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Abstract: Yessotoxin (YTX) is a marine polyether toxin that was first isolated in 1986 from 
the scallop Patinopecten yessoensis. Subsequently, it was reported that YTX is produced by 
the dinoflagellates Protoceratium reticulatum, Lingulodinium polyedrum and Gonyaulax 
spinifera. YTXs have been associated with diarrhetic shellfish poisoning (DSP) because 
they are often simultaneously extracted with DSP toxins, and give positive results when 
tested in the conventional mouse bioassay for DSP toxins. However, recent evidence 
suggests that YTXs should be excluded from the DSP toxins group, because unlike okadaic 
acid (OA) and dinophyisistoxin-1 (DTX-1), YTXs do not cause either diarrhea or inhibition 
of protein phosphatases . In spite of the increasing number of molecular studies focused on 
the toxicity of YTX, the precise mechanism of action is currently unknown. Since the 
discovery of YTX, almost forty new analogues isolated from both mussels and 
dinoflagellates have been characterized by NMR or LC-MS/MS techniques. These studies 
indicate a wide variability in the profile and the relative abundance of YTXs in both, 
bivalves and dinoflagellates. This review covers current knowledge on the origin, producer 
organisms and vectors, chemical structures, metabolism, biosynthetic origin, toxicological 
properties, potential risks to human health and advances in detection methods of YTXs. 

Keywords: Yessotoxin (YTX), Diarrhetic Shellfish Poisoning (DSP), Marine polyether 
toxin, Protoceratium reticulatum, Lingulodinium polyedrum, Gonyaulax spinifera. 
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1. Introduction 

Microalgae are responsible for a large proportion of the photosynthetically produced biomass that 
supports zooplankton and other higher life forms. Filter-feeding organisms, such as bivalve shellfish 
and larvae of commercially important crustaceans rely almost completely on phytoplankton for food. 
Most mass proliferations of phytoplankton, known as algal blooms, are harmless and can actually 
benefit aquaculture and wild fisheries; however, under exceptional circumstances, high-density blooms 
can cause the indiscriminate death of fish and invertebrates through oxygen depletion, which in turn 
leads to economic losses and major environmental problems. In addition, certain microalgae produce 
toxic metabolites, which have an important impact on both human health and shellfish industries. 
Blooms of these toxic algae are known as Harmful Algal Blooms (HABs). At least 90 species of 
marine microalgae are known to produce toxins, of these, 70 are dinoflagellates [1]. 

Yessotoxins (YTXs) are a group of structurally related polyether toxins produced by the 
dinoflagellates Protoceratium reticulatum, Lingulodinium polyedrum and Gonyaulax spinifera. YTXs 
accumulate in shellfish and are toxic to mice by intraperitoneal injection [2, 3], producing symptoms 
similar to those of Paralytic Shellfish Poisoning (PSP) toxins. For these reasons YTXs had 
traditionally been included within the DSP group. However, more recently it has been proposed that 
YTXs should be excluded from the DSP group since they do not lead to diarrhea [3-5] and do not 
inhibit protein phosphatases [5]. On the other hand, YTXs have been found to be potent cytotoxins [6-
8], prompting the European Authorities to establish a maximum permitted level in shellfish of 1 mg 
YTX equivalents/Kg [9]. 

Together with YTX the existence of about 100 analogues have been reported to date from both 
bivalves or dinoflagellates, although only the structure of about forty of them have been identified and 
characterized by NMR and/or LC-MS/MS techniques [10, 11]. 

The toxin profile in different P. reticulatum strains have been found to be dependent on the origin 
of the strain [12-15]. Nevertheless, in spite of the high variability in the reported YTXs profile, it 
seems that the major toxin in P. reticulatum is usually YTX, and homoYTX was only found to be the 
main toxin in three Japanese strains [6, 16] and one Spanish strain [15].  

This review covers the origin, chemical structures, metabolism, biosynthetic origin, toxicological 
properties, potential risks to human health and advances in detection methods of YTXs. 

