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Abstract. We examine the combinatorial or probabilistic definition (“Boltzmann’s principle”) of the en-
tropy or cross-entropy function H ∝ ln W or D ∝ − ln P, where W is the statistical weight and P the
probability of a given realization of a system. Extremisation of H or D, subject to any constraints, thus se-
lects the “most probable” (MaxProb) realization. If the system is multinomial, D converges asymptotically
(for number of entities N→∞) to the Kullback-Leibler cross-entropy DKL; for equiprobable categories in
a system, H converges to the Shannon entropy HSh. However, in many cases W or P is not multinomial
and/or does not satisfy an asymptotic limit. Such systems cannot meaningfully be analysed with DKL

or HSh, but can be analysed directly by MaxProb. This study reviews several examples, including (a)
non-asymptotic systems; (b) systems with indistinguishable entities (quantum statistics); (c) systems with
indistinguishable categories; (d) systems represented by urn models, such as “neither independent nor
identically distributed” (ninid) sampling; and (e) systems representable in graphical form, such as decision
trees and networks. Boltzmann’s combinatorial definition of entropy is shown to be of greater importance
for “probabilistic inference” than the axiomatic definition used in information theory.

PACS. 02.50.Cw Probability theory – 02.50.Tt Inference methods – 05.20.-y Classical statistical mechan-
ics – 05.90.+m Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems –
89.20.-a Interdisciplinary applications of physics

1 Introduction

The combinatorial or probabilistic definition of entropy,
given by Boltzmann, is usually written as [1,2]:

SN = NS = k ln W (1)

where SN is the total thermodynamic entropy of a sys-
tem, S is the entropy per unit entity, N is the number of
entities, W is number of occurrences of a specified real-
ization of the system (its statistical weight) and k is the
Boltzmann constant. This can be rewritten to give dimen-
sionless forms of the entropy and cross-entropy (directed
divergence or negative relative entropy) functions, respec-
tively [3–11]:

H = K ln W (2)
D = −K ln P (3)

where P is the probability of a given realization and K is
a dimensionless constant. Since lnx is monotonic with x,
maximisation of H or minimisation of D, subject to the
constraints on a system, always yields its “most probable”
(MaxProb) realization(s), and so can be used to infer the
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properties of the system. If a system is governed by the
multinomial weight or distribution, respectively:

Wmult =
N !

∏s
i=1 ni!

(4)

Pmult = N !
∏s

i=1

qni

i

ni!
(5)

where ni ∈ {N ∪ 0} is the occupancy of each cate-
gory i = 1, ..., s and qi is its source (“prior”) probabil-
ity, then (2), (3) with K=N−1 converge asymptotically
(N→∞) [12] to the Shannon entropy [13] or Kullback-
Leibler cross-entropy functions [14,15]:

HSh = lim
N→∞

1
N

ln Wmult = −
s∑

i=1

pi ln pi (6)

DKL = − lim
N→∞

1
N

ln Pmult =
s∑

i=1

pi ln
pi

qi
(7)

where pi = ni/N is the frequency or probability of occu-
pancy of the ith category. Equations (6), (7) are commonly
used in the maximum entropy (MaxEnt) or minimum
cross-entropy (MinXEnt) extremisation methods to infer
the “least informative” or “most uncertain” distribution

http://www.epj.org
http://dx.doi.org/10.1140/epjb/e2009-00168-5


50 The European Physical Journal B

Configuration

...
11 2

25

9

1 28

Category

Realization

Entity

...

18 4

20

29

7 17

...

9 2

3

27

26 1

i=1

i=2

i=3

i=s

, ,

[1,2,1,..,2]

...
9

2
3

4

1

7

99
95

17

91 92
29

23

24 25
21

27

21

33
35

31
37

13

Fig. 1. Definition of terms used in the combinatorial definition
of entropy.

p∗i of the system [16–19], based on axiomatic justifications
developed in information theory [13,20].

It is important to recognise, however, that W or P may
not be multinomial and/or may not satisfy an asymptotic
limit. Extremisation methods based on (6) or (7) will then
give a distribution which is unrepresentative of the sys-
tem, except in special instances. In such cases, it is prefer-
able to apply the MaxProb principle (2), (3) directly, to
obtain the most probable distribution of the system. Of
course, it is recognised that in non-asymptotic systems
(N�∞), the most probable distribution may not be the
only observable distribution; in other words, there may be
a significant spread around the inferred distribution [10].
Furthermore, due to quantisation effects, the actual real-
izable MaxProb distribution(s) may be sub-optimal [10].
Despite these effects, the MaxProb principle provides a
powerful tool for “probabilistic inference” of the proper-
ties of a probabilistic system, irrespective of its form.

The aim of this work is to demonstrate the utility of
the MaxProb principle (2), (3) in a number of systems
of physical interest: (a) non-asymptotic systems; (b) sys-
tems with indistinguishable entities (quantum statistics);
(c) systems with indistinguishable categories; (d) systems
represented by urn models, e.g. “neither independent nor
identically distributed” (ninid) sampling; and (e) systems
representable in graphical form, such as decision trees and
networks. Definitions of terms are provided in Section 2,
following which the above systems are examined in Sec-
tions 3 to 7. Particular attention is paid to (c), to ex-
plore the peculiar properties of systems with indistinguish-
able categories. The case studies serve as evidence that
Boltzmann’s definition (2), (3) is of much greater utility
for probabilistic inference than the Shannon or Kullback-
Leibler functions (6), (7) of information theory.

2 Definitions

To avoid confusion, it is necessary to define several terms,
discussed in reference to the combinatorial allocation
scheme (“ball-in-box” model) shown in Figure 1 [5–11];
this scheme encompasses both physical and mathemati-
cal (information-theoretic) interpretations. We make the
following definitions:

– An entity um,m = 1, ..., N is a discrete particle, object
or agent, or an individual selection of a discrete ran-
dom variable, which acts separately but not necessarily
independently of other entities.

– A category ci, i = 1, ..., s is a possible assignment of an
entity (e.g. an energy level, side of a die or alphabetic
symbol). Although not shown in Figure 1, categories
can be degenerate (involving gi subcategories in each
category i) and/or multivariate (involving a vector in-
dex ı).

