THEO
CHEM

ELSEVIER

Journal of Molecular Structure (Theochem) 398-399 (1997) 145-153

Understanding structural stability and process spontaneity based on the
rejection of the Gibbs paradox of entropy of mixing'
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Abstract

Logarithmic relations of entropy and symmetry and a linear relation of entropy and similarity were set up and have been used
to predict the miscibility of fluids, the stability of solid structures, particularly molecular assemblages, and the electronic
structures of atoms and molecules. After the rejection of the Gibbs paradox statement of mixing, it becomes clear mixing most
similar or indistinguishable components (such as individual subphases, quantum states) and any analogous processes are the
most spontaneous processes. Therefore, entropy as information loss can be defined and quantified for dynamic and static
structures at a hierarchical level. Entropy changes can be estimated for many symmetry-breaking processes such as crystal-
lization and ferromagnetism. Accordingly, the informational temperature of a conventional molecular assemblage in the solid
state, and the local thermodynamic temperature of electronic motion, can be formally defined and have been found to be
negative temperatures. The most spontaneous process of mixing most similar or indistinguishable components can be regarded
as the deformation of a flexible system, e.g. an ideal fluid body and the deformation can deliver mechanical work. © 1997
Elsevier Science B.V.
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1. Introduction

The Gibbs paradox statement [1-15] has been a
very fundamental assumption in statistical mechanics
[1,14]. It says that the entropy of mixing or assem-
bling to form solid assemblages, liquid and gas
mixtures or any other analogous assemblages such
as quantum states, decreases discontinuously with
the increase in the property similarity of the com-
posing individuals [4,14,15]. Some authors revised
the Gibbs paradox statement and argue that the
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entropy of mixing decreases continuously with the
increase in the property similarity of the cormposing
individuals [6,8,10,16]. Based on a large body of
experimental evidence and theoretical arguments
[1-3], this statement was disproved and a new theory
built up which says that entropy of mixing or
assembling increases continuously with the increase
in similarity (Fig. 1).

Further developments and applications of this new
theory [17~20] are outlined in the present paper.

Based on the second law of thermodynamics, the
entropy (S) increase used to predict the structural
stability and the process spontaneity of a system of
ideal gas used in a Carnot heat engine can be directly
measured as a maximum mechanical work. Because
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Fig. 1. Correlation of the entropy of mixing with similarity accord-
ing to (a) conventional statistical physics where the entropy of
mixing suddenly becomes zero if the components are indistinguish-
able [4-14], and (b) the theory of the present author [1-3].

mixing of ideal gases is a process of entropy increase,
in principle, a maximum mechanical work

w=AG=-TAS (1)

should be also measurable, where G is the Gibbs free
energy and T is temperature. A balloon model will be
used to realize the mechanical work output of the
isobaric, isothermal and isochoric energy transduc-
tion. After the rejection of the Gibbs paradox state-
ment of mixing, the most spontaneous process of
mixing most similar or indistinguishable components
can be regarded as the deformation of an ideal fluid
body within an enclosure (Section 5).

However, because the entropy of mixing ideal
gases by simply opening the walls separating rigid
containers has no observable effects such as heat

and mechanical work, it is desirable to consider
entropy generally as information loss. Therefore,
entropy should be generally correlated to other
much more conceivable properties such as symmetry
(higher symmetry is correlated with higher entropy
[1]) and similarity (Section 2 and Ref. [17]). This
gives a very general expression of the second law of
thermodynamics. It is found that indistinguishability
is a ubiquitous driving force for many physical and
chemical processes.

It is convenient to consider a hierarchical level of
nature and to consider locally both the dynamic and
static aspects at a hierarchical level. Two tempera-
tures are formally defined for the dynamic and static
aspects; some local temperatures have values that are
normally negative. An entropy and information theory
is developed based on the rejection of the Gibbs para-
dox statement and is found to conform perfectly with
the second law of thermodynamics and to predict
structural stability and process spontaneity of symme-
try-breaking processes such as second-order phase
transition phenomena (Section 3 and Ref. [18]).
There is no reason to infuse mystery into the forma-
tion of a static (such as crystallization) or a dynamic
pattern (such as chemical oscillation?).