2. Producer organisms and vectors of YTXs 

Yessotoxin (YTX) was first isolated in 1986 in Mutsu Bay, Japan [17] from the digestive gland of 
Patinopecten yessoensis, a scallop that gave its name to the toxin. Since then, it has also been found in 
the mussel Mytilus edulis (blue mussel) in Norway [18], Mytilus galloprovincialis from the Adriatic 
sea in Italy [19], Perna canaliculus (Greenshell mussel) from New Zealand, Mytilus chilensis from 
Chile [20], Mytilus galloprovinicalis from Galicia (Spain) [21], Mytilus edulis from Kandalaksha Gulf 
in the Russian White Sea [22] and Mytilus galloprovincialis from the Black Sea off the Russia 
Caucasian coast [23] (Figure 1). 
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Figure 1. Presence of YTXs in molluscs in Japan, Norway, New Zealand, Italy, Chile, Spain 
and Russia (●). Identification of YTXs in Protoceratium reticulatum of: Japan, Italy, United 
Kingdom, Canada, Norway and Spain ( ). 
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However, the dinoflagellate Protoceratium reticulatum (Claparède and Lachmann) Bütschli 1885, 

was the first unicellular organism identified as a producer of YTX. Subsequently, YTX has been found 
in cells of P. reticulatum from different places in Japan [12, 16, 24], in the Adriatic Sea in Italy [13], in 
Nova Scotia, Canada [25], in Norway [26] and in Spain [15, 27] (Figure 1).  

The dinoflagellate Lingulodinium polyedrum (Stein) Dodge 1989 was also identified as a producer 
of YTXs, because L. polyedrum has been the main dinoflagellate detected in net-haul samples of 
several blooms in the Adriatic Sea containing YTX and homoYTX [4, 28], in Galicia in 2003 [21] and 
in mussels from the Russian Black Sea in 2007 [23]. YTXs have also been detected at low 
concentrations in cysts of different cultured strains of L. polyedrum in the United Kingdom [25]. 
However, although L. polyedrum seemed to be closely linked to the production of YTXs, this fact was 
not proved [29, 30] until YTX was found, in small quantities, in cultures of L. polyedrum from Galicia, 
Andalucía (Spain) [27] and California (USA) [31]. 

Other possible producers of YTXs have been reported: (i) It has been suggested that Coolia monotis 
[32] produce an analogue of YTX, the cooliatoxin, because it has the same molecular weight as 1-
desulfoYTX [33]. However, there is not enough information available about its chemical structure to 
confirm that it is indeed YTX. (ii) Gonyaulax spinifera has also been mentioned as a producer of YTX 
because two out of eight strains from New Zealand analysed by ELISA [34] showed very high 
concentrations of YTXs. However, previous LC/MS analysis of this organisms only gave a weak 
signal of YTX in one sample [25]. More recently G. spinifera was found, together with L. polyedrum, 
in plankton net samples during a mussel intoxication with YTX in Russia [23]. According to Hansen et 
al., (1996-97) [35], the morphology of G. spinifera is very similar to that of P. reticulatum so it could 
be a YTX producer. (iii) Some authors suggest that the real producers of YTXs are bacteria associated 
with the dinoflagellates, however to our knowledge, there is not solid evidence for this. 
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As happens with other marine toxins, the principal vectors of YTXs are scallops and mussels, which 
can accumulate high quantities of YTXs due to their filtering feeding nature. It has been observed that 
even low concentrations of cells (103 cells/L) are enough to produce the accumulation of important 
quantities of these toxins in shellfish [29]. Regarding the distribution of YTXs in mollusc tissues, they 
typically accumulate in the digestive gland, and in particular in the hepatopancreas, although they may 
also appear in the muscle tissue [17, 18, 20, 36]. Within the digestive glands, YTXs are mainly present 
in the lumen of both tubules and ducts [37]. 

2.1. Characteristics of YTX-producer dinoflagellates 

a) Protoceratium reticulatum (Claparède and Lachmann) Bütschli1885 (=Gonyaulax grindleyi 
Reinecke 1967) 

It is thought that G. grindleyi is synonymous with P. reticulatum, however there is no consensus on 
its taxonomy. Besides, according to recent studies [15], P. reticulatum could be a group comprising 
several species, however deeper taxonomic studies are necessary to confirm this hypothesis. Very 
little biological knowledge of this species exists aside from the fact that it is a photosynthetic and 
thecate planktonic dinoflagellate belonging to the family Gonyaulacaceae. Its size oscillates 
between 28-43 µm in length and 25-35 µm in width [35]; it is shaped like a polyhedron with a 
strong theca made up of several plates; the theca has a prominent reticulation with pores in the 
center of each reticulation. It is bioluminescent [38] and forms spherical cysts with spines. Keeping 
in mind that it has been found in very different locations, it is reasonable to believe that P. 
reticulatum is able to grow within a wide range of temperature conditions, salinities, light, pH and 
nutrient conditions [39]. 

