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Abstract. As no heat effect and mechanical work are observed, we have a simple experimental 
resolution of the Gibbs paradox: both the thermodynamic entropy of mixing and the Gibbs free 
energy change are zero during the formation of any ideal mixtures. Information loss is the 
driving force of these spontaneous processes. Information is defined as the amount of the 
compressed data. Information losses due to dynamic motion and static symmetric structure 
formation are defined as two kinds of entropies – dynamic entropy and static entropy, 
respectively. There are three laws of information theory, where the first and the second laws are 
analogs of the two thermodynamic laws. However, the third law of information theory is 
different: for a solid structure of perfect symmetry (e.g., a perfect crystal), the entropy (static 
entropy for solid state) S is the maximum. More generally, a similarity principle is set up: if all 
the other conditions remain constant, the higher the similarity among the components is, the 
higher the value of entropy of the mixture (for fluid phases) or the assemblage (for a static 
structure or a system of condensed phases) or any other structure (such as quantum states in 
quantum mechanics) will be, the more stable the mixture or the assemblage will be, and the more 
spontaneous the process leading to such a mixture or an assemblage or a chemical bond will be. 
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1. INTRODUCTION 

A paper entitled “The Gibbs paradox” was presented by Jaynes at one of the 
MaxEnt conferences [1]. Gibbs' paradox has been also a topic of discussion recently 
(see e.g., [2] or http://www.mdpi.org/lin/entropy/gibbs-paradox.htm for a collection of 
papers). As a chemist, the present author has been never satisfied by any of these 
solutions or explanations (see a critical review prepared and published in Chinese 
almost 20 years ago [3]). A very simple experimental resolution of Gibbs paradox will 
be given by the author, following the observation of thermodynamic and 
physicochemical measurements. A more general consideration within information 
theory leads to a higher entropy-higher similarity relationship. A new kind of entropy 
is defined and called static entropy. 

Jaynes, after reviewing the history, said that the conceptual difficulties are the main 
factor to greatly hinder the further development of the science [4]; this is also exactly 
the same difficult situation surrounding the resolution of Gibbs paradox. It has been 
one of the main tasks of the present author to investigate the concepts of similarity, 
indistinguishability, symmetry, order, information loss and stability and to clarify their 
relationships.  
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2. GIBBS PARADOX 

For the mixing of two substances A and B, the Gibbs paradox states that if the two 
substances are identical, there will be no entropy change, yet the slightest difference 
between the two will yield a considerable entropy change, the entropy of mixing [1,2] 
for mixing 1 mol of A and 1 mol of B,  

-1
T 2 ln 2 11.53 JKS RΔ = =      (1) 

In other words, the entropy of mixing is not a continuous function of the degree of 
difference between the two substances in the Gibbs paradox. 

As illustrated in Figure 1, two gases (for example, two chiral 2-deuteroethanol 
molecules A and B, as examples of two low pressure gases which can be treated as 
ideal gases) are mixed and there will be entropy of mixing (Eq. 1) and Gibbs free 
energy of mixing, even though these two molecules are of the same mass, have very 
similar properties and their difference cannot be recognized by any heat engine. 
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FIGURE 1. Mixing deuterated ethanols as two chiral molecules A and B.  

 
John von Neumann [5] provided a resolution of Gibbs paradox. Suppose two kind 

of particles are represented by the states Aφ  and Bφ , respectively, and the overlap 

integral A B aφ φ =  are calculated. Von Neumann’s entropy of mixing formula is 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
mix 2 2 2