According to Heisenberg [22], von Neumann [16]
and Pauling [23], the chemical bond can be charac-
terised by a mixing of quantum states. The structural
stability and process spontaneity of an electronic
system in atoms and molecules can be investigated
based on the new entropy theory of mixing
(Section 4). Pauling’s resonance theory is clearly
justified by connecting it with the second law of
thermodynamics through our new theory [19].

2. Mixing and separation [17]

From the general expression of entropy (k is a
positive constant),

S=—k,zlpi In p; (2)

2 For an earlier critique of Prigogine’s school of thermodynamics
and his theory of structural stability and process spontaneity, see
Ref. [21].
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with

M=

lpi=1 (3)

i

and the well-known inequality [1]

M=

P; 1nP,'Sln w (4)

i=1

the entropy of mixing w subsystems increases con-
tinuously and monotonously with the property simila-
rities of the  subsystems; the  property
indistinguishability corresponds to the maximal
entropy of mixing (Fig. 1):

Soax =k In w (5)

The values p; in Eq. (2) are determined by the pair-
wise similarity comparison of any relevant properties
among the w subsystems to be mixed. The first kind of
such properties are such obvious physical properties
as volume fractions, partial pressures or molar frac-
tions. The other kind of property can be generally
named as molecular similarity, a physicochemical
property [24].

Obviously, indistinguishability is a ubiquitous driv-
ing force for physical and chemical processes,
because it is related to the highest symmetry and
entropy characteristic of a global equilibrium [1].
The logarithmic relations of entropy and symmetry
provided a very sound basis for a general theory
of structural stability and process spontaneity accord-
ing to symmetry evolution consideration [1]. Note
that the Greek word symmetry means same
measure or the measure of sameness, or the measure
of indistinguishability.

This theory conforms with all the practically useful
entropy formulae hitherto established for the first
category of property similarities among subsystems.
For example, relative to the state before mixing, the
entropy of mixing ideal gases and ideal solutions is:

S=-nR Zx[lnx,- (6)
=1

after mixing of w components of molar fractions x;,
with the total mole number n. The entropy of mixing
is Smax only if x; all have identical values.

This theory also conforms well with all those
related experimental observations that may contradict
conventional statistical mechanics for molecular

similarity consideration (Fig. 1(a)). An example is
the hydrophobic effect. Hydrophobicity is a property
of organic molecules closely related to molecular
similarity [24]. Hydrophobic subsystems of pentane
and hexane are mutually miscible and form a sepa-
rated phase in water because they have similar proper-
ties. Subsystems of identical hydrocarbons merge
very spontaneously because they are very similar or
indistinguishable (note that the entropy effect domi-
nates over the hydrophobic effect [25]).

By using some simple model molecular systems
having several energy levels [26], it has been shown
that entropy, similarity and thus general miscibility,
all increase with the increase in temperature of the
subsystems [17]. At reduced temperatures, where the
similarity is reduced [26], different substances do not
mix but separate as a result of the fact that the
indistinguishable subsystems are the most miscible
ones, whether they are solids liquids, or gases. A
straightforward organic preparation procedure has
thus been designed and demonstrated by both synth-
esis and purification of several quinoxaline-2,3-diones
in one step [27].

A similarity index is defined as the ratio of the
entropy and the maximal entropy:

Z= S/Smax (7N

corresponding to the maximal similarity (Z = 1, i.e.
indistinguishability), as shown in Fig. 1(b).
Succinctly, if one wants to mix substances, one should
increase the similarity (of relevant properties); if one
plans to separate the substances as phases, one should
reduce the similarity. The desirable processes of
mixing or separation will then happen spontaneously.