– A probabilistic system is the ordered triple Υ (U,C, Ψ),
consisting of a finite set of entities U = {um}; a finite
set of categories C = {cı} (possibly a set of multivari-
ate degenerate sets) with C ∩ U = ∅; and a discrete
random variable Ψ : U → C. In other words, Ψ is a
function which assigns all entities um ∈ U to selected
categories cı ∈ C in accordance with some probabilis-
tic rule (not all categories need be selected). This def-
inition encompasses both physical and mathematical
situations.

– A configuration is an identifiable permutation or pat-
tern of entities amongst the categories, i.e. a set of
assignments {U → C} (in physics, a complexion or
microstate; in gambling or informatics, a sequence). A
configuration is thus a property of a system as a whole.

– A realization is an aggregated arrangement of entities
amongst the categories of a system, i.e. a set of config-
urations {{U→C}(1), {U→C}(2), ...}, as specified by
some rule. A common rule is to take the number of en-
tities in each category, as specified by the occupancy
vector or tensor n = {nı} (in physics, a macrostate;
in informatics, an outcome or type). Realizations are
here considered mutually exclusive (this requirement
could be relaxed to give some very different types of
systems).

– The statistical weight W
(ν) of the νth realization n(ν)

is the number of ways in which it can occur, i.e. its
number of configurations.

– The governing probability P
(ν) of the νth realization

n(ν) is its probability of occurrence, i.e. the sum of
probabilities of its component configurations.

Figure 1 shows the allocation of distinguishable entities
to distinguishable categories, without replacement, until
all N available entities are exhausted (see Sect. 3). This
allocation scheme can be varied in many ways.

We therefore wish to conduct probabilistic inference,
i.e. to infer the properties of a probabilistic system
Υ (U,C, Ψ), using the available information about its set
of realizations {n(ν)} with weights {W

(ν)} or probabilities
{P

(ν)}. Two “measures of central tendency” are evident:

– One measure - arguably the most important for infer-
ring the “typical” behaviour of a system - is the most
probable (MaxProb) or modal realization [1–11]:

n# = arg sup
ν

W
(ν) = arg sup

ν
P

(ν). (8)

Its use depends on the principle that “A system can be
represented by its realization of highest probability”. A
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significant advantage of MaxProb is that it can often
be found by extremisation or optimisation methods.
Of course, multimodal distributions will have multiple
maxima, an inherent aspect of this method [4,5,8].

– Another measure is the mean-weighted, superposi-
tional or expected occurrence realization (MeanProb),
in which each realization is weighted by its weight or
probability [4]:

n =

∑

ν
n(ν)

W
(ν)

∑

ν
W(ν)

=
∑

ν

n(ν)
P

(ν). (9)

This measure is important for non-asymptotic systems
and those with skewed distributions, but its calculation
can become formidable as the number of realizations in-
creases (often, an exponential function of N).

Both MaxProb and MeanProb are independent of any
information-theoretic or axiomatic considerations, other
than those of probability theory itself. This is absolutely
essential, since in any contradiction between information
theory and probability theory, the latter – being more fun-
damental – must triumph [8]. The two measures also do
not require asymptotic behaviour, and so can be applied
to systems with finite numbers of entities [6–11].

Whilst this study contains distinct philosophical differ-
ences with Jaynes [16–18] over the philosophical meaning
of the entropy concept, the “subjective Bayesian” defi-
nition of probabilities – as assignments based on what
we know – is adopted here. It is also recognised that
there are many different ways to assign entities and cat-
egories within a system, and many ways to group config-
urations into realizations, with any particular choice be-
ing dependent on the observer’s purpose. This leads to
the “subjective” (or “observer-dependent”) interpretation
of the entropy concept, a viewpoint staunchly defended
by Jaynes [16]. This was aptly expressed by Tseng and
Caticha [21]:

“Entropy is not a property of a system . . . [it] is a prop-
erty of our description of a system.”

Different observers (indeed, the same observer), with dif-
ferent available information and/or different purposes, can
therefore make different probability and entropy assign-
ments for the same system, leading to different (rational)
conclusions; this is a necessary feature of probabilistic in-
ference. The test of validity of such inference is the ex-
tent of its agreement with observations, responsibility for
which again lies with the observer and his/her social co-
hort. Such sentiments in no way weaken the mathematical
rigour of the probabilistic method, as set out in the fol-
lowing sections, nor the rules of probability theory upon
which it is based.

3 Non-asymptotic multinomial systems

We first examine univariate multinomial systems, the orig-
inal application of Boltzmann’s principle [1,2]. From a

Bayesian perspective, there are many reasons why one
might (rationally) select the multinomial distribution (5)
to represent a system [8]; it encompasses, but does not im-
ply, a “frequentist” approach [16–18]. For maximum gen-
erality, we include the source or prior distribution qi; in
physics, this is often interpreted as the number of dis-
tinguishable subcategories or degeneracy gi of each cate-
gory i, normalised by the total degeneracy of the system
G =

∑s
i=1 gi [11]. For constant N , applying the com-

binatorial definition (3) to the multinomial distribution
(5) (taking K = N−1) yields the non-asymptotic cross-
entropy function [6–8,10,11]:

−D(N)
mult =

1
N

ln Pmult =
1
N

{
lnN !+

s∑

i=1

[
ni ln qi−lnni!

]}
.

(10)
Either (10), or ln Pmult itself, can be maximised by the
Lagrangian method subject to the constraints:

s∑

i=1

ni = N, (11)

s∑

i=1

nifri = Fr, r = 1, ..., R. (12)

where fri is some function of each category i and Fr is its
total value, to infer the most probable distribution of the
system [6,7,10,11]:

p#
i =

n#
i

N
=

1
N
Λ−1

[ 1
N

lnN !+ln qi−λ0−
R∑

r=1

λrfri

]
(13)

where λr is the Lagrangian multiplier associated with the
rth constraint, Λ−1(y) = ψ−1(y − 1) is the upper inverse
of the function Λ(x) = ψ(x+ 1) and ψ(x) is the digamma
function. The Massieu function λ0 cannot be factored from
(13), hence the latter must be solved simultaneously with
all constraints (11), (12). In the asymptotic limit N →
∞, the above extremisation converges to the Boltzmann
distribution:

p∗i =
n∗

i

N
= qi exp(−λ′0 −

R∑

r=1

λrfri)

= Z−1qi exp(−
R∑

r=1

λrfri) (14)

where λ′0 = λ0 + 1 and Z =
∑s

i=1 qi exp(−∑R
r=1 λrfri) is

the partition function.
The effect of N on the properties of non-asymptotic

multinomial systems, including (i) the discrepancy be-
tween inferred MaxProb and Kullback-Leibler MinXEnt
distributions (13), (14), (ii) the spread of realizations
around the MaxProb distribution, and (iii) the importance
of quantisation, are examined elsewhere [10]. The analy-
ses reveal the importance of N in statistical mechanics.
The information-theoretic properties of non-asymptotic
multinomial systems have also been examined, in which
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the change in “information” is defined as the negative
change in the non-asymptotic entropy analogue of (10)
(c.f. [22–26]), i.e.:

ΔI (bits) = −ΔH
ln 2

= −KΔ lnW

ln 2
(15)

both for binary systems (s = 2) [6] and equiprobable sys-
tems in general [7]. The analyses show that “information”
consists of two parts: one associated with knowledge of
the realization {ni} and the other associated with knowl-
edge of N . Such findings overturn the prevailing wisdom
in communications and information theory, in which N is
assumed to be infinite and therefore irrelevant [13,20].

