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Abstract: Highly selective N-type voltage-gated calcium (CaV) channel inhibitors from 
cone snail venom (the ω-conotoxins) have emerged as a new class of therapeutics for the 
treatment of chronic and neuropathic pain. Earlier in 2005, Prialt (Elan) or synthetic ω-
conotoxin MVIIA, was the first ω-conotoxin to be approved by Food and Drug 
Administration for human use. This review compares the action of three ω-conotoxins, 
GVIA, MVIIA and CVID, describing their structure-activity relationships and potential as 
leads for the design of improved N-type therapeutics that are more useful in the treatment of 
chronic pain. 
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Abbreviations: FDA, Food and Drug Administration; AChR, nicotinic acetylcholine 
receptor; NaV, voltage-gated sodium channel; KV, voltage-gated potassium channel; CaV, 
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system; IT, intrathecal; ED50, dose causing 50% effect; TD50, dose causing toxicity in 50% 
of animals; IC50, dose causing 50% inhibition; NMR, nuclear magnetic resonance 
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Introduction 

There are approximately 500 different species of the genus Conus. Cone snails, found on the Great 
Barrier Reef in Australia and most other tropical waters around the world, are predatory marine 
gastropods they prey on fish, worms or molluscs [1]. They capture their prey by injecting lethal or 
paralysing venom, comprising more than a hundred different polypeptides [1]. These polypeptides 
known as conopeptides or conotoxins act selectively at a wide variety of ion channels and receptors in 
their prey, as well as in mammals. Channels targeted include the nicotinic acetylcholine receptor 
(AChR), the voltage-gated sodium (NaV) channel, the voltage-gated potassium (KV) channel, the 
voltage-gated calcium (CaV) channel, and the N-methyl-D-aspartate receptor [2, 3]. Many of these 
conotoxins have been used to gain further information about their target, either at the pharmacological, 
physiological or structural level. They are typically 8–30 amino acid residues in length and have been 
divided into both structural and pharmacological classes. The structural classes are based on the nature 
of the peptide’s secondary structure, which is generally defined by a characteristic pattern of Cys-
residues [2, 3]. Table 1 illustrates the structural and pharmacological diversity within conopeptides. 
Importantly, several of these pharmacological classes have therapeutic potential in the treatment of 
pain, including the noradrenaline transporter inhibitor χ-MrIA (Xen2174), the neurotensin receptor 
agonist (contulakin-G), the AChR antagonist (α-Vc1.1), and the N-type CaV channel blockers. This 
review describes the structure-activity relationship (SAR) and therapeutic potential of ω-conotoxin N-
type CaV channel blockers form cone snails, the first of the conotoxin classes to be approved as a 
therapeutic.  

 
ω-Conotoxins 

All ω-conotoxins identified to date have been found in piscivorous cone snails ranging from the 
small Conus catus to the large Conus geographus (Figure 1). The ω-conotoxins are basic peptides of 
24–29 residues with an amidated C-terminus [5] and with six Cys-residues arranged to give a four-
loop Cys framework (C-C-CC-C-C). ω-Conotoxins target the CaV channel with most of the ω-
conotoxins discovered to date being selective for the N-type CaV channel (Table 2) while a few target 
the P/Q-type CaV channel. In addition, the recently isolated ω-conotoxin TxVII, from Conus textile 
was found to target the L-type CaV channel [6]. The most studied ω-conotoxins are the selective N-
type CaV channel blockers GVIA and MVIIA [7, 8], and the modestly selective P/Q-type CaV channel 
blocker, MVIIC [9]. In 2000, four novel ω-conotoxins CVIA-D were identified from Conus catus [10]. 
The most interesting of the four being CVID, which displayed high potency at the N-type CaV channel 
and low potency at the P/Q-type CaV channel, making it the most selective ω-conotoxin for the N-type 
CaV channel found to date [10].  
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Table 1.  Conotoxin nomenclature and pharmacology. 
 

