Mar. Drugs 2004, 2, 164-169



ISSN 1660-3397 www.mdpi.net/marinedrugs/

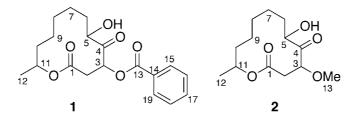
# Sporiolides A and B, New Cytotoxic Twelve-Membered Macrolides from a Marine-Derived Fungus *Cladosporium* Species

Hideyuki Shigemori,<sup>1</sup> Yuu Kasai,<sup>1</sup> Kazusei Komatsu,<sup>1</sup> Masashi Tsuda,<sup>1</sup> Yuzuru Mikami,<sup>2</sup> and Jun'ichi Kobayashi<sup>1,\*</sup>

<sup>1</sup>Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan

<sup>2</sup> Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, Chiba 260-0856, Japan

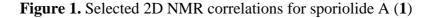
\*Author to whom correspondence should be addressed; Tel & Fax. 81 11 706 4985. Fax 81 11 706 4989. E-mail: jkobay@pharm.hokudai.ac.jp

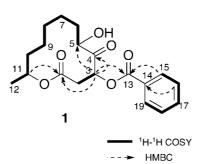

Received: 17 July 2004 / Accepted: 30 August 2004 / Published: 25 November 2004

Abstract: Two new cytotoxic twelve-membered macrolides, sporiolides A (1) and B (2), were isolated from the cultured broth of a fungus *Cladosporium* sp., which was separated from an Okinawan marine brown alga *Actinotrichia fragilis*, and the structures were elucidated by spectroscopic data. Sporiolides A (1) and B (2) exhibited cytotoxicity against murine lymphoma L1210 cells. Spoliolide A (1) showed antifungal activity against *Cryptococcus neoformans* and *Neurospora crassa*.

Keywords: marine-derived fungus, Cladosporium sp., macrolide; cytotoxic.

# Introduction


Marine microorganisms such as bacteria, fungi, and microalgae have proven to be a rich source of structurally novel and biologically active secondary metabolites [1]. In our search for new substances from marine microorganisms [2], two new cytotoxic twelve-membered macrolides, sporiolides A (1) and B (2), were isolated from the cultured broth of a fungus *Cladosporium* sp., which was separated from an Okinawan marine brown alga *Actinotrichia fragilis*. In this paper we describe the isolation and structure elucidation of 1 and 2.




#### **Results and Discussion**

The fungus *Cladosporium* sp. (L037) was separated from the brown alga collected off Seragaki Beach, Okinawa Island, and grown in SC broth [starch (1%) and casein (0.1%) in 50% sea water, pH 7.4] at 28°C for 14 days. The filtrate of the cultured broth (10 L) was extracted with EtOAc (1 L x 2). The EtOAc-soluble portions (58 mg) were subjected to a silica gel column (hexane/EtOAc, 70:30) followed by C<sub>18</sub> reversed-phase HPLC (Develosil ODS-5, Nomura Chemical, 1.0 x 25 cm: flow rate 2.5 mL/min; UV detection at 254 nm; eluent: MeOH/H<sub>2</sub>O, 70:30) to give sporiolides A (**1**, 2.7 mg) and B (**2**, 11.5 mg) together with a known related macrolide, cladospolide D [3] (7.0 mg). On the other hand, other known compounds, cladospolide A [4-6] (5.0 mg), iso-cladospolide B [7] (2.0 mg), and seco-patulolide C [7] (3.0 mg), were isolated from the EtOAc extract of the mycelium.

Sporiolide A (1) { $[\alpha]_D^{25}$  -14° (*c* 0.2, MeOH)} was obtained as colorless amorphous solid. The molecular weight of **1** was elucidated to be 348 Dalton on the basis of FABMS data that showed the pseudomolecular ion at m/z 371 (M+Na)<sup>+</sup>. The molecular formula, C<sub>19</sub>H<sub>24</sub>O<sub>6</sub>, of **1** was established by HRFABMS data [m/z 371.1483, (M+Na)<sup>+</sup>,  $\Delta$  +1.2 mmu]. The IR spectrum suggested the presence of hydroxy (3426 cm<sup>-1</sup>), unsaturated ester and/or ketone carbonyl (1724 cm<sup>-1</sup>) groups. The UV absorptions at 237 (9200) and 209 (11700) nm indicated the presence of benzoyl chromophore. The <sup>1</sup>H NMR (Table 1) spectrum of **1** showed proton signals due to a benzoyl group [ $\delta_H$  8.05 (2H, m), 7.56 (1H, m), and 7.43 (2H, m)].