The MaxProb principle has also been applied to
the analysis of a non-asymptotic, closed thermodynamic
system of non-interacting particles (a double system-
bath with heat transfer), using the multinomial distribu-
tion [10]. This shows that in such systems, thermodynamic
intensive variables such as temperature are well-defined at
small N and do not require a “thermodynamic limit” [10].
This concurs with similar findings by other workers, from
different perspectives [27], as well as with common prac-
tice in engineering analyses of heat transfer [28].

4 Distinguishability of entities

Consideration of the effect of indistinguishable entities
in the 1920s is perhaps the most famous application of
MaxProb [29–33], providing the groundwork for the de-
velopment of quantum theory. This has now led to the
following four allocation schemes (in physics, referred to
as “statistics”) [29–40]:

– Maxwell-Boltzmann (MB) statistics, in which distin-
guishable entities are allocated to distinguishable de-
generate categories, with no restrictions on the occu-
pancies;

– Lynden-Bell (LB) statistics, as for Maxwell-Boltzmann
statistics but with a maximum of one entity per sub-
category [38–40].

– Bose-Einstein (BE) statistics, in which indistinguish-
able entities (bosons) are allocated to distinguishable
degenerate categories, with no restrictions on the oc-
cupancies; and

– Fermi-Dirac (FD) statistics, as for Bose-Einstein
statistics (involving fermions) but with a maximum
of one entity per subcategory.

BE and FD statistics were developed for quantum sys-
tems, but have found many other applications, e.g. the
application of FD statistics to the packing of granular
materials [41]. LB statistics were developed for collision-
less particle systems, such as gravitational stellar dynam-
ics [38–40]. The commonly adopted statistical weights of
these statistics are given in Table 1 (e.g. [29–40]). Note
that the MB statistic is multinomial (5). Only the sim-
plest, univariate version of each statistic is given here;
their formulation is scrutinised more closely in [11].

From the combinatorial definition of entropy (2) and
MaxProb principle (8), the non-asymptotic and asymp-
totic entropy functions and most probable distributions –
calculated subject to the constraints (11), (12) – are listed
in Table 1. As with multinomial systems (Sect. 3), the
inferred non-asymptotic most probable distribution ob-
tained by extremisation may differ from the actual (realiz-
able) distribution(s), due to quantisation effects [10]. Note
that the asymptotic LB and FD distributions are identi-
cal up to normalisation, although their meaning is differ-
ent [38–40]. The BE and FD weights converge to WMB/N !
in highly degenerate systems gi � ni, whilst the LB
weight converges directly to WMB; in the same limit, the
LB, BE and FD entropies and most probable distributions
all converge (up to a constant) to those of the MB distribu-
tion. From the pattern of the weights (Tab. 1), we can also
define a distinguishable-entity equivalent of BE statistics
with weight WD:D = N !

∏s
i=1 (gi + ni − 1)!/(gi − 1)!ni!,

which for gi �ni also converges to WMB ; this does not
appear to have been examined previously.

The non-asymptotic BE and FD statistics have im-
portant information-theoretic implications [6,7]. Using the
combinatorial definition of information (15), it is shown
that the observation of a finite number of bosons or
fermions requires the input of energy or information; from
the second law of thermodynamics, this is thermodynami-
cally irreversible. A single boson or fermion must therefore
appear to behave as if it were an infinite number of en-
tities until its moment of observation. This “information
relativity” perspective provides a rational explanation for
the “collapse of the wavefunction” in quantum systems,
which is not explained by present-day quantum theory,
and for which many metaphysical justifications have been
proposed [42].

It is also possible to derive intermediate statistics
which interpolate between BE and FD statistics. Several
alternatives are available:
– Gentile statistics, which indistinguishable entities are

allocated to distinguishable categories with restriction
ni ∈ {0, 1, ...,m} entities per subcategory [19,43–45].

– Haldane-Wu statistics, in which entities are allocated
to categories using a generalised Pauli exclusion prin-
ciple [46,47].

– Acharya-Swamy statistics, proposed by ansatz [48] and
now with several justifications [47,49–51]; see also Sec-
tion 6.

– Cattani-Fernandes statistics, derived by a combina-
torics argument using quantum group theory [52–54].

Other intermediate statistics have also been proposed.
Their main application has been to quantum particle sys-
tems, but curiously, only in the asymptotic limit N → ∞.
Gentile statistics have also been applied to the analysis
of socioeconomic and transport systems, again only in
asymptotic form (e.g. [19]).

5 Distinguishability of categories

By logical extension of Section 4, we can also con-
sider the allocation of (in)distinguishable entities to
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Fig. 2. Allocation schemes for non-degenerate indistinguish-
able categories: (a) D:I statistic and (b) I:I statistic.

indistinguishable categories. Despite the fact that indis-
tinguishable categories are part of the “folklore” of combi-
natorics, and are included in published tables of the num-
ber of combinations or permutations of different allocation
schemes (e.g. the “twelve-fold way”) [55–59], the entropy
functions and most probable distributions of such systems
have only recently been examined [9]. For convenience, we
define:

– D:I statistics, in which N distinguishable entities are
allocated to s indistinguishable categories;

– I:I statistics, in which N indistinguishable entities are
allocated to s indistinguishable categories.

The D:I case has been examined for univariate, non-
degenerate and equally degenerate categories [9], whilst
the I:I case has not previously been examined. In the
following, the non-degenerate forms of each statistic are
discussed in detail, followed by their equally degenerate
forms.