Superfamily Cysteine 

Arrangement 

Family Molecular target Example 

A CC-C-C α AChR* (antagonist) α-Vc1.1 
 CC-C-C ρ α1-adrenoreceptor (antagonist) ρ-TIA 

 CC-C-C-C-C αA AChR (antagonist) αA-EIVA 

 CC-C-C-C-C κA K+ channel (antagonist) κA-SVIA 

M CC-C-C-CC µ Na+ channel (blocker) µ-PIIIA 
 CC-C-C-CC ψ AChR  

(non-competitive antagonist) 
ψ-PIIIE 

O C-C-CC-C-C δ Na+ channel (delays inactivation) δ-TxVIA 
 C-C-CC-C-C µO Na+ channel (blocker) µO-MrVIB 

 C-C-CC-C-C ω Ca2+ channel (blocker) ω-MVIIA 

 C-C-CC-C-C κ K+ channel (blocker) κ-PVIIA 

 C-C-CC-C-C γ Pacemaker channels (blocker) γ-PnVIIA 

P C-C-C-C-C-C Spastic Unknown Tx9a 
S C-C-C-C-C-C-C-C σ 5-HT3* (antagonist) σ-GVIIIA 
T CC-CC τ Presynaptic Ca2+ channels (blocker) ε-TxIX 
 CC-C-C χ Noraderenalin transporter (inhibitor) χ-MrIA 

N/A* C-C Conopressin Vasopressin receptors (antagonist) 

GPCR* 
Conopressin-S 

N/A* C-C Contryphan Unknown  Contryphan-R 
No Cysteines Helical Conantokin NMDA* channel (antagonist) Conantokin-G 
No Cysteines  Contulakin NTR* (agonist) Contulakin-G 

* AChR – nicotinic acetylcholine receptor, N/A – not applicable, NMDA – N-methyl-D-aspartate, 
NTR – neurotensin receptor, GPCR – G-protein coupled receptor, 5-HT3 – 5-hydroxytryptamine 
(serotonin). Adapted from McIntosh et al. [4] 

  

Figure 1. The shells of three piscivorous cone snails. A, Conus catus (2–3 cm); B, C. magus (3–4 cm); 
and C, C. geographus (~6 cm). 
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Table 2. The known native ω-conotoxin sequences from different Conus species.  Conserved Cys 

residues (blue) and the conserved Gly (purple) are indicated. The critical binding residue 
Tyr13 is highlighted in red.  

 
Toxin Sequence Target Net 

charge 
C. geographus    
GVIA CKSOGSSCSOTSYNCCR-SCNOYTKRCY* N-type +5 
GVIB CKSOGSSCSOTSYNCCR-SCNOYTKRCYG* ? +5 
GVIC CKSOGSSCSOTSYNCCR-SCNOYTKRC* ? +5 
GVIIA CKSOGTOCSRGMRDCCT-SCLLYSNKCRRY* ? +7 
GVIIB CKSOGTOCSRGMRDCCT-SCLSYSNKCRRY* ? +7 
C. magus    
MVIIA CKGKGAKCSRLMYDCCTGSC-R-SGKC* N-type +6 
MVIIC CKGKGAPCRKTMYDCCSGSCGR-RGKC* P/Q-type +7 
C. striatus    
SVIA CRSSGSOCGVTSI-CC-GRC--YRGKCT* not known +5 
SVIB CKLKGQSCRKTSYDCCSGSCGR-SGKC* N- and P/Q-type +6 
SO-3 CKAAGKPCSRIAYNCCTGSC-R-SGKC* N-type +5 
C. tulipa    
TVIA CLSOGSSCSOTSYNCCR-SCNOYSRKCR* ? +4 
C. consors    
CnVIIA CKGKGAOCTRLMYDCCHGSCSSSKGRC* N-type +5 
C. catus    
CVIA CKSTGASCRRTSYDCCTGSCR—-SGRC* N-type +5 
CVIB CKSKGASCRKTMYDCCRGSCR—-SGRC* N- and P/Q-type +7 
CVIC CKSKGQSCSKLMYDCCTGSCSR-RGKC* N- and P/Q-type +6 
CVID CKSKGAKCSKLMYDCCSGSCSGTVGRC* N-type +5 
C. textile    
TxVII CKQADEPCDVFSLDCCTGIC—-LGV-CMW L-type –3 
C. radiatus    
RVIA CKPOGSOCRVSSYNCCS-SCKSYNKKCR* N-type +6 