b) Lingulodinium polyedrum (Stein) Dodge 1989 (=Gonyaulax polyedra Stein 1883) 

It is a thecate dinoflagellate belonging to the family Gonyaulacaceae. Cells are polyhedral-shaped 
and range in size from 40-54 µm in length and 37-53 µm in width. It is made up of thick plates, 
well defined, with a delicate reticulation and with numerous large trichocyst pores surrounded by 
circular sculpturing [40]. The girdle is deeply excavated, descending, and without intercrossings. It 
is bioluminescent [41]. Its life cycle involves vegetative reproduction, temporary cyst formation and 
sexual reproduction. The cysts are spherical (31-54 µm in diameter) with a double cell wall and a 
granular surface covered with spines. Living cysts present a prominent red body [42, 43]. It requires 
high levels of nutrients to develop; it is cosmopolitan and can be found mainly in temperate and 
subtropical coastal zones [40]. 

c) Gonyaulax spinifera (Claparède and Lachmann) Diesing 1866 

It is also a thecate dinoflagellate with polyhedral form belonging to the family Gonyaulacaceae. Its 
size varies between 24-50 µm in length and 30-40 µm in width. It has a prominent and descending 
girdle, well excavated and with intercrossings. It also has two caudal spines [44, 45]. There are 
several different types of cysts associated with the moving cell of this species [46, 47] which is why 
it is believed that there could be more than one species under the name G. spinifera. It covers 
extensive geographical areas, from polar to tropical waters. 



Mar. Drugs 2008, 6             
 

 

77

3. Structures of yessotoxin and its analogues 

The planar structure of YTX was determined using mass spectrometry (MS) and nuclear magnetic 
resonance spectroscopy (NMR) that revealed a molecular formula of C55H82O21S2Na2 [17]. It is a 
disulfated polyether, with a characteristic ladder-shape formed by 11 adjacent ether rings of different 
sizes and a terminal acyclic unsaturated side chain consisting of 9 carbons and 2 sulfate ethers [17] 
(Figure 2). 

The core structure is liposoluble, but two sulfate groups give an amphoteric molecule [20]. The 
presence of the sulfo-ether group makes these molecules the most polar ones of the lipophylic toxins 
group and, possibly due to this, important amounts of YTXs were found in the culture medium [15, 27, 
48]. 

Figure 2. Structure of yessotoxin (YTX). 
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Numerous YTX congeners have been reported, and although the structure of some of them are still 
unknown [49], for many of them, full structure determination was carried out. Typically their 
molecular weight ranged between 955 and 1551 mu [11, 49-51]. Currently 36 natural derivatives of 
YTX have been identified and characterized by NMR and/or liquid chromatography coupled with 
mass spectrometry (LC-MS). Some YTXs are directly produced by dinoflagellates while others are 
produced by the shellfish metabolism. Their structures are summarized in the following Figure 3. 
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Figure 3. Structures of YTX analogues 
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3.1. Analogues detected in dinoflagellates 

P. reticulatum is the best studied YTX-producer as it is responsible for the majority of YTXs found 
in dinoflagellates. The first YTX analogue identified in algae was 45,46,47-trinor-YTX (=nor-YTX), 
isolated from a strain of P. reticulatum found in Yamada Bay in Japan [24]. Later, it was also found in 
Norway [26]. Other analogues recently isolated from this dinoflagellate are: homo-YTX (=1a-homo-
YTX) [13], noroxo-YTX [13, 49] (=42,43,44,45,46,47,55-heptanor-41-oxo-YTX or 41-keto-YTX), 
40-epi-41-keto-YTX and 41-keto-YTXenone [59]; also 41a-homo-YTX, 9-methyl-41a-homo-YTX, 
four nor-ring-A-YTXs [60], 9-methyl-41-keto-YTXenone [11], 44,55-dihydroxy-YTX, 44,55-
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dihydroxy-41a-homo-YTX and 44,55-dihydroxy-9-Methyl-41a-homo-YTX [62], the hydroxyamide-
YTXs derived from 41a-homo-YTX and 9-methyl-41a-YTX [61]. In more recent studies 45-OHdinor-
YTX, 44-oxotrinor-YTX, 41a-homo-44-oxotrinor-YTX [11] and 45,46,47-trinorhomo-YTX [16, 53] 
(Figure 3) have been identified. 