|          |                  |    | 1         |                      |   |                  |        | 2       |                      |   |
|----------|------------------|----|-----------|----------------------|---|------------------|--------|---------|----------------------|---|
| position | $\delta_{\rm H}$ | а  |           | $\delta_{\rm C}{}^b$ |   | $\delta_{\rm H}$ | a<br>I |         | $\delta_{\rm C}{}^b$ |   |
| 1        |                  |    |           | 168.8                | S |                  |        |         | 171.5                | S |
| 2        | 3.52             | dd | 18.0, 9.8 | 40.5                 | t | 3.30             | m      |         | 42.2                 | t |
|          | 2.95             | d  | 18.0      |                      |   | 2.66             | m      |         |                      |   |
| 3        | 5.90             | d  | 9.8       | 67.4                 | d | 4.46             | dd     | 9.0,2.0 | 74.1                 | d |
| 4<br>5   |                  |    |           | 207.1                | S |                  |        |         | 207.8                | S |
| 5        | 4.40             | m  |           | 76.0                 | d | 4.36             | dd     | 6.1,1.8 | 75.8                 | d |
| 6        | 2.02             | m  |           | 30.5                 | t | 1.99             | m      |         | 30.5                 | t |
|          | 1.77             | m  |           |                      |   | 1.69             | m      |         |                      |   |
| 7        | 1.34             | m  |           | 19.0                 | t | 1.47             | m      |         | 22.8                 | t |
|          | 1.17             | m  |           |                      |   | 1.05             | m      |         |                      |   |
| 8        | 1.50             | m  |           | 26.6                 | t | $1.37^{a}$       | m      |         | 26.6                 | t |
|          | 1.12             | m  |           |                      |   |                  |        |         |                      |   |
| 9        | 1.27             | m  |           | 22.6                 | t | 1.50             | m      |         | 23.5                 | t |
|          | 1.21             | m  |           |                      |   | 1.42             | m      |         |                      |   |
| 10       | 1.67             | m  |           | 33.4                 | t | 1.59             | m      |         | 33.6                 | t |
|          | 1.40             | m  |           |                      |   | 1.32             | m      |         |                      |   |
| 11       | 4.89             | m  |           | 74.4                 | d | 4.89             | m      |         | 73.6                 | d |
| 12       | $1.46^{b}$       | d  | 5.3       | 20.8                 | q | $1.22^{b}$       | d      | 6.5     | 21.0                 | q |
| 13       |                  |    |           | 165.5                | s | $3.45^{b}$       | S      |         | 58.2                 | q |
| 14       |                  |    |           | 129.2                | s |                  |        |         |                      | - |
| 15, 19   | 8.05             | m  |           | 129.9                | d |                  |        |         |                      |   |
| 16,18    | 7.43             | m  |           | 128.4                | d |                  |        |         |                      |   |
| 17       | 7.56             | m  |           | 133.5                | d |                  |        |         |                      |   |

Table 1. <sup>1</sup>H and <sup>13</sup>C NMR Data of Sporiolides A (1) and B (2) in CDCl<sub>3</sub>.

<sup>*a*</sup>2H <sup>*b*</sup>3H.

Analysis of the <sup>1</sup>H-<sup>1</sup>H COSY spectrum (Figure 1) revealed connectivities of C-2 to C-3 and C-5 to C-12. HMBC correlations of H-3 ( $\delta_{\rm H}$  5.90) to C-1 ( $\delta_{\rm C}$  168.8), C-4 ( $\delta_{\rm C}$  207.1), and C-5 ( $\delta_{\rm C}$  76.0) and H-11 ( $\delta_{\rm H}$  4.89) to C-1 indicated that **1** possessed a twelve-membered macrocyclic lactone with a ketone group at C-4 and a hydroxy at C-5. An HMBC correlation between H-3 to C-13 ( $\delta_{\rm C}$  165.5) revealed that the benzoyl group was attached to C-3. Thus, the structure of sporiolide A was assigned as **1**, which corresponded to be a 3-*O*-benzoyl form of pandangolide 1 [7].