 
GVIA [12], GVIB, GVIC [1], GVIIA, GVIIB [13], MVIIA [14], MVIIC [9], SVIA, SVIB [15], SO-3 [16], 
TVIA [17], CnVIIA [18], CVIA, CVIB, CVIC, CVID [10], TxVII [6] and RVIA [19].   

* – amidated C-terminus, O – hydroxyproline. 

Sequence hypervariability has been observed between functionally homologous ω-conotoxins, with 
the six Cys-residues and one Gly being the only residues conserved throughout this set of peptides 
(Table 2). Comparison of the sequences of two ω-conotoxins, MVIIA and GVIA, reveals that they 
share less than one-third of the non-Cys residues [11]. The amino acid composition in each of the 
corresponding four loops is strikingly different, with GVIA containing three hydroxyprolines and 
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MVIIA containing none. Despite the low sequence identity, they both selectively target the N-subtype 
of CaV channels and elicit similar biological effects in animals [3]. Conversely, MVIIC has high 
sequence identity to MVIIA (Table 2), but quite different selectivity.  

Because of their high selectivity and affinity for neuronal CaV channels found in mammals, the ω-
conotoxins have become standard pharmacological reagents to investigate the role of CaV channels in 
neurotransmitter release [5, 8, 20-23]. In addition to their use as research tools, animal studies have 
revealed that ω-conotoxins targeting N-type CaV channels have clinical potential in ischaemic brain 
injury [24, 25] and pain [26-35]. 

 
Voltage-gated calcium channels 

CaV channels are included in the same transmembrane gene superfamily as the NaV and KV 
channels [36]. The influx of calcium ions through CaV channels is involved in a wide range of essential 
cellular responses including activation of calcium-dependent enzymes, gene transcription, muscle 
contraction and neurotransmitter release [37]. CaV channels are part of a suite of ion channels the cell 
uses to couple electrical signalling at the plasma membrane to a physiological response in the cell. 
Neuronal CaV channels are composed of pore forming α1 subunit that co-assembles with different β 
and α2δ subunits (Figure 2). While the α1 subunit is largely responsible for determining the 
electrophysiological characteristics of the channel, these characteristics are modified by associated β 
and α2δ subunits [38]. To date, six different α1 channel types named L-, T-, R-, P/Q- and N-type have 
been identified (Table 3).   

COH N

1 2 3 4 5 6
+

+
1 2 3 4 5 6

+

+
1 2 3 4 5 6

+

+
1 2 3 4 5 6

+

+

I II III IV
α

EC

IC

CO

NH

δ

H N
CO

α

H N
CO

β

P PG

G

S
P

H5 H5 H5 H5G

 

Figure 2. Schematic figure of a neuronal calcium channel. The cartoon shows four domains with six 
transmembrane helices in each making up the pore-forming α-subunit. Also shown are the 
intracellular auxiliary β-subunit and the transmembrane δ-subunit disulfide bonded with the 
extracellular auxiliary α2-subunit forming the α2/δ-subunit. 

 
CaV Channel as a therapeutic target 

 
Because CaV channels are involved in a multitude of cellular responses, including muscle 

contraction and neurotransmitter release [39, 40], different CaV channel subtypes have been found to 
be interesting therapeutical targets. Of the six pharmacologically distinct CaV channel subtypes (Table 
2), the N-type, T-type, and P/Q-type calcium channels are the best validated targets for the treatment 



Mar. Drugs 2006, 4                                   198 
 

of pain [41, 42] although dose-limiting side-effects may limit their clinical application. The N-type 
CaV channel has been found to be concentrated in the spinal dorsal horn region [43-47] and helps 
convey the nociceptive message from the peripheral nervous system (PNS) into the central nervous 
system (CNS) [48]. Being able to inhibit the nociceptive message has been shown to lead to the 
interception of the pain signal in animals and will hopefully result in pain relief when used in a clinical 
setting [49-52]. The therapeutic potential of MVIIA in pain management has now been identified 
confirming the role of N-type CaV channel in pain transmission [53-55].  
 