2 2

2 log 2 1 log 1 1 log 1

2 1 log 1 1 log 1

S a a a a

a a a a

= − + + − − −

= − + + − − −
 (2) 

which is depicted in Figure 2. The maximum value of entropy of mixing is 2 bits. 
Thermodynamic entropy of mixing (Eq. 1) and Gibbs free energy of mixing have 

been calculated according to the Gibbs Paradox statement [6]. A calorimeter or any 
other equipment might be employed to determine the change of thermodynamic 
functions TSΔ  or TG T SΔ = − Δ  (where G is the Gibbs free energy, T is temperature) of 
the mixing process (Eq. 1). Unfortunately energy changes have never been observed 
for the formation of ideal mixtures. This leads to the conclusion that the 
thermodynamic entropy change TSΔ of a typical isothermal, isobaric process of ideal 
mixture formation is always zero, whether the components are different or identical. 
This conclusion can be taken as an experimental resolution of Gibbs paradox [7]. It is 
clear that entropy of mixing has nothing to do with energy. A mixing process is a 
process of information loss which can be pertinently discussed only in the realm of 
information theory and entropy of mixing is an (information theory) entropy. 
Chemical sensors or biosensors can be used to assess the information loss during the 
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mixing process. Mixing 1 mol of A and 1 mol of a different substance B will result in 
an increase of at most 2 bits of (information theory) entropy if the two parts of the gas 
container are used to record 2 bits of data (Figures 2 and 3). If the entropy is regarded 
as an (information theory) entropy and the microscopic structure details of the 
involved condensed phases, including the containers, are ignored (vide infra), von 
Neumann’s resolution as illustrated in Figure 2 appears valid [5] because there is no 
information to be lost if A and B are the same and less information to be lost if A and 
B are similar. If A and B are different, there are full amount of information to be lost, 
see Figure 3 (The calculation details can be found in the next two sections). 
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FIGURE 2. Entropy of mixing ranges continuously from 2 bits (orthogonal states, a=0) to 0 (identical 

states, a=1).  
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FIGURE 3. Total amount of data, entropy and information before and after the mixing of a system 
of two different ideal gases in two parts of a container, M=2, N=2 (vide infra). 

 
Generally, however, instead of the word “mixing”, the word “merging” can be used 

for the process of combining several parts of substance originally in several containers 
and the containers (E.g., the water in the tube, Figure 4a) themselves are also 
considered, for heterogeneous systems (Figure 4). For the solid mixture (Figure 4b), A 
(labeled as 0) is the container of B (labeled as 1) and vice versa. Then, it is always a 
merging process, whether the substances are very different or very similar or even the 
same.  

The conventional way of entropy of mixing calculation would predict that the 
mixing (or merging) process of different (distinguishable) substances is more 
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spontaneous than the merging process of the same (indistinguishable) substances. 
However, this contradicts all the observed facts in the physical world where the 
merging process of the identical substances is the most spontaneous one; immediate 
examples are spontaneous merging of oil droplets in water (Figure 4a) and 
spontaneous crystallization where the indistinguishable joined lattice cells assemble 
together (Figure 4b) [7-12]. More similar substances are more spontaneously miscible. 
The two alcohols methanol and ethanol are miscible because they are very similar. 

 
(a) Oil drops and water in a tube  

 
 

(b) Solid mixture and separated phases 

  
10101000011101 00000001111111

Spontaneous phase separation
      or self-aggregation
      or self-organization

Information registration  
FIGURE 4. Two cases where the information loss is observed during the merging of the phases which 
results in phase separation. On the left side of Figure (b) the molecules A and B labeled as 1 and 0 are 

mixed and appear as a one-dimensional solid mixture or a binary string. 
 
As shown in Figure 4b, starting from a binary solid mixture, the process of merging 

1 mol of molecules A to become one phase and merging of 1 mol of molecules B to 
form another phase leads to a tremendous information loss or (information theory) 
entropy increase of  

23 232 6.022 10 bit 1.506 10 byteSΔ = × ⋅ = ⋅    (3) 
where 236.022 10⋅ is Avogadro’s number; and there will be at most only 2 bits of 
information ( I ) left (see Figure 4b). This simple way of information loss assessment 
will be explained in the following sections. 