3. Self-organization in hierarchical structures [18]

Self-organization is a spontaneous process and
must be governed generally by the second law of
thermodynamics. However, dissipative structure
theory defines ‘‘order out of chaos’’ through ‘‘self-
organization’’ and means that a more *‘ordered’’ state
is generated through a spontaneous process. This has
been used as an example against the validity of the
second law of thermodynamics {28,29]. Therefore, we
need to construct a new informational theoretical and
thermodynamic explanation.
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Firstly, in order to make any meaningful discussion
possible, entropy (S) is defined as the information (/)
loss:

S:Imax_l (8)

where I, is the maximum information presumably
registerable. This is necessary because in some defini-
tions [30], entropy and information are regarded as the
same parameter.

More generally, conventional information theory
defines the total amount of information (/) registered
by a system as the difference between the system’s
actual entropy (S) and its maximum entropy (Smax),

I=8px =S )

In a process, if all the information is lost relative to the
initial state (/ = /,,,), according to Eq. (9) the final
state has maximum entropy

Smax =1nw (10)

where the positive constant k is defined as 1 and w 1s
the number of indistinguishable ‘‘microstates’” (or, in
some cases, the number of the arrangements, or com-
binations) [30]. Again, it is well known that the
increase in entropy is synonymous with the loss of
information. Clearly,

Tnax = Strax (11)

which means that the maximum information a system
can lose equals the maximum information the system
may register. It is necessary to state that both entropy
and information are non-negative functions:

§=0 (12)

I=0 (13)

Furthermore, it is very convenient that a local thermo-
dynamic model be set up for the consideration of the
structural stability and process spontaneity of a hier-
archical level, and the energy E,, and entropy S, are
defined for that hierarchical level. Temperatures T,
which connects energy E; and entropy S; can be
defined (at least formally) for different structures of
a hierarchical level:

E,
— =T, 14
(356>v¢ ¢ (1

It is not surprising that at some hierarchical level, the
temperatures T, thus defined will be negative if the

entropy increases while the energy decreases [31,32].
Because the change in E; can be measured, 7, will be
significantly, at least formally, defined, and in
principle easily calculated, if the change of §; as
information loss, which will be discussed in the
following, can be calculated.

Two general mechanisms of information loss in any
hierarchical level are proposed: information loss
happens because of the dynamic motion or the forma-
tion of a more symmetrical static structure. Therefore,
for a hierarchical level, a thermodynamic temperature
T (for its dynamic aspect) and an informational tem-
perature 7 (for its static aspect; so called because in
practice information is registered on a static solid
device) can be defined respectively.

For conventional thermodynamic systems of many
particles (molecules), the thermodynamic temperature
T'is conventionally defined as positive (non-negative).
For such systems, because information registration is
a process of Al >0, or AS <0, and involves the
energetically excited states (AE > 0) [33], T} in a con-
ventional thermodynamic system at static state is
always negative [31]. When the system is in a fluid
state, the negative information temperature is at its
maximum value: 7 = 0.

For a hierarchical level of a single atom and a mole-
cule, the electronic system has a negative local ther-
modynamic temperature T of electron motion and a
positive local informational temperature 7 relative to
the thermodynamic temperature of the conventional
thermodynamic system of an ideal gas [32). For elec-
tronic motions, locally the total energy E. and the
entropy S, vary in such a way that E. reduces while
S. increases. The local thermodynamic temperature T
is negative if Eq. (14) is used. The kinetic energy K. of
electronic motion can be calculated from the virial
theorem: K. increases with the decrease in the total
energy E.. Locally both K, and S. increase with the
increase of the absolute value of the local thermody-
namic temperature, |T,l, or when T, becomes more
negative and when the system approaches the ground
state [32].

Because it is allowed to evolve spontaneously, the
more self-organized system will be closer to an
equilibrium structure (either dynamic or static).
Because a system closer to equilibrium has a higher
entropy [34], ‘‘order out of chaos™ through *‘self-
organization”’ must be false, whether or not it is at
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equilibrium. This is obvious for a dynamic system.
For the comparison of the relative stabilities of differ-
ent static structures, let us take crystallization as an
example. Crystallization has been taken as a typical
example of self-organization [35].