 
Table 3. Mammalian CaV channels and selected peptide inhibitors. 
 
Calcium channel α1 subunit Ca2+ current Peptide antagonist 

Cav1.1–1.4 α1S, C, D, F L calciseptine, ω-agatoxin IIIA (α1C) 

Cav2.1 α1A P/Q ω-agatoxin, MVIIC 

Cav2.2 α1B N ω-GVIA, ω-MVIIA, ω-CVID 

Cav2.3 α1E R SNX-482 

Cav3.1–3.3 α1G, H, I T Kurtoxin (α1G) 

 
 

ω-Conotoxins as therapeutics 

Pain management is currently one of the most actively researched areas in medicine and there has 
never been a more critical need for novel therapeutics with a number of Cox-2 inhibitors withdrawn 
from the market [56]. However, despite advances in a number of areas, opioids still play a key part in 
often inadequate pain management strategies. Since opioids only target certain types of pain and 
develop tolerance, novel non-opioid analgesic therapies for more severe chronic pain states are 
desirable. The ω-conotoxins are of fundamental interest as they represent a group of structurally 
related peptides with a wide range of CaV channel subtype specificities [57] that are believed to act at 
or near the outer vestibule of the CaV2.2 ion conducting pore [58]. They are now emerging as a new 
therapeutic class for intrathecal (IT) pain management [26, 28-31, 33, 35] as well as having the 
potential to treat ischaemic brain injury [24, 25, 59]. However, all ω-conotoxins evaluated produce 
dose-limiting side-effects in animal models which may be associated with effects on inhibitory or 
supraspinal pathways. Peptides are readily targeted by proteases and tend not to display satisfactory 
bio-availability unless administered directly to the target, hence the need for IT delivery. ω-
Conotoxins such as GVIA, MVIIA and CVID, selective towards N-type CaV channels have been 
shown to possess neuroprotective and analgesic properties [5, 10, 60, 61] and are therefore interesting 
in drug development, whereas ω-conotoxins selective to the P/Q-subtypes (i.e., MVIIC and SVIB) are 
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not considered useful leads as they are likely to be lethal to mammals and there have been several 
reports raising concerns about side effects if these peptides are used as drugs in a clinical setting [62]. 
It is therefore important to define those structural and functional factors that contribute to N-type as 
opposed to P/Q-type selectivity so that side-effects associated with P/Q-type current inhibition might 
be avoided. Several groups have provided insight into the domains and specific residues of the ω-
conotoxins that are responsible for this selectivity [63-70]. 
 
GVIA 

GVIA is a selective inhibitor of the N-type CaV channel [5, 71-73] with greater potency in vivo than 
MVIIA [74] and CVID [32]. Intrathecal administration of morphine, GVIA, MVIIA and CVID is 
effective in attenuating neuropathic pain in rats [32], with GVIA being about three to four times more 
potent than MVIIA and CVID and approximately 40-fold more potent than morphine [32]. Due to its 
slow onset and recovery kinetics [75-78], GVIA is an almost irreversible inhibitor of the N-type CaV 
channel [79] complicating dose control in a clinical setting. 
 
MVIIC and SVIB 

CaV channel blockers, such as MVIIC and SVIB target the P/Q-type CaV channel [9, 15]. Since the 
P/Q-type current plays an important physiological role including the regulation of transmitter release at 
neuromuscular junctions [80], the ω-conotoxins are less interesting drug leads for pain management 
and can be lethal even at low doses [62]. In addition, MVIIC did not provide neuroprotection when 
tested on a rat model of global ischaemia [81].   