3. INFORMATION DEFINED AS COMPRESSED DATA 

There are many definitions of information. A new definition of information is given 
as the compressed data [7]. For a definition of data compression, see 
http://en.wikipedia.org/wiki/Data_compression. The compressed data I has less 
number of bits than the total amount of data L: 

0 I L≤ ≤      (4) 
There is a disadvantage in this definition because the noise recorded as data cannot be 
compressed (this will be discussed in the following section). It also depends on the 
compression software to be used. Despite of these drawbacks, this definition is the 
most plausible one because the data can be compressed via a standard algorithm and 
this gives an objective, reliable quantitative relation of information (I), the amount of 
data (L) and entropy (S).  
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Lewis’ entropy-information relation (gain of entropy means loss of information) 
[13,14] is adopted: 

S IΔ = −Δ      (5) 
The total amount of data L is the sum of entropy and information, 

L S I= +      (6) 
Great attention should be paid to the fact that the other very popular relation of 
entropy and information “entropy is a measure of information” (see ref. 15, also, p.37, 
ref. 4) is not accepted. Nevertheless, Lloyd, a physicist, pointed out that “conventional 
information theory defines the total amount of information registered by a system to 
be the difference between the system’s actual entropy and its maximum possible 
entropy” [16]:  

I L S= −      (7) 
where the total amount of data L is also the maximum possible entropy (or the 
maximum possible information) [7,12]. 

Following this definition and the Lewis relation of entropy and information, three 
laws of information theory can be proposed [12], with the first two given here first: 

The first law of information theory: the total amount of data L (the sum 
of entropy and information, L S I= + ) of an isolated system remains 
unchanged. 
The second law of information theory: Information I of an isolated 
system decreases to a minimum at equilibrium. 

If entropy change is exactly the information loss (Eq. 5), the conservation of L can 
be very easily satisfied,  

0L S IΔ = Δ + Δ = .     (8) 
The third law will be given in the following section. 

The information theory concepts can be introduced to thermodynamics and 
statistical mechanics. Thermodynamic entropy ST will be easily represented in the 
more general (information theory) entropy S  

TS kS=      (9) 
where k is the Boltzmann constant. The total amount of data L and Information I may 
also be easily introduced to thermodynamics and statistical mechanics: 

  E kTL=      (10) 
  G kTI=      (11) 

where E is the total energy. As Schrödinger remarked, he would use the word free 
energy G instead of negative entropy (cited on p.254, ref. 6). 

A chemical system of heterogenerous substances in the solid state can be taken as a 
simple discrete case [15] in information theory. The number of substances is M. These 
M kinds of substances (chemical species) are distributed at N sites. When we discuss 
the written language, M becomes the number of different characters. A text is the 
distribution of these characters written on N sites by typesetting and the total amount 
of data is 

   ln .L N M=      (12) 
For such system, the total number of microstates (or the maximum number of different 
texts) will be 
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 .Nw M=      (13) 
The binary string given in Figure 4b has M=2, N=14. Binary systems will be often 
taken as the model system in this paper and the total amount of data is 

 
2

ln 2 (nat)
= log 2 (bit)

N

N

L
N

=

=
    (14) 

An elegant description of such a binary system can be found in Chapter 1 of the 
excellent book of Kittel and Kroemer [17].  

Incidentally, scientific research may be regarded as a series of data compressions 
during the three stages of data–information–knowledge progress, either manually or 
assisted by computer. For example, the largest prime number at this moment given at 
http://www.mersenne.org/prime10.txt can be represented in different number systems 
and character sets, see Table 1. It is interesting to note that if a book of 300 pages in 
English (character set has M=256=28) were translated into Chinese (the minimum 
character set M=4096=212), the published Chinese version would be only 200 pages 
because 212x=28×300 and x=200. The meaning of diversity has been discussed in detail 
[9]. The mentioned prime number should have 4,072,832 bytes if this number is 
represented using all the 256 characters available for a text file. If the data have been 
stored in a hard disk with L=100 MB, this will stay unchanged and the information is 
I=4,072,832 bytes. Finally it can be expressed as a formula with the amount of data 
only a few bytes and shorter than one line: 