Sporiolide B (2) { $[\alpha]_D^{25}$  -33° (*c* 0.3, MeOH)} was obtained as colorless amorphous solid. The molecular weight of **2** was elucidated by *m/z* 281(M+Na)<sup>+</sup> in the positive mode FABMS. The molecular formula, C<sub>13</sub>H<sub>22</sub>O<sub>5</sub>, of **2** was established by HRFABMS data (*m/z* 281.1367 [M+Na]<sup>+</sup>,  $\Delta$ + 0.2mmu). The IR spectrum suggested the presence of hydroxy (3429 cm<sup>-1</sup>), unsaturated ester and/or ketone carbonyl (1710 cm<sup>-1</sup>) groups. Detailed analysis of <sup>1</sup>H, <sup>13</sup>C, and 2D NMR data revealed that the structure of **2** was similar to that of **1**, except for functional group at C-3. An HMBC correlation of H-3 ( $\delta_H$  4.46) to C-13 ( $\delta_C$  58.2, MeO) indicated the presence of a methoxy group at C-3. Thus, the structure of sporiolide B (**2**) was elucidated to be a 3-*O*-methoxy form of pandangolide 1 [7].

Sporiolides A (1) and B (2) were new twelve-membered macrocyclic lactones from the cultured broth of a marine-derived fungus *Cladosporium* sp. [8], although similar twelve-membered macrocyclic lactone such as cladospolide A has been obtained from a terrestrial fungus *Cladosporium* sp. and more recently, cladospolide D [3], *iso*-cladospolide B, *seco*-patulolide C, and pandangolides 1 and 2 have been isolated from an unidentified marine fungus [6,7], while pandagolides 2 and 3 were isolated from a marine-derived fungus *Cladosporium herbarum* [9]. Sporiolides A (1) and B (2) exhibited cytotoxicity against murine lymphoma L1210 cells with IC<sub>50</sub> values of 0.13 and 0.81 µg/mL, respectively. Sporiolide A (1) showed antifungal activity against *Candida albicans, Cryptococcus neoformans, Aspergillus niger*, and *Neurospora crassa* and antibacterial activity against *Micrococcus luteus*, while sporiolide B (2) had antibacterial activity against *Micrococcus luteus* (Table 2).

| Test organisms          |       | MIC (µg/ml) |
|-------------------------|-------|-------------|
|                         | 1     | 2           |
| Micrococcus luteus      | 16.7  | 16.7        |
| Bacillus subtilis       | >33.3 | >33.3       |
| Escherichia coli        | >33.3 | >33.3       |
| Candida albicans        | 16.7  | >33.3       |
| Cryptococcus neoformans | 8.4   | >33.3       |
| Paecilomyces variotii   | >33.3 | >33.3       |
| Aspergillus niger       | 16.7  | >33.3       |
| Neurospora crassa       | 8.4   | >33.3       |

Table 2. Antimicrobial Activity of Sporiolides A (1) and B (2).

Mueller Hinton broth and Sabouraud dextrose broth were used for bacteria and fungi, respectively.

# Acknowledgments

This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

# Experimental

#### General

Optical rotations were measured on a JASCO DIP-1000 polarimeter. The IR and UV spectra were recorded on a JASCO FT/IR-5300 and a Shimadzu UV-1600PC spectrophotometer, respectively. CD spectra were measured on a JASCO J-720 spectropolarimeter. NMR spectra were recorded on a Bruker AMX-600 spectrometer. FAB mass spectrum was obtained on a JEOL HX-110 spectrometer using nitrobenzyl alcohol as a matrix.

### Mar. Drugs 2004, 2

#### Fungal Material and Fermentation

The fungus *Cladosporium* sp. (L037) was separated from the brown alga *Actinotrichia fragilis*, which was collected off Seragaki Beach at Okinawa Island. Subcultures of the organism are deposited at Graduate School of Pharmaceutical Sciences, Hokkaido University. The fungus was grown in SC broth [starch (1%) and casein (0.1%) in 50% sea water, pH 7.4] at 28°C for 14 days. The cultured broth (10 L) was filtered.