 
MVIIA (Ziconotide or Prialt) 

MVIIA is the first ω-conotoxin to enter into clinical trials. Intrathecal MVIIA has recently been 
approved by the FDA for the management of chronic pain in the USA and Europe [82, 83]. MVIIA is a 
selective, reversible and potent blocker of the N-type CaV channel [76, 84] which shows analgesic and 
neuroprotective effects in humans [85]. MVIIA has been found to be effective in preventing neuronal 
cell death following cerebral ischaemia. A single bolus injection provided protection even when 
administered 24 h after an ischaemic injury [81, 86, 87]. MVIIA has been reported to inhibit both 
neuronal excitability and neurotransmission [84, 88]. In animal models, IT administered MVIIA 
reverses acute [26, 48, 89], persistent [26, 48, 89] and neuropathic pain [26, 90, 91], and in humans IT 
administration of MVIIA provides relief from chronic pain [83, 92]. However, it has some undesired 
side effects such as dizziness, blurred vision, nystagmus, sedation [93] and orthostatic hypotension in 
humans [78, 94, 95]. Adverse side effects such as intractable delirium after being treated with MVIIA 
were reversed with electroconvulsive therapy [96]. Intrathecal MVIIA causes a variety of neurological 
side effects of unknown origin [97] despite N-type CaV channels being predominant at synapses 
carrying nociceptive information to the spinal cord [46]. Importantly, inhibition of N-type CaV 
channels with MVIIA produces substantial pain relief in otherwise treatment-refractory patients, and 
unlike opioid pain management, MVIIA does not develop tolerance or produce addiction [32, 85, 98].  
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CVID (AM336) 

Another ω-conotoxin isolated from the fish-hunting C. catus, CVID [10] has also entered clinical 
trials with AMRAD [99]. CVID is the most selective inhibitor of N-type over P/Q-type CaV channels 
showing 6-orders of magnitude selectivity in binding studies [10]. Amongst the ω-conotoxins CVID, 
GVIA and MVIIA, CVID had the largest ratio of ED50 (dose causing 50% effect) to TD50 (dose 
causing toxicity in 50% of animals) when administered IT in a rat model of neuropathic pain [32]. Due 
to greater therapeutic margin for CVID seen in animals [34], it is anticipated that AM336 will produce 
less side effects than MVIIA in the clinic. CVID has undergone a Phase I/IIa assessment for treatment 
of severe morphine-resistant pain after it was given approval for human trials by the Australian 
Therapeutic Goods Administration [34, 99]. 

 
Opioids and ω-conotoxins 

Morphine is a spinal analgesic agent [100] that exerts its effect by binding mainly to µ-opioid 
receptors. Activating the µ-opioid receptor has been shown to inhibit the N-type CaV channel current 
by interacting with the pore-forming α1 subunit via the G-protein (Figure 3) [101-105]. This inhibition 
of the N-type CaV channel contributes to morphine analgesia and uncoupling of the opioid receptor 
and G-protein [106-109] may underlie morphine tolerance development.    
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Figure 3. Schematic figure of the presynaptic nerve terminal. Calcium influx through a N-type CaV 
channel causes neurotransmitter release and propagation of the pain message. The 
propagation of the action potential and thereby the influx of calcium can be blocked by 
venom (e.g., Ziconotide or AM336). Activation of the opioid receptor leads to inhibition of 
the N-type CaV channel via G-protein coupled receptor by changing channel gating and by 
altering ion permeation. 
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N-type CaV channel antagonists show analgesic effect alone [97, 110] and in combination with µ-
opioids [111, 112]. Interestingly, several studies have reported synergistic effects between ω-
conotoxins (Zicontide or AM336) and morphine when administered IT [32, 98, 112]. However, 
simultaneous administration of morphine and ω-conotoxin did not prevent the development of 
morphine tolerance [98]. Importantly, this tolerance development did not result in cross-tolerance to 
MVIIA [98] and instead there was an upregulation of ω-conotoxin binding sites (N-type CaV channel) 
in the brain after chronic morphine exposure [113]. Further investigation into the extent of this 
synergistic effect in the clinic would enable the use of lower doses of N-type antagonists and 
potentially limit toxic side effects associated with IT administration of ω-conotoxins [32].  