232,582,657 – 1      (15) 
as a Mersenne Prime (see: http://en.wikipedia.org/wiki/Largest_known_prime). Of 
course this final formula representing this number has the data tremendously 
compressed. Maybe many large primes can be expressed as a concise formula and this 
might be a task for the mathematician. In the next section, we will show that 
symmetries lead to data compression. 
 

TABLE 1.  The Data of the Largest Prime Number. This Number Can Be 
Represented by Using Different Character Set and Recorded as a Text File. 

Character set M N Number of pages 
binary 2 32582660 3258 
decimal 10 9808358 980 
hexadecimal 16 8145665 814 
ISO/IEC 8859-1 256 4072832 407 

 
Among the 2N microstates (Figure 5), following the Gaussian distribution, the 

number of the most probable distributions with equal number of 0 and 1 is: 
!

(0.5 )!(0.5 )!
N

N N
     (16) 

Some of them are noise-like texts (or microstates) and can hardly be compressed 
within the binary system (They can be represented by using other character set and the 
data can be further reduced, as shown in Table 1. We do not discuss this further in 
detail). Some of these 2N microstates (or texts), however, can be easily compressed 
due to symmetry, see for example Figure 5c which has very high data compressibility 
even though there are equal number of 0 and 1. As shown in Figure 5b, “10” is 
repeated and the data should be highly compressible. It would be an interesting 
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research task to find the compressibility distribution of these 2N microstates. 
Kolmogorov complexity or algorithmic complexity studies might be related to this 
topic [18]. The structure with the pure phases (Figures 5d and 5e), of course, can be 
compressed by inspection because they possess obviously the highest possible 
symmetries.  
 

(a)     01001101011010100110

(b)     10101010101010101010

(c)     00000000001111111111

(d)     00000000000000000000

(e)     11111111111111111111  
FIGURE 5. Illustration of the symmetry and the data compression. 

4. SYMMETRY, INFORMATION LOSS AND DATA 
COMPRESSIBILITY 

Several examples are given (Figure 6) to illustrate that dynamic motions can 
increase the symmetry and lead to information loss [8]. Pauling’s residual entropy of 
ice is another pertinent example: residual entropy can be calculated by considering the 
increased symmetry due to the hydrogen bond [19]. In Pauling’s argument, the higher 
local symmetry (Td) in ice due to hydrogen-bonding (a dynamic motion of H atom 
between two O atoms) provides a positive contribution to the value of the residual 
entropy. 

(a)        
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(c)  

A B

A B

A B

B A

 

 
ln

0
ln

I N M
S
L N M

=
=
=

    
ln1 0
ln
ln

I N
S N M
L N M

= =
=
=

 

FIGURE 6. Dynamic symmetries and information loss. The left side structures are nonsymmetric. The 
right side structures are symmetric [12]. For figure (b), M=3. 

 
Two examples of microstates with different static symmetries and the calculation of 

static entropies [7,8,12] are given in Figure 7. Definitely there is a fundamental flaw in 
the existing theories of the famous Ising model for the ferromagnetic phenomena 
because it should be unlikely to form the frequently observed unique all- spin-up 
structure (right side of Figure 7a) as the probability is extremely small: 23101/(2 ) . 
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Another problem is the spin-spin interaction energy: one of the most probable 
microstates should be the one shown on the left side of Figure 7a which has the lower 
energy, while the spin-spin interaction energy is the highest at the all-spin-up structure 
(see the right side of Figure 7a). Now we have static entropy [7,8,12] as information 
loss due to symmetry and can act as the driving force for the formation of the 
ferromagnetic structure.  
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FIGURE 7. Static symmetries and information loss. (a) Magnetic spins. The right side is symmetric 
ferromagnetic structure. (b) Separation of two kinds of chiral molecules. 