5.1 Non-degenerate D:I and I:I statistics

Firstly examining the non-degenerate D:I statistic il-
lustrated in Figure 2a, we denote the weight of each real-

ization {ni} by:

WD:I =
{{

N
n1, . . . , nk, 0, . . . , 0

}}
(16)

where k ≤ s is the number of filled categories ni > 0. By
combinatorial enumeration of some simple examples, the
following features emerge [9]:

– Unfilled categories do not affect the weight, i.e. [9]:

{{
N

n1, . . . , nk, 0, . . . , 0

}}
=

{{
N

n1, . . . , nk

}}
. (17)

– Permutations of the occupancies are meaningless, e.g.
{1, 2, 1} and {1, 1, 2} refer to the same realization [9].
This is quite different to multinomial and quantum sys-
tems (Sects. 3, 4), in which permuting the occupancies
generates different realizations.

It can be shown that the weight is [9]:

WD:I =
N !

( k∏

i=1

ni!
)( N∏

j=1

rj !
) =

N !
( s∏

i=1

ni!
)( N∏

j=1

rj !
) (18)

where rj ≥ 0 is the repetitivity, or number of occurrences
of integer j in the realization {ni} (without counting ze-
ros), hence

∑N
j=1 rj = k. Proof of (18) follows from the

successive filling of cells [9]. The weight satisfies [9,60,61]:

{
N
k

}
=

∑

all {ni}
fixed k

{{
N

n1, ..., nk, 0, ..., 0

}}
(19)

B(N, s) =
s∑

k=1

{
N
k

}
=

s∑

k=1

∑

all {ni}
fixed k

{{
N

n1, ..., nk, 0, ..., 0

}}

(20)

where
{

N
k

}
is a Stirling number of the second kind and

B(N, s) is an incomplete Bell number, equal to the total
number of configurations [55,57–59]. B(N, s) reduces to
the usual Bell number BN [58] for s = N .

Applying the combinatorial definition (2) with K =
N−1 to (18) yields the non-asymptotic entropy [9]:

H
(N)
D:I =

1
N

s∑

i=1

(ni

N
lnN ! − lnni!

)
− 1
N

N∑

j=1

ln rj ! (21)

where the lnN ! term is brought inside the first sum using∑s
i=1 ni = N . As evident, finding the asymptotic form

or extremisation of (21) requires careful handling of the
{rj}, and is therefore not as straightforward as in clas-
sical or quantum statistics. For N → ∞ (hence s�N)
and ni→∞, ∀i, application of the Stirling approximation
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lnm! ≈ m lnm −m and the associated limits rj �=∞ = 0,
r∞ = k gives, for k � ∞ [9]:

lim
N→∞

ni→∞,∀i

H
(N)
D:I = −

s∑

i=1

pi ln pi (22)

H
(N)
D:I thus converges to the Shannon entropy (6) under

these conditions. Outside of these limits, e.g. for s � N ,
(22) does not apply, since it is critically dependent on
ni → ∞, ∀i, not just on N → ∞ [9]. The D:I statistic thus
differs substantially from the multinomial in its asymp-
totic properties.

We next examine the non-degenerate I:I statistic
(Fig. 2b). The weight can be denoted:

WI:I =
[[

N
n1, . . . , nk, 0, . . . , 0

]]
(23)

I:I statistics have many features in common with the D:I
case, e.g. unfilled categories have no effect on the realiza-
tion or weight, and permutations of the occupancies are
meaningless. However, by inspection it is readily seen that,
in the non-degenerate case:

WI:I = 1. (24)

In other words, each realization is equiprobable, render-
ing the MaxProb principle ineffective; non-degenerate BE
and FD statistics also exhibit this property (Tab. 1). Such
systems must be examined using the MeanProb measure
(9) (in effect, a weighted average MaxProb). For complete-
ness, it can also be shown that:

Pk(N) =
∑

all {ni}
fixed k

[[
N

n1, ..., nk, 0, ..., 0

]]
=

∑

all {ni}
fixed k

1 (25)

P(N) =
s∑

k=1

Pk(N) =
s∑

k=1

∑

all {ni}
fixed k

[[
N

n1, ..., nk, 0, ..., 0

]]

(26)

where Pk(N) is a partition number and P(N) a cumula-
tive partition number [58]; the latter gives the total num-
ber of configurations [55,57–59].

To consider some examples, the MaxProb (where pos-
sible) and MeanProb realizations of non-degenerate MB,
BE, D:I and I:I systems subject only to the normalisation
constraint (11), calculated by enumeration of all config-
urations, are listed in Tables 2–4 for various values of s
and N . The MB and BE realizations are given as lists
[n1, ..., ns], whilst the D:I and I:I realizations are repre-
sented as ordered sets {n1 ≥ ... ≥ ns} (the order is imma-
terial but convenient). As evident:

– The non-degenerate MB statistic (Tab. 2) is highly
symmetric, in that the entities try to spread as uni-
formly as possible over all available categories in both

the MaxProb and MeanProb distributions. It is also
strongly asymptotic, in that the MaxProb and Mean-
Prob distributions converge rapidly to the uniform dis-
tribution, equivalent to the asymptotic distribution ob-
tained by maximising the Shannon entropy (6).

– The non-degenerate BE statistic (Tab. 2) is also highly
symmetric and strongly asymptotic to a uniform dis-
tribution, as shown by its MeanProb distribution.

– In contrast, the non-degenerate D:I statistic is highly
asymmetric: its MaxProb distribution has a “stair-
case” appearance, in many cases cascading to a region
of unoccupied cells, whilst the MeanProb distribu-
tion decreases monotonically but remains positive.
For s = N , this statistic appears to be inherently
non-asymptotic, with no obvious convergence of the
MaxProb or MeanProb distributions to any function;
they also differ significantly from each other. For s�
N (illustrated by s = 3), the MaxProb and MeanProb
distributions converge slowly towards the uniform dis-
tribution, given by the Shannon asymptotic form (22).