We introduced a formula

I=NInM, (15)

to calculate the values of information of different sta-
tic structures based on the estimation of the apparent
species number (M,) factually observed in a system of
N molecules [36]. For example if M molecular orien-
tations are originally used to register information in an
assemblage of many molecules in the solid state, then,
comparing with the imperfect crystal of M species (M
orientations), there is factually only one orientation,
or one species (M, = 1) observed in a perfect crystal,
and the information is completely lost:

I=ln1=0 (16)

From Eq. (8), relatively this is a state of maximum
informational entropy.

Any system with large amount of information
registered can be neither crystal-like nor very sym-
metric. One can claim to understand the structure of
all 6.022 x 10* cells in 1 mole of perfect crystal if one
acquires information about only one of them. One
cannot say this if the solid is not a perfect crystal.
Regarding a perfect crystal as *‘order’” and an imper-
fect crystal as ‘‘disorder’” and using the theory of
“‘order out of chaos’’ through ‘‘self-organization’’
will naturally lead either to the conclusion that a static
structure of a perfect crystal is generally less stable
than an amorphous static structure, which is against
the fact that crystals are the most stable static struc-
tures, or to the conclusion that entropy decreases
(information increases) spontaneously in an informa-
tion registration system (that can be an isolated
system), which is then against the second law of
thermodynamics. The opposite is correct.

Of course, construction of this new theory of struc-
tural stability is possible only if the Gibbs paradox
statement is rejected. Remember that the Gibbs para-
dox expression of entropy has also been applied to
static assemblages such as spin and molecular orien-
tation (see any treatment of statistical mechanics in
the solid state [37]). The present new theory says that
the formation of a perfect crystal, relative to imperfect

crystals, has more information loss, and is more
stable. Unfortunately, none of the many relevant
entropy theories of the Ising model [37] built so far
is correct, because they are based on the Gibbs para-
dox statement. The related interesting topic of chemi-
cal aesthetics can be discussed with many examples:
symmetry is ugly because it is associated with infor-
mation loss [38].

Clearly, for symmetry breaking problems in solid
state physics, entropy changes can be estimated as the
amounts of information loss for many processes such
as crystallization (molecular orientations) and ferro-
magnetism (spin orientations). Factually all the other
symmetry breaking phenomena observed in nature,
such as phase transformation and phase separation,
can all be elegantly explained by this new theory in
an analogous way.

Finally, the total entropy S of a system at the
hierarchical level € can be expressed as the sum of
the thermodynamic entropy (S¢) and the informational
entropy (S¢) of the dynamic and static aspects:

St =S¢+ Sy (17)

Then the total entropy of a structure with many hier-
archical levels can be calculated and the entropy
change during a self-organization can in principle be
calculated.

4. Formation of the chemical bond [19]

Is there a reliable criterion for the structural
stability and process spontaneity of an electronic
system in atoms and molecules? With this question
we return to Pauling’s authentic work The Nature of
the Chemical Bond, in which we find a most important
keyword — resonance [23]. The most prominent effect
of resonance (mixing of quantum states), as illustrated
by Pauling with numerous examples, is observed if it
occurs among several energetically indistinguishable
configurations (e.g. H*-H and H-"H for the formation
of a one-electron bond in H3). Pauling specifically and
most frequently used benzene (C¢H¢) to explicitly
illustrate the nature of resonance and the significance
of the w-electron delocalization. However, it is this
interpretation of benzene’s structural stability that
continues to arouse controversy, as reviewed recently
{39].
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The use of entropy change as a criterion was con-
sidered a long time ago [16]. In his well-known
quantum mechanical resolution of the Gibbs paradox
statement of entropy of mixing, von Neumann pro-
vided a formula for the entropy of mixing of quantum
states: mixing indistinguishable quantum states gives
zero entropy while mixing different quantum states
gives a nonzero value [16]. Because his mathematical
manipulation of entropy of the electronic system was
strictly restricted to the framework of the Gibbs para-
dox statement, and the Gibbs paradox statement itself
is false (see the previous sections of this paper), it is
understandable that his entropy of mixing formula
[16] has virtually never been applicable to an electro-
nic system even though it was originally expected to
serve as a process spontaneity criterion of electronic
systems of single atoms and molecules (see also
Ref. [10]).