 
Structural studies of ω-conotoxins 

To date, all structural information available on the ω-conotoxins has been obtained from 1H Nuclear 
Magnetic Resonance (NMR) spectroscopic studies. Although the three dimensional (3D) structures of 
GVIA [114-118], MVIIA [119-121] and MVIIC [57, 122, 123] have been determined several times, 
there is scope for improvement as developments in NMR technology and structure calculation methods 
overcome current limitations. Overall, ω-conotoxins have remarkably similar structures, despite 
considerable variance in primary sequences within the intercysteine loops [57]. It is possible to 
identify structural similarities amongst the ω-conotoxins to gain a generalised picture of the features 
that contribute to their potencies in blocking CaV channels. However, the identical disulfide 
arrangement and a conserved Gly in loop 1 are insufficient to define CaV channel selectivity, but 
instead provide a structural framework that allows the four hypervariable loops to display key 
functional groups required for receptor interaction [57]. Therefore, knowledge of the 3D structure of 
the ω-conotoxins together with an understanding of the critical differences amongst them, are 
important steps towards understanding the relationship between structure and activity for these 
peptides.  

Structurally the ω-conotoxins are characterised by the common cysteine scaffold that stabilizes the 
4-loop framework. This configuration defines the canonical ω-conotoxin fold [57], which comprises a 
triple-stranded β-sheet/cysteine knot motif [124]. This configuration has been observed in aqueous 
solution for N-type CaV channel blockers GVIA [114-118], MVIIA [119-121] and CVID [10]. Recent 
studies have revealed a β-bridge formed by residues 1–2 and 14–16 [10, 65]. It is possible that a salt-
bridge between the side chains of Lys2 and Asp14 in MVIIA, MVIIC and CVID stabilises the β-
bridge [10, 65]. This may perhaps be replaced by a hydrogen bond between Lys2 and Asn14 in GVIA, 
although this has not been explicitly defined. The network of β-sheet and β-bridge provides a stable 
base from which critical side chains are anchored. The intervening regions are composed of β-turns. 
These structural regions are shown schematically for MVIIA [125] in Figure 4 A and B. 
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Figure 4. A. The β-sheet network of MVIIA. Double-headed arrows indicate observed NOEs and 
dashed lines represent putative H-bonds. B. Three dimensional solution structure of MVIIA. 
The three disulfide bridges (yellow ball and stick), the β-bridge region (green arrows), β-sheet 
region (red arrows) and the orientation of Tyr13 (orange) can be seen. Adapted from Nielsen 
et al. [126]. 

 

Structures of ω-conotoxins targeting different types of calcium channels including TxVII (L-type), 
MVIIC (P/Q-type), and GVIA, MVIIA and CVID (N-type) are compared in Figure 5, highlighting the 
common fold adopted by these five peptides. There are structural similarities amongst the N- and the 
P/Q-type ω-conotoxins, despite their selectivity differences, supporting the notion that the ω-conotoxin 
macrosites on the N- and P/Q-type CaV channels are related. The L-type CaV channel blocker TxVII 
(Figure 5A) shares the overall canonical fold but has some significant differences, most notably in loop 
4. TxVII has the shortest loop 4, containing only three residues compared to MVIIA (Figure 5D) with 
four residues, to MVIIC (Figure 5B) with five residues, and to CVID (Figure 5E) and GVIA (Figure 
5C) both with six residues in loop 4. The most notable structural difference between TxVII, MVIIA 
and MVIIC compared to GVIA is that the loop is oriented outwards in GVIA and downwards in the 
other peptides. In CVID, loop 4 is significantly different in that it curves towards loop 2, thus 
presenting a more globular surface. The presence of a H-bond between Gly22 in loop 4 and Lys10 in 
loop 2 in CVID is likely to brace loop 4 in this different orientation and is also likely to account for the 
enhanced stabilisation of loop 2 in CVID [10]. Such a H-bond between loops 2 and 4 has not been 
reported for ω-conotoxins GVIA, MVIIA, MVIIC or TxVII. The structural uniqueness of CVID may 
have a significant effect in determining its improved selectivity for the N-type CaV channel over 
MVIIA and GVIA, since loops 2 and 4 have been shown to act in combination to influence ω-
conotoxin selectivity [65].  