– The non-degenerate I:I statistic is also highly asym-
metric, even more so than the D:I case; its Mean-
Prob distribution decreases monotonically but remains
positive. It has no evident Shannon-like asymptotic
convergence either for s=N or s�N . However, for
s=N it does exhibit a curious asymptotic form, as
revealed by the total weighted occupancies MI:I,i =
∑

ν n
(ν)
I:I,iW

(ν)
I:I in Table 5; these, divided by the total

weights
∑

ν W
(ν)
I:I =P(N), give the MeanProb distri-

bution (9). As shown, MI:I,i converges as N → ∞
to the sequence 1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 139, ... re-
arranged in descending order; this is simply the sum
(from zero) of partition numbers [62,63]. This leads to
the following:
Conjecture: For s = N , the numerator of the Mean-
Prob distribution of the non-degenerate I:I statistic
satisfies:

lim
N→∞

MI:I,i = lim
N→∞

∑

ν

n
(ν)
i W

(ν)
I:I =

N−i∑

α=0

P(α) (27)

Corollary: For s = N , the MeanProb distribution of
the non-degenerate I:I statistic satisfies:

lim
N→∞

nI:I,i =

N−i∑

α=0
P(α)

P(N)
(28)

No attempt is made to prove these limits here. Con-
vergence is quite rapid (valid at low N) towards the
small end of the sequence (i→ N).

Non-degenerate D:I and I:I statistics therefore differ
markedly from MB and BE statistics. Their properties
are summarised in Table 6. For indistinguishable cate-
gories, it is seen that asymmetry is inherent, whilst for
distinguishable categories, asymmetry can only arise from
a non-uniform degeneracy and/or the imposition of mo-
ment constraints (12).
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Table 2. MaxProb and MeanProb realizations for non-degenerate MB and BE statistics, subject to (11) (in part after [9]).

N s Non-degen. MB statistic only Non-degen. MB and BE statistics

Actual MaxProb realization(s) [n#
i ] WMB (each) PMB (each) MeanProb realization [ni]

1 1 [1] 1 1 [1]
2 2 [1, 1] 2 0.5 [1, 1]
3 3 [1, 1, 1] 6 0.222222 [1, 1, 1]
4 4 [1, 1, 1, 1] 24 0.093750 [1, 1, 1, 1]
5 5 [1, 1, 1, 1, 1] 120 0.038400 [1, 1, 1, 1, 1]
10 10 [1, . . . , 1] 3.63E+06 3.629E-04 [1, . . . , 1]
20 20 [1, . . . , 1] 2.43E+18 2.320E-08 [1, . . . , 1]
30 30 [1, . . . , 1] 2.65E+32 1.288E-12 [1, . . . , 1]
40 40 [1, . . . , 1] 8.16E+47 6.749E-17 [1, . . . , 1]
50 50 [1, . . . , 1] 3.04E+64 3.424E-21 [1, . . . , 1]
1 3 [1, 0, 0], [0, 1, 0], [0, 0, 1] 1 0.333333 [1/3, 1/3, 1/3]
2 3 [1, 1, 0], [1, 0, 1], [0, 1, 1] 2 0.222222 [2/3, 2/3, 2/3]
3 3 [1, 1, 1] 6 0.222222 [1, 1, 1]
4 3 [1, 1, 2], [1, 2, 1], [2, 1, 1] 12 0.148148 [4/3, 4/3, 4/3]
5 3 [1, 2, 2], [2, 1, 2], [2, 2, 1] 30 0.123457 [5/3, 5/3, 5/3]
10 3 [3, 3, 4], [3, 4, 3], [4, 3, 3] 4200 0.071127 [10/3, 10/3, 10/3]
20 3 [6, 7, 7], [7, 6, 7], [7, 7, 6] 1.33E+08 0.038151 [20/3, 20/3, 20/3]
30 3 [10, 10, 10] 5.55E+12 0.026961 [10, 10, 10]
40 3 [13, 13, 14], [13, 14, 13], [14, 13, 13] 2.41E+17 0.019853 [40/3, 40/3, 40/3]
50 3 [16, 17, 17], [17, 16, 17], [17, 17, 16] 1.15E+22 0.016005 [50/3, 50/3, 50/3]

5.2 Equally degenerate d:I and I:I statistics

Now consider equally degenerate D:I statistics, in
which each category i contains g equiprobable indistin-
guishable subcategories. The weight can be denoted [9]:

WD:I(g) =
{{

N
n1, . . . , ns

}}

(g)
=

{{ N
n11, ..., ns1

...
...

n1g , ..., nsg

}}

(29)

where nim is the occupancy of subcategory m (hence∑g
m=1 nim = ni). Again k ≤ s is the number of filled

categories. The weight and entropy are obtained as [9]:

WD:I(g) =
N !

( k∏

i=1

ni!
)( N∏

j=1

rj !
)

k∏

i=1

min(g,ni)∑

γ=1

{
ni

γ

}
(30)

H
(N)
D:I(g) =

1
N

s∑

i=1

(
ni

N
lnN ! − lnni! + ln

min(g,ni)∑

γ=1

{
ni

γ

})

− 1
N

N∑

j=1

ln rj ! (31)

where γ is an index of filled subcategories. Details of the
derivation of (30) are given in [9]. For N → ∞, ni →
∞, ∀i, limm→∞

{
m
a

}
= am/a! [64], rj �=∞ = 0 and r∞ =

k � ∞, (31) converges to the MB-like entropy HD:I(g) =
−∑s

i=1 pi ln pi/γ
#
i , where

{ ni

γ#
i

}
is the dominant term in

the sum over γ. Outside these limits, this asymptotic form
is not obtained.

For equally degenerate I:I statistics, the weight
can be denoted by:

WI:I(g) =
[[

N
n1, . . . , ns

]]

(g)
=

[[ N
n11, ..., ns1

...
...

n1g , ..., nsg

]]

. (32)

By enumeration of numerous examples, it can be estab-
lished that the weight is given by:

WI:I(g) =
n1∏

j=1

ℵ
(min(g,j)∑

γ=1

Pγ(j)
)rj

(33)

where ℵ(a+b+ ...)m is the Wronski aleph function [65,66],
a combinatorial polynomial or complete symmetric func-
tion [67,68] given by a multinomial expansion with its co-
efficients omitted. For example, consider:

(a+ b)2 = a2 + 2ab+ b2

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3

(a+ b)m =
m∑

t=0

(
m
t

)
atbm−t

where
(

m
t

)
is the binomial coefficient. The Wronski forms

are:

ℵ(a+ b)2 = a2 + ab+ b2

ℵ(a+ b)3 = a3 + a2b+ ab2 + b3

ℵ(a+ b)m =
m∑

t=0

atbm−t

and in general:

ℵ
( Γ∑

γ=1

aγ

)m

=
∑

t1,t2,...,tΓ

at1
1 a

t2
2 ...a

tΓ

Γ , (34)
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Table 3. MaxProb and MeanProb realizations for non-degenerate D:I statistics, subject to (11) (in part after [9]).