Firstly, because electrons involved in chemical
bond formation are of one type of particle, it is
expected that a limited amount of entropy increase
of the mixing of the indistinguishable particles, here
the electrons, results in a chemical bonding process.

Secondly, the electronic configurations of the
ground state and the bonding orbital are always
more symmetric than those of excited states and
anti-bonding orbitals. From the logarithmic relation
of entropy and symmetry (higher entropy correlates
with higher symmetry) [1], the formation of the more
stable ground state and the chemical bond is a process
of entropy increase. .

Thirdly, all the quantum mechanics calculations
(either simple ones like both VB and MO theories
or many dedicated methods) and experimental facts
[2] unambiguously show, opposing von Neumann’s
conclusion [10,16], that the mixing of quantum states
that are indistinguishable in properties (energy and/or
configuration) gives the maximum entropy and leads
to the most stable state. Several very useful, although
very simple, principles, such as the maximum over-
lapping principle, resonance theory and some other
empirical rules, can be immediately justified, based
on a general criterion of indistinguishability and
maximum entropy for quantum mechanical systems.
For instance, we may apply the term ‘‘mixing’’ as
used by von Neumann to a quantum system [10,16]:
resonance among several energetically and con-
figurationally indistinguishable structures, such as

the Kekule structures of benzene, is the most
prominent.

5. Deformation in energy transduction [20]

Life is restricted to a very narrow range of environ-
mental conditions, particularly of pressure and tem-
perature, in the biosphere (for a human body, they are
1 atm and 37°C). This is fundamentally different from
a heat engine which converts chemical energy to
expansion work over a large range of pressure (P),
temperature (7) and volume (V) changes in processes
such as a Carnot cycle. There must be a very different
mechanism governing the very efficient isobaric,
isothermal and isochoric energy transduction in the
physiological processes of muscle relaxation and the
contraction cycle. Unfortunately so far we still lack a
clear satisfactory model of bioenergy transduction in
muscle contraction and relaxation cycles [40], even
though we already know many details at the molecular
level such as ATP chemical thermodynamics.

A fluid body is confined within an interface, such as
fluid in a cell, and gas in a balloon. Fluid body defor-
mation has been treated thoroughly by Gibbs as an
interfacial phenomenon (for example, the interface
of hydrophobic fluid and water), and this treatment
has been only slightly modified so far [41]. However,
it has been repeatedly observed that a fluid body
within a flexible interface spontaneously assumes
the most symmetric, i.e. spherical, shape, at equili-
brium. This suggests that the deformation of a fluid
body itself is an energy transduction mechanism.

Consider a model of an ideal gas in a balloon. An
isobaric, isothermal and isochoric process can be
characterized by a free energy increment AG =
~TAS if AH =0. Mixing (or the combination) of indis-
tinguishable gases, which we believe to have an
entropy increase (see Section 2), may be regarded as
a deformation. This is illustrated by change of the N
smaller enclosures of identical shapes to a final total
volume

N

V=3V, (18)

i=1

of the same shape to give

N
AS=k TN In(V/V)) (19)
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More general deformation is a very complicated pro-
blem of differential geometry and will be discussed
elsewhere. If carried out reversibly, from Eq. (1), this
step will perform nonexpansion mechanical work in
the quantity of — AG = TAS, with AS as calculated.
For example, we predict that the deformation of an
ideal gas in a balloon from a shape of two identical
spheres (each of 0.5V) to a final single sphere of
volume V can perform a mechanical work as much
as that of an isothermal expansion from a volume of
0.5V to a final volume V.

In conclusion, Gibbs’ statement that the ‘‘deforma-
tion of a fluid is immaterial’’ [42], is incorrect. We say
that deformation is a process with information change
and entropy change, and in some cases with energy
change, which can be estimated after the rejection of
the Gibbs paradox statement. It has been noticed that
the deformation is also a process of symmetry evolu-
tion [1]. For example, protein folding is a process of
shape evolution from an odd-shaped macromolecule
to the most symmetric spherical shape.

