
represents the similarity measure.  
Proof: (S1) is clear from (13). Furthermore, 

1 ( , ) ( ,C C )Cs d d D D D d D D D< >= − ∩ − ∩ is zero because 
 satisfies 

. Hence, (S2) is satisfied. (S3) 
is also satisfied by ; it is 
logical that 

( , ) ( , )C Cd D D D d D D D∩ + ∩ C

X =( ,[0] ) ( ,[0] ) 1C
Xd D d D+

( , ) ( , ) 0d C C C d C C C∩ + ∩ =
( , )s C C  is maximal. Finally, (S4) states 

1 ( , ) ( , )d A A B d B A B− ∩ − ∩ ≥ 1 ( , ) ( ,d A A C d C A C− ∩ − ∩ )  
because  and 

 are satisfied. Similarly, 
( , )d A A B∩ = ( , )d A A C∩

( , )d B A B∩ ( , )d C A C≤ ∩
( , )s B C ≥ ( , )s A C  is satisfied. Therefore, the similarity 

measure can be obtained from the dissimilarity measure 
by (13).                                      ■ 

With (13), we learn yet another fact concerning 
similarity and dissimilarity measures. Liu proposed a 
relationship between entropy and similarity measure in 
Propositions 3.5 and 3.6 in reference [10]. With Liu’s 
property of a one-to-one correspondence between 
similarity and distance, distance means the dissimilarity 
between two groups of data. We have derived a 
similarity measure with the distance measure. 

Furthermore, with the similarity measure, we also 
derived the fuzzy entropy.  

Next, the dissimilarity measure  can be 
obtained from the similarity measure? Similarity 
measure (13) is an obvious form that can be converted 
into the dissimilarity measure using the relation 

( , )D A B

1s d+ = . 
We can now verify the dissimilarity derivation by means 
of our similarity measures (1), (3), and (4). By this 
relationship, the dissimilarity measure can be obtained. 

( , )D A B = 1 ( ,[0] )Xd A B− ∩ ( ,[1] )Xd A B− ∪ ,    (14) 
( , ) ( ,[0] ) ( ,[1] )C

X XD A B d A B d A B= ∩ + ∪ C

X

,     (15) 
and  ( , ) ( ,[1] ) ( ,[0] ) 1XD A B d A B d A B= ∩ + ∪ − .    (16) 

These dissimilarity measures stand for the distance 
between fuzzy sets A  and . By Lis’s definition of 
the distance measure [10],  

B

(D1) ( , ) ( , )d A B d B A= , , (A B F X )∀ ∈ ; 
(D2) 0),( =AAd , )(XFA∈∀ ;   
(D3) ),(max),( , BAdDDd PBA ∈= , )(XPD∈∀ ; 

, BA

  
(D4) XFC )(,∀ ∈ , if , then 

( CAdd
CBA ⊂⊂

),(), BA ≤  and ( CAdd . 
Dissimilarity 14) is easily verified as 

fol

),(),CB ≤
 measure (

lows. 
(D1) is clear from (14) itself. For (D2),  

( , )D A A = 1 ( ,[0] )Xd A A− ∩ ( ,[1]d A− ∪ )XA  
 = 1 ( ,[0] )Xd A− . 

(D3) is proved easily: 
( ,[1] ) 0Xd A− =

( , )CD G G = 1 (d− ,[0] )C
XG G∩ )( ,[1]C

Xd G G− ∪  
1 ([0] ,[0] )X Xd= − ([1] ,[1] ) 1X Xd− = . 

Finally, for A B C⊂ ⊂ ,  
( , )D A B = 1 (d A ,[0]B )X∩ ( ,[1] )− Xd A B− ∪   

1 ( ,[0] )d A C X≤ − ∩ )A C− ∪  
is satisfied because 

( ,[1] ) ( ,Xd A C D=

( ,[0] )Xd A B∩ ( ,[0] )Xd A C= ∩

an )
 

d ( ,[1] )Xd A B∪ ≥ ( ,[1]Xd A∪
clear

C . Similarly, it is also 
 that ( , ) ( , )D B C D A C≤ . This verification shows that 

the construction of a distance measure or dissimilarity 
measure between two fuzzy sets is possible by means of 
the similarity measure. From the same verification, (15) 
and (16) also represent the distance between two 
different fuzzy sets A  and B . 
 

4. Illustrative Example 
 

et us consider the next fuzzy membership L  set with 
function  

{ , ( )}AA x xμ=  
={(0.1,0.2) 0.2,0.4), (0.3,0.7), (0.4,0.9), (0.5,1),  

It is a h 

, (
  (0.6,0.9), (0.7, 0.7), (0.8,0.4), (0.9,0.2), (1,0)}. 
 data group that has ten points of information wit

a membership value. Then the complement of A  is 
written as 
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 { ,C ( )}CA
A x= xμ  
  ={(0.1,0.8), (0.2,0.6), (0.3,0.3), (0.4,0.1), (0.5,0),  

     (0.6,0.1), (0.7, 0.3), (0.8,0.6), (0.9,0.8), (1,1)}. 
nearA  can be assigned various variables. For example, 

the value of crisp set 0.5A  is one when ( ) 0.5A xμ ≥ , and 
is zero otherwise. Now 0.5 A  is represente s: 

0.50.5 { , ( )}A

d as follow
A x xμ=  

     ={(0.1,0), (0.2,0), (0.3,1), (0.4,1), (0.5,1), (0.6,1), 

The similar
(0.7, 1), (0.8,0), (0.9,0), (1,0)}. 
ity measure between A  and nearA is 

calculated using Eq. (1), and between A  and CA  by 
using Eq. (2). Various values of nearA  e appl d to 
compute similarity measures. The putation results 
are presented in Table 1. 
 

ar ie
com

Table 1. Similarity value between fuzzy set A  and 
nearA , A  and CA . 

Si lariSimilarity Measure mi ty Measure  
 measure  value  measure value 

0.1( , )s A A  0.64 ( , )Cs A A  0.4 

0.3( , )s A A  0.76   

0.5( , )s A A  0.80   

0.8( , )s A A  0.72   

0.95( , )s A A  0.56   

 
he dissimilarity measure between T A  and nearA is 

sit 1, and calculated using the result of Propo ion 2.
between A  and CA  by the result of Proposition 2.2. 
The comp tation results are also presented in Table 2. 
 

u

Table 2. Dissimilarity value between fuzzy set A  and 
nearA , A  and CA . 

re  D imilaDissimilarity Measu iss rity Measure 
measure value  measure  value 

0.1( ,A A )D  0.36 ( , )CD A A  0.6 

0.3( , )D A A  0.24   

0.5( , )D A A  0.20   

0.8( , )D A A  0.28   

0.95( , )D A A  0.44   

 
he similarity measure for T 0.5( , )s A A is calculated b

Dissimilarity measure is also calcula

+ + + + + + + + . 

The remaining similarity measures and fuzzy entropies

5. Conclusions 
 

For different groups of data, there is a correlation 
be
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