N s Non-degenerate D:I statistic

Actual MaxProb realization(s){n#
i } WD:I(each) PD:I(each) MeanProb realization {ni}

1 1 {1} 1 1 {1}
2 2 {1, 1}, {2, 0} 1 0.5 {1.5, 0.5}
3 3 {2, 1, 0} 3 0.6 {2, 0.8, 0.2}
4 4 {2, 1, 1, 0} 6 0.4 {2.333, 1.133, 0.467, 0.067}
5 5 {2, 2, 1, 0, 0} 15 0.288462 {2.615, 1.462, 0.692, 0.212, 0.019}
6 6 {3, 2, 1, 0, 0, 0} 60 0.295567 {2.842, 1.759, 0.916, 0.399, 0.079, 4.93E-03}
7 7 {3, 2, 1, 1, 0, 0, 0} 210 0.239453 {3.058, 1.981, 1.166, 0.584, 0.185,

0.025, 1.14E-03}
8 8 {3, 2, 2, 1, 0, . . . , 0} 840 0.202899 {3.245, 2.173, 1.417, 0.761, 0.325, 0.071,

7.00E-03, 2.42E-04}
9 9 {3, 2, 2, 1, 1, 0, . . . , 0} 3780 0.178749 {3.419, 2.337, 1.643, 0.949, 0.477, 0.149,

0.024, 1.75E-03, 4.73E-05}
10 10 {3, 2, 2, 1, 1, 1, 0, . . . , 0},

{3, 2, 2, 2, 1, 0, . . . , 0},
{3, 3, 2, 1, 1, 0, . . . , 0},
{4, 3, 2, 1, 0, . . . , 0, 0, 0}

12600 0.108644 {3.576, 2.494, 1.827, 1.154, 0.629, 0.254, 0.058,

6.86E − 03, 3.97E − 04, 8.62E − 06}

20 20 {4, 3, 3, 2, 2, 2, 2, 1, 1, 0, . . . , 0},
{4, 4, 3, 3, 2, 2, 1, 1, 0, . . . , 0}

1.83E+12 0.035443 {4.677, 3.623, 2.999, 2.479, 2.046, 1.666, 1.169,

0.729, 0.395, 0.160, 0.046, 9.26E − 03,

. . . , 1.93E − 14}
30 30 {5, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1,

0, . . . , 0}
1.54E+22 0.018214 {5.376, 4.330, 3.710, 3.244, 2.880, 2.495, 2.131,

1.858, 1.507, 1.078, 0.703, 0.406, 0.191,

0.069, 0.019, 4.17E − 03, . . . , 5.15E − 22, 1.18E − 24}
40 40 {5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2,

1, 1, 1, 0, . . . 0}
1.14E+33 0.007265 {5.892, 4.848, 4.246, 3.797, 3.405, 3.093, 2.832,

2.508, 2.181, 1.946, 1.691, 1.333, 0.952, 0.627,

0.366, 0.180, 0.072, 0.023, 5.93E − 03, . . . ,

6.35E − 36}
50 50 {6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2,

2, 2, 1, 1, 0, . . . , 0}
7.40E+44 0.003986 {6.304, 5.262, 4.662, 4.225, 3.875, 3.542, 3.238,

3.016, 2.806, 2.516, 2.214, 1.996, 1.794, 1.505,

1.152, 0.815, 0.531, 0.307, 0.151, 0.062, 0.021,

6.00E − 03, . . . , 5.38E − 48}
1 3 {1, 0, 0} 1 1 {1, 0, 0}
2 3 {1, 1, 0}, {2, 0, 0} 1 0.5 {1.5, 0.5, 0}
3 3 {2, 1, 0} 3 0.6 {2, 0.8, 0.2}
4 3 {2, 1, 1} 6 0.428571 {2.429, 1.143, 0.429}
5 3 {2, 2, 1} 15 0.365854 {2.805, 1.585, 0.610}
6 3 {3, 2, 1} 60 0.491803 {3.246, 1.893, 0.861}
7 3 {3, 2, 2}, {4, 2, 1} 105 0.287671 {3.682, 2.205, 1.112}
8 3 {3, 3, 2}, {4, 3, 1} 280 0.255941 {4.077, 2.592, 1.331}
9 3 {4, 3, 2} 1260 0.384029 {4.505, 2.903, 1.592}
10 3 {5, 3, 2} 2520 0.256046 {4.927, 3.218, 1.855}
20 3 {8, 7, 5} 9.98E+07 0.171680 {8.887, 6.582, 4.531}
30 3 {11, 10, 9} 5.05E+12 0.147059 {12.717, 9.907, 7.376}
40 3 {15, 13, 12} 2.09E+17 0.103236 {16.468, 13.236, 10.297}
50 3 {18, 17, 15} 1.02E+22 0.085360 {20.162, 16.578, 13.261}
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Table 4. MeanProb realizations for non-degenerate I:I statistics, subject to (11).

N s Non-degenerate I:I statistic: MeanProb realization {ni}
1 1 {1}
2 2 {1.5, 0.5}
3 3 {2, 0.667, 0.333}
4 4 {2.4, 1, 0.4, 0.2}
5 5 {2.857, 1.143, 0.571, 0.286, 0.143}
10 10 {4.571, 2.262, 1.286, 0.786, 0.476, 0.286, 0.167, 0.095, 0.048, 0.024}
20 20 {7.384, 4.056, 2.603, 1.775, 1.239, 0.879, 0.625, 0.447, 0.316, 0.223, 0.155, 0.107, 0.072, 0.048, 0.030,

0.019, 0.011, 0.006, 3.19E-03, 1.59E-03}
30 30 {9.736, 5.628, 3.795, 2.714, 1.998, 1.496, 1.131, 0.860, 0.655, 0.499, 0.380, 0.288, 0.218, 0.164, 0.122,

0.091, 0.067, 0.049, . . . , 1.78E-04}
40 40 {11.826, 7.059, 4.903, 3.608, 2.735, 2.111, 1.647, 1.295, 1.023, 0.810, 0.642, 0.509, 0.403, 0.318, 0.251,

0.198, 0.155, 0.121, . . . , 2.68E-05}
50 50 {13.736, 8.390, 5.947, 4.462, 3.450, 2.717, 2.165, 1.739, 1.404, 1.138, 0.924, 0.752, 0.612, 0.498, 0.405,