Like the Carnot cycle, the working substance in the
balloon model is also an ideal gas. However, from the
general expression for the deformation, AS is related
to the area as well as the curvature of the flexible
interface enclosing the working gas. It may be pro-
posed that, analogously, by consuming chemical
energy, flexible proteins unfold and separate in a mus-
cle relaxation step. Muscle contraction is a step of
protein folding and protein combination to perform
mechanical work.

We noticed earlier that by simply opening the door
connecting two rigid chambers of gases we cannot
have any observable mechanical work output,
whether the gases are identical or different. It is under-
standable that this problem is a pure information
theoretical problem. More specifically it is a problem
of defining the positive constant £ in Eq. (2) and other
equations used by Shannon, who only stated that k is a
positive constant in his information theory [43], and
its relation to the Boltzmann constant kg, which is the
thermodynamically significant constant. From this
example of mixing of ideal gases, one should not
simply state that the k used in information theory
and the constant kg used in thermodynamics and
statistical physics are identical constants without
more careful investigation. In some cases their
relation can be easily found, e.g. Egs. (2) and (6).

However, in many other specific cases this problem
is still open.

6. Discussion
6.1. Mixing of ideal gases

The main idea of the new theory [1-3], which has
been demonstrated here to be broadly useful, is
merely a direct consequence of the rejection of the
Gibbs paradox. It is worthwhile to go back to the
very original Gibbs paradox problem itself again:
Suppose gases A and B in two rigid chambers are
different gases. When the wall is removed, mixing
of A and B happens because the particles diffuse
into the larger space of the combined volume of
both A and B.

When the wall dividing A and B is open, the two
different sets of particles diffuse spontaneously, as
commented by Gibbs himself [15]. Then a question
follows: Is there anyone who can say that the particles
in the case of the two chambers of identical gases do
not spontaneously diffuse in a larger and combined
space?

The answer is that the identical gases do sponta-
neously diffuse in the combined, larger space. Strictly
speaking there is no such thing as different ideal
gases. Once different real gases (nitrogen and
oxygen) have been modeled and regarded as an
ideal gas, the real gases should be taken as the same
ideal gas, because there is only one definition of ideal
gas. (It is logically wrong first to idealize all the real
gases as one kind of ideal gas, and then to go back to
handle them as different ideal gases.) Then the treat-
ment of mixing ideal gases should be mathematically
the same whether the gases are originally virtually
different (nitrogen or oxygen) or virtually the same
(both are air parts). In conclusion, Eq. (6) will be
suitable for all cases of mixing ideal gases.

6.2. Information loss and information theory

Statistical mechanics has been regarded as the
foundation of thermodynamics (see the subtitle of
Gibbs’ book [4]). Information theory is regarded as
the foundation of statistical mechanics [44]. There-
fore, information theory, particularly the concept of
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information loss defined as entropy (S), should be
expected to be applicable for predicting structural
stability and process spontaneity of thermodynamic
systems.

However, it has been a surprise that information
theory has never been practically applied to thermo-
dynamic or statistical mechanics problems so far.
Only the opposite is true: thermodynamic concept of
entropy (information loss) has been practically
applied as the most important concept in information
theory. The Gibbs—von Neumann relation (Eq. (2))
was introduced into information theory as the most
important expression and useful for communication
problems [43]. Another familiar statistical mechanics
expression, the relation of entropy and the partition
function (Q),

dln Q
S=k1ln Q+kT< 3T )v (20)
was also adapted for information theory [44,45],
which has been developed into a practically useful
method only for data reduction of pure information
manipulation.

Only after careful investigation was it finally
realized that only if the Gibbs paradox statement
(entropy of mixing decreases discontinuously with
the similarity [Fig. 1(a)], or its revised version) is
abandoned [1-3], is it possible to change this situation
and to make the information theory concept of infor-
mation loss applicable to the thermodynamic pro-
blems of structural stability and process spontaneity.
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