Compared to YTX, the previous derivatives showed differences due to hydroxilations, 
carboxylations, desulfatations, methylations, oxidations, amidations, changes in the length of the 
carbon chain or absence of the A ring [4, 11, 50, 59]. Recently the structure of a new class of 
derivatives was described resulting from glycosylation of the side chain of 1a-homo-YTX and YTX. 
These new derivatives possess 1, 2 or 3 arabinofuranose units linked to C-32 (Figure 3). The first 
glycoside derivatives discovered were 32-O-di-, -mono- and –tri-arabinofuranosyl-1a-homo-YTXs that 
were called respectively protoceratins II, III and IV [6]. Then 32-O-mono-arabinosyl-YTX [63] was 
identified, as well as 32-O-di and –tri-arabinofuranosyl-YTXs [64]. 

Another possible analogue isolated from Coolia monotis is the cooliatoxin [32], which 
coincidentally possesses the same molecular weight as 1-desulfo-YTX [33], however, there is no 
information about its chemical structure or toxic profile that could confirm its relationship to YTXs. 

Table 1. Reported YTX concentration in different P. reticulatum strains. 

P. reticulatum 
Strain 

Location Analysis 
Technique

YTXs 
(pg/cell)

Reference 

Yamada Bay Japan LC-FLD 14 [24] 
New Zealand New Zealand LC-FLD 3.0 [24] 
Mutsu Bay Japan LC-FLD 0.9-11 [12] 

Emilia-Romagna Italy LC-FLD 15.7 [29] 
VGO758 Spain LC-FLD 28.7 [15] 
VGO764* Spain LC-FLD 20.5 * [15] 
GG1AM Spain LC-FLD 2.9 [15] 
UW351 UK LC-MS 0.3 [25] 
UW409 Canada LC-MS 5 [25] 
Adriatic Italy LC-MS 11.4 [13] 

CAWD40 New Zealand LC-MS 10-15 [65] 
OM6-NP31* Japan LC-MS 71.7 * [16] 

10628-OK-PR-C Japan LC-MS 59.8 [16] 
020717-OK-PR-7 Japan LC-MS 1.0 [16] 

CAWD40 New Zealand ELISA 30 [26] 
AP2 Norway ELISA 19-22 [26] 

Sognfj03 Norway ELISA 19-34 [26] 
CAWD40 New Zealand ELISA 8.3 [34] 

* LC-MS analyses determined that the main toxin in VGO764 and OM6-NP31strains is homo-YTX. 

In spite of the fact that P. reticulatum is able to produce numerous analogues of YTX, usually the 
most prominent toxin produced is YTX, with the exception of certain strains that produce homo-YTX 
as their principal toxin [15, 16]. It has been shown that noroxoYTXs, trinor-YTXs [14] and glycosyl-
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YTXs [15] make up the most important percentage of all the analogues. The concentrations and 
profiles of toxins differ among distinct strains and can even be found in non-YTX-producing strains 
(Table 1). This is possibly due to genetic differences among P. reticulatum but can also be influenced 
by culture conditions and extraction methods for each toxin [15]. 