0.329, 0.267, 0.216, 0.174, 0.141, 0.113, . . . , 4.90E-06}
1 3 {1, 0, 0}
2 3 {1.5, 0.5, 0}
3 3 {2, 0.667, 0.333}
4 3 {2.75, 1, 0.25}
5 3 {3.4, 1.2, 0.4}
10 3 {6.429, 2.643, 0.929}
20 3 {12.545, 5.409, 2.045}
30 3 {18.626, 8.187, 3.187}
40 3 {24.773, 10.955, 4.273}
50 3 {30.885, 13.731, 5.385}

the sum taken over all permutations of tγ ≥ 0 which sat-
isfy

∑Γ
γ=1 tγ = m. Proof of (33) again proceeds from the

successive filling of subcategories. An upper bound for the
weight is given by the product, over all filled categories, of
the number of subrealizations of ni entities in γ subcate-
gories; from (25), the latter is given by:

Pγ(ni) =
∑

all {nim}
fixed γ

[[
ni

ni1, ..., niγ , 0, ..., 0

]]
=

∑

all {nim}
fixed γ

1

(35)

whence: WI:I(g) ≤
k∏

i=1

(min(g,ni)∑

γ=1

Pγ(ni)
)
. (36)

The product of
∑min(g,ni)

γ=1 Pγ(ni) terms must then be
modified to account for multiple occurrences of the same
subrealization(s) in different categories, which are indis-
tinguishable. This is achieved using the Wronski aleph in-
stead of a polynomial product, where upon (36) yields
(33).

The form of (33), based on the integers j rather than
occupancies ni, is not very amenable for derivation of a
combinatorial entropy function; further work is needed to
determine if a more suitable form exists. In its absence,
the MaxProb and MeanProb distributions can always be
calculated using (33) by enumeration of all realizations.

To this point, we have examined the effect of differ-
ent features of “ball-in-box” allocation schemes (Fig. 1),
including system size (non-asymptotic effects), various
types of degeneracy, (in)distinguishability of the balls or

boxes and occupancy restrictions. Many more choices are
possible, e.g. how the configurations should be amalga-
mated into realizations, other occupancy restrictions such
as non-empty cells, ordered occupancies, mixtures of dis-
tinguishability types, etc. [55–59]. Most of these options
have not been examined from an entropic (inferential) per-
spective, and warrant further detailed investigation.

6 Urn models

We now consider the use of urn models - related to but
distinct from “ball-in-box” models - for the mathematical
representation of probabilistic systems. Urn models have
a long history, being employed by Jacob Bernoulli and
Laplace [18], and occupying the attention of many tradi-
tional statisticians during the 20th century (e.g. [69–72]).
A simple example is represented in Figure 3, in which balls
are drawn from an urn containing a total ofM balls, made
up of mi balls of the ith colour, for i = 1, ..., s. A ball is
drawn in accordance with some rule, recorded, and then
returned to the urn and/or the urn modified in some man-
ner; the sampling is repeated until a sample of N balls,
consisting of ni of each colour, is obtained (c.f. [71,72]).
The urn model is used to generate the probability distri-
bution P of the sampling scheme and, usually, its asymp-
totic behaviour (M → ∞ and/or N → ∞) is examined.
Many extraordinarily complicated urn models have been
devised, involving the conditional drawing and/or replace-
ment of ball(s) from a single or multiple urns [69,70].

Although a very old device, the new perspective here is
that urn models generate a governing probability P which
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Table 6. Properties of non-degenerate statistics, subject only to (11).

Distinguishable Entities Indistinguishable Entities
Distinguishable Non-degenerate MB statistics Non-degenerate BE statistics
Categories MaxProb and MeanProb MeanProb only; realizations equiprobable

Highly symmetric Highly symmetric
Strongly asymptotic to uniform distribution Strongly asymptotic to uniform distribution

Indistinguishable Non-degenerate D:I statistics Non-degenerate I:I statistics
Categories MaxProb and MeanProb MeanProb only; realizations equiprobable

Highly asymmetric Highly asymmetric
Slowly asymptotic to uniform distribution, s � N Non-asymptotic to uniform distribution, s � N
Non-asymptotic for s = N ? Monotonic decreasing asymptote (28) for s = N

can be converted, by Boltzmann’s principle (3), to a cross-
entropy function (3). One can then apply the tools of prob-
abilistic inference, such as the MaxProb and MeanProb
principles defined in Section 2, to infer the properties of
the system. Surprisingly few physicists, mathematicians
or information theorists have exploited this technique, de-
spite Boltzmann’s principle being over 130 years old [1].
Although it does simplify the calculations, it is not neces-
sary that the system be asymptotic; furthermore, by the
use of modern-day optimisation and numerical methods,
many types of systems can be examined, such as those
in which P is not in closed form. Many quite complicated
probabilistic systems involving conditional probabilities –
e.g. Markovian or non-Markovian chains, random walks,
networks, transport systems and games – can therefore be
analysed in this manner.

It is known that MB, BE and FD statistics (Sect. 4)
can be constructed by simple urn models, respectively in-
volving sampling with replacement, double replacement
or without replacement, in the asympotic limits M →
∞, N → ∞ and N/M → β [71,72]. Two recent stud-
ies [11,76] have extended these scenarios using the Pólya
urn model, in which the ball is returned after each draw
and c balls of the same colour are also added [73–75]:

PPolya =
N !

s∏

i=1

ni!

s∏

i=1

mi(mi + c) . . . (mi + (ni − 1)c)
M(M + c) . . . (M + (N − 1)c)

.

(37)
This is a closed-form example of “neither independent nor
identically distributed” sampling, since the probability of
drawing a ball of colour i changes (conditionally) during
sampling. Equations (3) and (37) were then used to derive
the Pólya cross-entropy function. This includes MB, BE
and FD statistics as special cases, and in general gives
rise to the Acharya-Swamy intermediate statistic [11]. It
is also shown that extremisation of the Kullback-Leibler
function (7), in a Pólya system, infers a distribution which
asymptotically vanishes and is therefore unrepresentative
of the system [76].