 

N

20 N

21

O

O

O

H

HH

H

H O H

HN

H

25 N

N 24

O

23

OHH

H

O HH

7 N

H

N

6 N 8

HOHH

N

H

H

O H

N

14

2

1

H O

N

16

H

O

A. B.



Mar. Drugs 2006, 4                                   203 
 

A. B.
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Figure 5. Representative ribbon structures of five ω-conotoxins. (A) L-type CaV channel blocker 

TxVII [127]. (B) P/Q-type CaV channel blocker MVIIC [122]. N-type CaV channel blockers 
GVIA (C) [116], MVIIA (D) (Schroeder et al. unpublished results), and CVID (E) [10]. 
Disulfide connectivity (orange) and Loop 1, Loop 2 and Loop 4 are indicated. Peptides 
were superimposed across the backbone atoms C, Cα, and N for residue 1–14. 

 
Prior to the determination of the 3D structure of CVID [10], the conformation of loop 2 of ω-

conotoxins was poorly defined. In MVIIA for example, the ensemble of structures contained two 
backbone conformations for Tyr13, where this residue was found to lie in different regions of the 
Ramachandran plot. Other residues in this loop had broadened NH resonances suggesting that 
conformational averaging was indeed occurring. In GVIA, a similar situation was encountered, 
although it was believed that a single conformation of the Tyr13 sidechain predominated [116]. A 
similar situation was reported for MVIIC, based on structure calculations, despite the fact that this was 
not clear from the raw data, and again, linewidths in loop 2 were broadened with respect to the 
remainder of the peptide [57]. In contrast, examination of the CVID NMR data provided convincing 
evidence that the Tyr13 sidechain adopted a single conformation, unusual for such a bulky residue, on 
the Ramachandran plot. In addition, broadening of NH resonances in loop 2 were reduced or not 
apparent [10].  

 
The role of structure in structure-activity relationships 

Many ω-conotoxin SAR studies have neglected the structural component, instead assuming that this 
is unaffected by residue replacement. This assumption may represent a serious drawback to these 
studies, as it is not possible to distinguish between structural change and removal of a binding 
interaction for large ∆pIC50 values. As enthalpic and entropic terms contribute equally to the free 
energy of binding (i.e., ∆G = ∆H – T∆S), omission of effects of entropy may lead to misinterpretation 
of binding results. Regrettably, most of the studies on MVIIA have not been accompanied by structural 
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data [64, 84, 128, 129] and many of these analogues may need to be re-examined before any specific 
sidechain effects can be fully interpreted. The first attempt to introduce structural studies in ω-
conotoxin SAR was by Kim et al. [130], where circular dichroism (CD) spectroscopy was used to 
examine the structures of the analogues. A significant improvement on this is the treatment of Lew et 
al. [131], where NMR spectroscopy has been used to determine the Hα and NH chemical shifts for the 
series of GVIA analogues. Unfortunately, the structural affects of several Ala-replacements were not 
further investigated. Due to the accessibility of high-field NMR equipment these days, the structural 
component of SAR is becoming more and more carefully evaluated. This approach will help improve 
the accuracy of the analysis of residues important for binding to a target, since residues important for 
structural stabilisation of a molecule will be omitted from the pharmacophore. 
 