3.2. Analogues detected in shellfish 

The first YTX analogue detected in molluscs was 45-hydroxy-YTX from P. yessoensis in Japan 
[52]. Afterwards, the analogue 45, 46, 47-trinor-YTX was identified from the same species [50]. 
Subsequently, other analogues were found in mussels (Mytilus galloprovincialis) from the Adriatic 
Sea, such as homo-YTX, 45-hydroxyhomo-YTX [54] (Figure 3), adriatoxin [66] (Figure 4), carboxy-
YTX [51], carboxyhomo-YTX [55], noroxohomo-YTX [58] (=42, 43, 44, 45, 46, 47, 55-heptanor-41-
oxohomo-YTX or 41-ketohomo-YTX) and noroxo-YTX [57] (=42,43,44,45,46,47,55-heptanor-41-
oxo-YTX or 41-keto-YTX) and 1-desulfo-YTX in Mytilus edulis from Norway [33]. More recently 
41a-homo-YTX, 44,45-dihydroxy-YTX [62, 67] and 45-hydroxycarboxy-YTX [56] were discovered 
in Mytilus edulis from Norway. The most recent analogues identified in molluscs are two desulfo-
YTXs detected in mussels from the Adriatic Sea: 1-desulfocarboxyhomo-YTX and 4-
desulfocarboxyhomo-YTX [10] (Figure 3). In spite of the high number of analogues found in 
molluscs, the most abundant is typically 45-hydroxy-YTX, followed by carboxy-YTX. 

Figure 4. Structure of adriatoxin. 

HO3SO

HO3SO

O

O

O

O

O

O

O
O

O
O

OSO3H
HO

H H H H H
H

H

H

H

H H H H H

H

H

A B C D E
F

G

H

I

J

OH

1
9

18

26

32

38

29
40

41

H

42

37

 

 

 Initial results about the metabolism of YTX in molluscs indicated that both YTX and homo-
YTX are probably oxidized to 45-OH-YTX and 45-OHhomo-YTX respectively [20]. More recent 
studies indicate that the mollusc rapidly oxidizes YTX to 45-OH-YTX and more slowly to carboxy-
YTX. Afterwards, 45-OH-YTX is possibly metabolized to 45-OHcarboxy-YTX [56] (Figure 5). These 
hypotheses rely on the fact that the majority of YTXs found in molluscs are 45-OH-YTX and carboxy-
YTX [36, 68].  
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Figure 5. Metabolism in bivalves. 
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There is a controversy as to whether some of the analogues are produced exclusively by molluscs or 
by dinoflagellates. According to Ciminiello et al. [13], a small percentage of the 45-OH-YTX, 45-
OHhomo-YTX, carboxy-YTX and carboxyhomo-YTX are produced directly by the algae, but it is 
known that the major part of the 45-OH-YTX, carboxy-YTX and its homo form are produced by the 
metabolism of YTX and homo-YTX in molluscs [69]. In addition, in recent studies, neither 45-OH-
YTX nor carboxy-YTX were found in dinoflagellates [15, 26, 49]. 

4. Biosynthetic origin of yessotoxin 

The only experimental data available on the byosynthetic origin of YTX come from a 13C feeding 
experiment done by Satake in 2000 [70]. The dinoflagellate P. reticulatum was cultured in the 
presence of [1-13C], [2-13C] and [1-2-13C2] sodium acetate and [methyl-13C] methionine. The 
experiments indicated that 15 carbons in YTX were labelled with [1-13C] acetate while 37 carbons 
were labelled with [2-13C] acetate (Figue 6). However, carbons C-1, C-2 and C-50 were not labelled 
with acetate. Similarly with the brevetoxins, the C-50 was labelled with [mehtyl-13C] methionine. 
Unfortunately, these results were only published in a Japanese journal so we are not able to comment 
further on them.  
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Figure 6. Results of labelling in yessotoxin (m: methyl from acetate, c: carboxyl from 
acetate, c-m: acetate unit and M: methyl group from methionine). 
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Furthermore, in 1985 Nakanishi, suggested that the dinoflagellates create this compound by 
launching a cascade of reactions that break apart a series of small rings as the first step to adding 
successive rings to the leader [71]. In the same line, an extraordinary work was published recently by 
Vilotijevic and Jamison, from a synthetic organic chemistry laboratory at the Massachusetts Institute 
of Technology (MIT) in Cambridge [72]. The authors report experimental evidence, in similar way to 
that proposed by Nakanishi, that using the appropriate polyepoxide system it is possible to obtain the 
A-D ring fragment of yessotoxin just using water. These results support the idea that marine 
dinoflagellates may build their toxins in a similar way (Figure 7). 