7 Graphical systems

Finally, we consider systems which can be represented
in graphical form. Graph theory is one of the mainstays

of modern-day combinatorics, and there are few proba-
bilistic systems which cannot be represented in this man-
ner. As well as graphs (formally defined below), a wide
range of specialist concepts are available, including trees,
networks, posets, cycles, chains, lattices and necklaces
(e.g. [55,57,58]). As with urn models, the insight here is
the ability to infer the “typical” properties of the system,
for which the MaxProb and (possibly) the MeanProb prin-
ciples are eminently suited. These may involve the deriva-
tion of an entropy or cross-entropy function, for extremisa-
tion subject to the constraints on the system. Curiously,
however, few combinatorial or graph-theoretical studies
invoke an entropy concept or seek the most probable real-
ization of the system; most published studies which con-
sider the graph entropy (defined below) stem from infor-
mation theory (e.g. [77–81]).

We first define several terms [58,77–82]:

– The non-Cartesian product of two setsA andB is given
by A×́B = {{a, b}|a ∈ A, b ∈ B}, i.e. the set of un-
ordered pairs {a, b} taken without repetition.

– An undirected graph is the ordered triple G =
(V,E, ψ), consisting of a non-empty finite set of ver-
tices V = {vi}, a finite set of edges E = {ej} with
E ∩ V = ∅ and a function ψ : E → V ×́V . In other
words, ψ maps edges ei to a pair of vertices {vj , vk},
without regard to order.

– A simple graph is an undirected graph without single-
node loops ei → {vj , vj} or multiple edges ei = et.

– A complete graph is a simple graph in which ψ is sur-
jective, i.e. all pairs of vertices have an edge.

– Two complementary graphs G and G have the same
vertex set V and disjoint edge sets E and E, such that
ψ : E ∪ E → V gives a complete graph.

– A colouring or proper colouring of a graph G is a parti-
tion of the vertex set V into edge-independent disjoint
sets (colour classes), such that every edge joins vertices
in two different colour classes.

– The chromatic number χ(G) of a graph G is the small-
est number of classes in any colouring of G.

– The vertex packing polytope V P (G) of a graph G is
the convex hull of the characteristic vectors of stable
sets of G [81].

It is also possible to consider directed graphs or digraphs,
in which each edge has a direction [58,82]; these are not
examined further here.
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i=1

i=2

i=3

i=s

Urn
...

Fig. 3. Urn model representation of a probabilistic system.

e

a

o

Fig. 4. Graph of several Danish letters.

The graph entropy concept follows from consideration
of communications signals of length N , consisting of let-
ters vj ∈ V from an alphabet V , represented as vertices
of a graph. If the letters are considered distinguishable,
they are made adjacent (joined by an edge). As an ex-
ample, consider the Danish vowels in Figure 4, which if
scanned by English-language optical character recogni-
tion software, may exhibit the distinguishability relations
shown. Its chromatic number χ = 3. The graph entropy of
a simple graph G on the vertex set V = {v1, ..., vs}, with
corresponding probability distribution P = {p1, ..., ps}, is
then defined as [77–79]

H(G,P ) = lim sup
N→∞

1
N

log2

(
χ(GN

P ) + 1
)

(38)

where GN
P implies a graph with distribution P and signal

length N . A very different but more tractable definition,
demonstrated to be equivalent, is [80,81]:

H(G,P ) = min
a∈V P (G),a>0

s∑

i=1

pi log2

1
ai
. (39)

A third definition of H(G,P ) is based on the mutual in-
formation [79,81]. From a combinatorial perspective, the
graph entropy enables the handling of categories with
“heterogeneous” distinguishability, a superset of the D:I
statistic analysed herein (Sect. 5). It also exhibits sev-
eral interesting properties; e.g. the entropies of two com-
plementary graphs are additive and equal to that of the
complete graph [80,81,83], in some sense analogous to the
additive nature of the thermodynamic entropy. The graph
entropy is, however, exclusively asymptotic (N → ∞).

Substantially more research is required on the compat-
ibility of the definition of graph entropy (38), (39) with
Boltzmann’s principle, and on the application of proba-
bilistic inference (e.g. the MaxProb principle) to systems
represented in graphical form.

8 Conclusions

This study examines probabilistic systems defined by
Υ (U,C, Ψ), in which entities um ∈ U are mapped to cat-
egories cı ∈ C by a probabilistic random variable Ψ ; the
resulting distinguishable configurations {U → C} are then
grouped into realizations in accordance with some aggre-
gation rule. The combinatorial or probabilistic definitions
of entropy H and cross-entropy D, proportional respec-
tively to the logarithm of the weight or probability of
a specified realization (2), (3) (“Boltzmann’s principle”),
are then considered. These are defined so that extremi-
sation of H or D, subject to any constraints, always se-
lects the “most probable” (MaxProb) realization(s) of the
system (8). Another useful measure of central tendency
of a system is its mean-weighted (MeanProb) realization,
the average of all realizations weighted by their weight or
probability [4]. For multinomial systems, the combinato-
rial definitions (2), (3) converge to the Shannon entropy
or Kullback-Liebler cross-entropy in the asymptotic limit
N → ∞. However, as is made clear in this study, many
systems may not be multinomial and/or may not have an
asymptotic limit. Such systems cannot meaningfully be
analysed with DKL or HSh, but can be analysed directly
by MaxProb and/or MeanProb. This is illustrated by sev-
eral examples, including (a) non-asymptotic systems; (b)
systems with indistinguishable entities (quantum statis-
tics); (c) systems with indistinguishable categories; (d)
systems represented by urn models, such as “neither inde-
pendent nor identically distributed” (ninid) sampling; and
(e) systems representable in graphical form, such as deci-
sion trees and networks. Particular attention is devoted
to (c), especially to analysis of the I:I statistic, includ-
ing (i) identification of an asymptotic form of its non-
degenerate MeanProb realization, and (ii) derivation of
its non-degenerate statistical weight, in terms of partition
numbers, coding parameters and the Wronski aleph func-
tion. The potential for significant new research, especially
in (d) and (e), is also highlighted.

It is shown that the Boltzmann principle (2), (3)
leads to many different entropy or cross-entropy measures
for different combinatorial systems, united by a common
(MaxProb) principle (8) founded in probability theory. In
contrast, the Shannon and Kullback-Leibler functions of
information theory – which are often claimed to be univer-
sal measures of uncertainty applicable to all probabilistic
systems [16–19] – do not have such a universal foundation.
Indeed, in many systems, the distribution inferred by the
Shannon or Kullback-Leibler functions can be shown to be
unrepresentative of the system [6,7,9–11,29–37,76]. The
combinatorial definition of entropy (Boltzmann’s princi-
ple) is therefore of fundamentally greater importance, for
the purpose of inferring the properties of a probabilistic
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system, than the definitions adopted in information the-
ory.
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