 
Why is the influence of the static entropy or the information loss due to the 

symmetry is so strong that it can overcome the disadvantage of the increased energy at 
the high-spin structures? This remains an open question. 

Symmetry leads to high data compressibility during the data analysis. For example, 
a large number of noisy images or noisy spectra can be collected and compressed 
through superimposition, where the weak signals appear repeatedly. The observation 
and storage of the data of a sinusoidal signal in the time domain can occupy as much 
hard disk space as one can provide. The periodicity – a symmetry – provides the 
possibility to carry out a Fourier transform to have a much reduced amount of data in 
the frequency domain. Halley's Comet is an astral body that can be seen and recorded 
every 75.3 years. The data with the repetition symmetry were “compressed” by 
Edmond Halley as a phenomenon observable every 75.3 years.  

The relation of symmetry-information loss (data compressibility) for static or solid 
structures presented here can be summarized as the third law of information theory 
[12]:   

The third law of information theory: for a perfect symmetric static 
structure, the information I approaches zero and the static entropy S is 
the maximum. 

This law conforms very well to the Curie-Rosen symmetry principle [12,20,21].  
Any static symmetry will define a static entropy as one kind of (information theory) 

entropy which is related to stability. The third law of thermodynamics is still valid if 
the considered entropy is the thermodynamic entropy kS or dynamic entropy defined 
in this paper. The discussions about the symmetry numbers in special cases and the 
correct explanation of experimental findings, such as the estimation of the melting 
points [22,23], will be discussed elsewhere. 
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5. SIMILARITY PRINCIPLE 

Symmetry is the highest value of similarity [8]. The symmetry–information loss 
relation can be further generalized as follows: 

The Similarity Principle: If all the other conditions remain constant, the 
higher the similarity among the components is, the higher value of 
entropy of the mixture (for fluid phases) or the assemblage (for a static 
structure or a system of condensed phases) or any other structure (such 
as chemical bond or quantum states in quantum mechanics) will be, the 
more stable the mixture or the assemblage will be, and the more 
spontaneous the process leading to such a mixture or an assemblage or 
a chemical bond will be. 

Based on the second law and the third law of information theory and the fact that 
symmetry is the highest value of similarity, the Curie-Rosen symmetry principle [20] 
can be regarded as a special case of similarity principle. The similarity principle can 
be proved by using Gibbs' inequality [8,12]. The condition for the maximum entropy 
must be the property indistinguishability among the w microstates so that the 
probabilities are of the same value: 1/w. As commented by Jaynes, a perfectly 
symmetric die ought to show both faces equally often [page 62 of ref.4].  

Several kinds of indexes have been developed by mathematical chemists. One of 
them, the chiral index, has been reported by Michel Petitjean at the MaxEnt2008 
conference. These kinds of indexes can be used to define similarity (for example, see 
ref.24). As another example, the similarity of molecular masses mA and mB is 
considered [25]. 

Entropy, similarity and stability consideration can be applied to a molecular system 
involving different energy states [26]. For the formation of chemical bond, as Pauling 
described, “…the two structures with the same energy in resonance make equal 
contributions to the normal state of the system” and form the strongest covalent bond 
[27]. The familiar Boltzmann factor [26] can be taken as a similarity scale, see Figure 
8. In this contest, it can be mentioned that life is manifested at the ambient temperature 
of 300K or about 25°C and avoids both high dynamics entropy (high T) and high static 
entropy (low T) as illustrated in Figures 6 and 7, respectively. A living organism is a 
heterogeneous system with driving force of both dynamics entropy trap and static 
entropy trap. 
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FIGURE 8. System with two states with a fixed energy level difference.  
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Entropy is a monotonically increasing function of similarity [7-12] which may be 
changed by increasing temperature (Figure 8). Let us consider a practical example of 
miscibility experiment which is very pertinent because we are discussing theory of 
mixtures. Suppose there are two liquids A (water, H2O, for example) and B (an 
alcohol ROH with a bulky group R) originally separated by solid wall. The miscibility 
studies can be carried out by replacing the wall with a porous wall and the two liquids 
are allowed to mix (see Figure 9). The two parts are used as two positions for the 
binary system A,B to record data, 2