5. Toxicity and mode action of yessotoxins 

Symptoms of intoxication produced by YTX in humans are relatively unknown due to the fact that 
no human intoxication has been reported to date. However, it seems clear that YTX does not produce 
diarrhea in humans [73, 74]. Despite about forty natural derivatives of YTX having been identified, the 
toxicological potential of YTXs is not yet completely clarified, and only YTX, desulfo-YTX, homo-
YTX and 45-OHhomo-YTX have undergone deep toxicological studies. Furthermore, the 
toxicological studies that discuss this issue are based on oral ingestion and intraperitoneal 
administration to mice and show great differences among them: 

5.1. Intraperitoneal toxicity 

The toxicity of YTX by intraperitoneal injection (i.p.) is high and a concentration of approximately 
100 µg/Kg is lethal to all mice [5] (Table 2). The symptoms observed in mice injected with lethal 
doses of YTX and homo-YTX are similar to those found for PSP (Paralytic Shellfish Poisoning) 
toxins. The symptoms start within four hours of the injection and are characterized by signs of 
exhaustion, so the mice die quickly by sudden dyspnoea. Electron microscopy studies revealed that the 
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toxin produces damage in the cardiac muscle [3, 73, 75], as well as in the liver and pancreas [2, 5], and 
more recently it was reported that YTX also produces neuronal damage in the brain [76, 77]. 
Therefore, YTXs should be considered as potentially toxic for humans, with a lethal dose (LD50) that 
varies among the different analogues between 80 and 750 µg/Kg (Table 2). 

Figure 7. Synthesis of a similar fragment A-D of yessotoxin. 

HO3SO

HO3SO

O

O

O

O

O

O

O
O

O
O

O

H H H H H
H

H

H

H

H

H H H H H

H

H

HO

A B C D E
F

G

H

I

J

K

OH

1
9

18

26

32

40

47

48

49
50

51

H

52

5354

55

H

HO

O

O

O

O

H H H H

H H H H
O

OTBS
H

H

O

O

O
H2O

70 ºC; 72 h

 
 

Table 2. Lethal Doses (LD50) of YTXs. 

Toxin LD50 (µg/kg) Reference 
YTX 80-750 [2, 5, 17, 73] 
Homo-YTX 100 [54] 
Trinor-YTX 220 [50] 
45OH-YTX 500 [50] 
45OHhomo-YTX 500 [54] 
1-Desulfo -YTX 500 [33] 
Carboxy-YTX 500 [51] 
Carboxyhomo-YTX 500 [55] 

     

5.2. Oral toxicity 

YTX is not lethal to mice after oral acute 10 mg/Kg administration in mice [2, 3, 5, 73]. Neither 
diarrhea nor digestive organ damage have been observed [19, 54, 73] and only small and temporary 
behavioral alterations can be observed at high doses [2, 5]. Histopathological studies reveal a slight 
affectation of myocardial cells [2, 73] and, it seems that YTX can also affect the thymus and immune 
system at lethal and sublethal doses [76, 78]. 

Very few studies have been carried out regarding YTX analogues. These show that 45-OH-YTX 
and 1-desulfo-YTX have lower toxicity than YTX [33], and that homo-YTX is slightly more toxic than 
YTX [3]. Carboxy-YTX was also toxic to mice by i.p. injection [51]. Recent oral and i.p. acute 
toxicity studies [3] and also short-term studies of daily administration to mice of YTX, homo-YTX or 
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45-OH-YTX showed that none of the three toxins were lethal or induced signs of toxicity [79]. 
Moreover, none of the four YTXs, 41-keto-YTXenone [59], 9-methyl-41-keto-YTXenone [61], 1-
desulfocarboxyhomoYTX and 4-desulfocarboxyhomo-YTX [10] are lethal to mice even after a high 
i.p administration.  

Recent studies of oral toxicity in mice indicate that risk of intoxication by YTXs may be much less 
important than those from OA or dinophysistoxins, so it does not seem to be a serious problem for 
human health [3, 75, 79]. However, the extent by which these toxins can be absorbed by the intestine 
to reach their target organs still needs to be determined. 

5.3. Mode of action of yessotoxins 

The discrepancy between the oral and i.p. toxicity has prompted the interest of researchers to study 
the mechanism action of YTX. Although a good number of cytotoxic studies have been carried out 
and, a clearer pattern of the mode of action of YTX has emerged recently, the precise mechanism of 
action is not yet known. However, it seems clear that YTXs do not inhibit protein phosphatases PP1 
and PP2A [5], as opposed to other lipophilic toxins, such as OA [5].  