ω-Conotoxin residues important for binding to the N-type CaV channel 

To determine which residues were important for the binding and activity of ω-conotoxins to the N-
type CaV channel, Ala-replacement studies have been widely used [64, 129-132]. These studies have 
unequivocally shown Tyr13 to be the single most important residue, with the hydroxyl moiety being 
the key binding determinant. In addition, several other residues, not always conserved across the ω-
conotoxins, also have an effect on potency when replaced by alanine. In MVIIA, these include Lys2, 
Arg10, Leu11 and Arg21 [64], while in GVIA these residues are Lys2, Arg17, Tyr22 and Lys24 
(functional assays only) [133]. Smaller effects are observed for Hyp10, Hyp21 and Arg25 in GVIA 
[133]. In both peptides, N-acetylation of the N-terminus results in a significant drop in potency [64, 
133]. Deamidation of the C-terminus in GVIA and MVIIA also reduces potency [133].  

In Figure 6A,B, the structure of GVIA is shown with particular reference to the side chains that are 
reputedly important for function. For comparison, the structure of MVIIA is shown below (Figure 
6C,D), with residues important for binding highlighted. Unfortunately, any structural effects of 
replacing these residues are not known for MVIIA, and are not fully analysed for GVIA.  

For CVID, a specific alanine scan has not been conducted, but instead several residues have 
systematically been replaced with residues of either similar character, such as a Lys to Arg 
replacement or with a residue believed to cause a clash, such as a Gly to Tyr replacement (Lewis et al., 
unpublished results). As reported for GVIA and MVIIA, residues located in loop 2, such as Lys10, 
Leu11 and most importantly Tyr13 of CVID are crucial for binding. The other loops are more resistant 
to changes in activity following residue replacement.  

Analysis of SAR of ω-conotoxin GVIA, MVIIA and CVID at the N-type CaV channel has lead to 
the development of a couple of ω-conotoxin pharmacophores that can help guide the rational 
development of N-type CaV channel inhibitors [126, 131]. Initial ω-conotoxin pharmacophores 
included Lys2 as a major binding determinant. Lys2 is located in loop 1 on the opposite side of the 
peptide compared to the other important residues located in loop 2. However, recent evidence in our 
laboratory suggest that Lys2 is not directly involved in binding to the receptor but instead is involved 
in an important stabilising interaction between Lys2 and residue 14 (see above) (Schroeder et al., 
unpublished results). A novel minimal pharmacophore was subsequently proposed based on CVID 
including only residues in loop 2; Lys10, Leu11 and Tyr13 [134]. When designing a pharmacophore it 



Mar. Drugs 2006, 4                                   205 
 

is important to pinpoint which residues that are involved in a direct interaction with the receptor and 
which are structurally important to facilitate the design and maximise the chance of novel inhibitor 
being active. These pharmacophores have been utilised in the search for the development of small 
molecule to block the N-type CaV channel [134, 135]. Whilst these small molecules still only display 
modest activity, they were found to retain selectivity for the N-type CaV channel over the undesired 
P/Q-type CaV channel and are consequently promising candidates for further development in the 
search for novel therapies for the treatment of pain. 
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Figure 6. Ribbon (A, C) and CPK (B, D) representation of 3D solution structures of GVIA (red) [116], 

and MVIIA (cyan) (Schroeder et al. unpublished results). (A, C) Ribbon of GVIA and MVIIA, 
respectively, showing residues important for binding in ball and stick. The most important 
residues are shown in black, secondary important residues are indicated in blue and residues 
contributing slightly shown in green. (B, D) CPK representation of GVIA and MVIIA, 
respectively are shown. Charged residues are coloured in dark blue, hydrophobic residues in 
red and hydroxyl-containing residues are coloured orange. 
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There has never been a more critical need for novel therapeutics for pain management with a 
number of Cox-2 inhibitors withdrawn from the market [56]. While Prialt, the first FDA approved 
conotoxin, displays some undesired side effects, the next generation ω-conotoxin AM336 with a larger 
therapeutic window shows that N-type calcium channel inhibitors can be developed with fewer side 
effects. Furthermore, the behavioural studies and extensive SAR conducted on the ω-conotoxins over 
the last two decades now places the medicinal chemists in a strong position to design novel small 
molecules for the treatment of intractable pain. 
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