2log 2 2 bitL = = . Suppose the volumes do not 
change when they mix at any volume ratio and the volume concentrations are in the 
range of 0 to 1. Then, set BLc c= as the found volume concentration of B molecules 
that transferred to the left side which is originally occupied by pure A before the solid 
wall is replaced. The same volume of A will enter the right side of the porous wall and 

AR BR, 1c c c c= = −  as the found volume concentrations of A and B, respectively. 
Temperature T is changed to tune the similarity between A and B and the miscibility is 
measured by chromatographic method. At certain low temperature, they remain 
separated: AL 1c =  and BL 0c =  on the left side of and AR 0c =  and BR 1c =  on the right 
side. This gives 0S = . If half of B entered the left side from the right side, 

AL BL AR BR 0.5c c c c= = = = , indicating the highest value of miscibility and 
correspondingly the highest value of entropy: 2S = . A similarity (also the miscibility) 
between A and B can be defined as 2z c= . Entropy of mixing is calculated using Eq. 
17 and is plotted in Figure 10.  

[ ]
[ ]

AL 2 AL BL 2 BL AR 2 AR BR 2 BR

2 2

2 2

log log log log
2 log (1 ) log (1 )

2 0.5 log (0.5 ) (1 0.5 ) log (1 0.5 )

S c c c c c c c c
c c c c

z z z z

= − − − −

= − − − −

= − − − −

  (17) 

 

A B

A B

   
(a) Before the mixing experiment.      (b) The two parts are allowed to mix. 

FIGURE 9. The miscibility experiment is done by replacing the solid wall in Figure (a) with a porous 
wall followed by the concentration measurement in the two parts. 

 
For the miscibility experiment concerned, the similarity between A and B are the 

highest if the volume ratio in the ideal mixture is 1:1. The two chiral 2-deuteroethanols 
A and B (Figure 1a) can become indistinguishable in many cases: for a heat engine 
and for the observer who are doing miscibility experiment. Of course all the ideal 
gases are indistinguishable if the miscibility is considered. Ideal gases mix not because 
they are different, but because as ideal gases they are very similar. Two phases (figure 
4a, for example) separate because the very similar substances would like to merge. All 
these processes, whether at higher temperature or at lower temperature, are governed 
by the rule that the higher the similarity among the components is, the higher the value 

BL

AL 1
c c
c c

=
= −
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of entropy (static or dynamic or both) will be and the higher the stability of the final 
structure will be. 

 

1.50

2.00

1.00

0.50
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0.00
0.00 0.20 0.40 0.60 0.80 1.00

z  
FIGURE 10. Entropy of mixing and miscibility. 

 
 
Finally the second law of information theory can be given yet another very general 

form: 

The second law of information theory: The similarity of the 
components or parts will increase to the maximum, or the difference 
cannot increase spontaneously. 

6. CONCLUSIONS 

As a more general resolution of Gibbs paradox, entropy is found to be a 
monotonically increasing function of the similarity. A new entropy-similarity 
relationship called similarity principle has been set up. We also revised the 
information theory where the three laws of information theory are given. Similarity 
principle is more general than the Curie-Rosen symmetry principle. Information loss 
alone can be the driving force of a physicochemical process where energy 
minimization rule does not play any role. It is certain that these new and clear relations 
of similarity, symmetry or indistinguishability, information loss, entropy and stability 
can be applied for reformulating the theoretical foundation of theoretical physics, 
physical chemistry, and biophysics. 
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