# Extraction and Separation

The filtrate of the cultured broth (10 L) was extracted with EtOAc (1 L x 2). The EtOAcsoluble portions (58 mg) were subjected to a silica gel column (hexane/EtOAc, 70:30) followed by  $C_{18}$  reversed-phase HPLC [Develosil ODS-5, Nomura Chemical, 1.0 x 25 cm: flow rate 2.5 mL/min; UV detection at 254 nm; eluent: MeOH/H<sub>2</sub>O, 70:30] to give sporiolides A (1, 2.7 mg) and B (2, 11.5 mg) together with cladospolide D (7.0 mg). On the other hand, cladospolide A, isocladospolide B, and seco-patulolide C were isolated from the EtOAc extract of the mycelium.

### Spectral Data

*Sporiolide A* (1): colorless amorphous solid;  $[\alpha]_D^{25}$  -14° (*c* 0.2, MeOH)}; UV (MeOH)  $\lambda_{max}$  237 ( $\epsilon$  9200) and 209 (11700) nm; IR (KBr)  $\nu_{max}$  3426, 1724, and 1633 cm<sup>-1</sup>; <sup>1</sup>H and <sup>13</sup>C NMR (Table 1); FABMS *m*/*z* 371 [M+Na]<sup>+</sup>; HRFABMS *m*/*z* 371.1483 [M+Na]<sup>+</sup> (calcd for C<sub>19</sub>H<sub>24</sub>O<sub>6</sub>Na, 371.1471).

*Sporiolide B* (2): colorless amorphous solid;  $[\alpha]_D^{25}$  -33° (*c* 0.3, MeOH); IR (KBr)  $\nu_{max}$  3429, 1710, and 1646 cm<sup>-1</sup>; <sup>1</sup>H and <sup>13</sup>C NMR (Table 1); FABMS *m*/*z* 281 [M+Na]<sup>+</sup>; HRFABMS *m*/*z* 281.1367 [M+Na]<sup>+</sup> (calcd for C<sub>13</sub>H<sub>22</sub>O<sub>5</sub>Na, 281.1365).

#### **Reference and Notes**

- 1. Blunt, J. W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.; Prinsep, P. R. *Nat. Prod. Rep.* **2004**, *21*, 1-49 and references cited therein.
- Tsuda, M.; Mugishima, T. K. Komatsu, T. Sone, T.; Tanaka, M.; Mikami, Y.; Shiro, M.; Hirai, M.; Ohizumi, Y.; Kobayashi, J. *Tetrahedron* 2003, *59*, 3227-3230 and references cited therein.
- 3. Zhang, H.; Tomoda, H.; Tabata, N.; Miura, H.; Namikoshi, M.; Yamaguchi, Y.; Masuma, R.; Omura, S. J. Antibiot. 2001, 54, 635-641.
- 4. Hirota, A.; Sakai, H.; Isogai, A. Agric. Biol. Chem. 1985, 43, 731-735.
- 5. Hirota, A.; Sakai, H.; Isogai, A.; Kitano, Y.; Ashida, T.; Hirota, H.; Takahashi, T. *Agric. Biol. Chem.* **1985**, *49*, 903-904.

- 6. Hirota, H.; Hirota, A.; Sakai, H.; Isogai, A.; Takahashi, T. Bull. Chem. Soc. Jpn. 1985, 58, 2147-2148.
- Smith, C. J.; Abbanat, D.; Bernan, V. S.; Maiese, W. M.; Greenstein, M.; Jompa, J.; Tahir, A.; Ireland, C. M. J. Nat. Prod. 2000, 63, 142-145.
- 8. Since sporiolides A (1) and B (2) were unstable and were not obtained from the extracts of recultivation, stereochemistry of 1 and 2 was not determined.
- 9. Jadulco, R.; Proksch, P.; Wray, V.; Sudarsono; Berg, A.; Gräfe, U. J. Nat. Prod. 2001, 64, 527-530.

Sample Availability: Samples are available from the authors.

© 2004 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.