According to in vitro studies, it seems that YTX modulates the calcium homeostasis in human 
lymphocytes: on the one hand it induces an extracellular Ca2+ entry through Ca2+ channels sensitive to 
nifedipine and to SKF 96365, by modulating adenosine 3´,5´-cyclic monophosphate (cAMP), and on 
the other hand YTX inhibits the capacitative entry of Ca2+ [80, 81]. It was also reported that YTX acts 
by activating phosphodiesterase (PDE) activity, therefore decreasing the level intracellular of cAMP, 
depending on the presence of Ca2+ in the extracellular medium of human lymphocytes [82-84]. 
Subsequent studies have indicated that YTX produces apoptosis in different types of cells such as 
human neuroblastoma [85], human HeLa cells [86] or rodent myoblast [75] by induction of different 
caspase isoforms [75, 85-87]. Apoptotic events induced by YTX were associated with cytoskeletal 
disruption observed in rodent cells, such as cultured cerebelar neurons [8] and myoblast cell lines via 
mitochondrial pathway [87]. Recently, it has been demonstrated that the cytoskeleton disruption in 
mouse myoblast is caused by tensin cleavage [88]. 

Other recent in vitro studies demonstrated that YTX induces a selective disruption of the E-
cadherin-catenin system in epithelial cells, such as MCF-7 breast cancer cells [89], or that YTX (in the 
presence of Ca2+) increases the mitochondrial membrane permeability of rat liver mitochondria [7]. 
Additional studies showed that YTX affects the basic immune function [90] producing a cytoplasmatic 
Ca2+ increase in mussel immunocytes [90, 91]. The lysosomal vesicles and cytoskeletal microfilaments 
were identified as the cell components mainly involved in the early apoptotic response to YTX in both 
insect and mouse fibroblast cells [92]. 

Finally, a structure-activity relationship (SAR) has been proposed for YTXs. Differences in activity 
among YTX analogues were detected when structural changes affected the C-9 terminal chain of YTX, 
showing that this portion of the molecule is essential for the activity of YTX in MCF-7 breast cancer 
cells [93]. 
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6. Detection and quantification methods for yessotoxin and its analogues 

The determination of YTXs is complex due to the high number of existing analogues; because they 
have common solubility properties with other lipophilic toxins; and because they coexist in the 
phytoplankton and in the vectors. Various methods have been developed for the determination of 
YTXs and, apart from economical considerations, the choice mainly depends on the objectives of the 
study. In vivo assays are usually applied for public health protection, as the priority is to determine the 
potential global toxicity. Analytical methods are mostly applied in research or confirmatory studies 
when the identification and quantification of individual toxins are required. 

6.1. In vivo assays 

Mouse bioassay [94, 95] (MBA) is the official method accepted to detect YTXs [96]. This method 
involves acetone extraction, which can be partitioned with ethyl acetate/water or 
dichloromethane/water [96]. The solvent is removed and the residue is resuspended in 0.1 % Tween 
60. 1 mL of this solution is injected i.p. into three mice with a body weight of about 20 g. Mice are 
observed for 24 hours and the toxicity is determined on the basis of survival time and by the 
symptomatology. The toxicity is provided in mouse units (MU). 1 MU is defined as the minimum 
amount of toxin required to kill 2 out of 3 mice within 24 hours. 

The EU regulatory limit established for YTXs [9] in food is high (1 mg YTX equivalents/Kg) 
because it is based on the low oral toxicity to mice. Therefore using doses of YTX for MBA below this 
regulatory limit cause mice to die. In addition, this method is the same as that used to detect the 
lipophilic toxins okadaic acid (OA), dinophysistoxins (DTXs), pectenotoxins (PTXs) and azaspiracids 
(AZAs) which can be co-extracted due to their common solubility properties. Therefore with this 
method it is difficult to identify which toxin causes the death of the mice and it may give false 
positives [97]. Specific analytical methods for YTXs, such as LC-FLD or LC-MS [98, 99] are 
therefore required to be able to determine which toxin causes the positive result and to avoid this 
problem. 

In general, the mouse bioassay is considered an inconvenient detection method for marine biotoxins 
because of its lack of specificity. Moreover, it is time consuming and expensive, free fatty acids might 
interfere with the results, the recovery of the YTXs from the extract is variable due to matrix effects 
and it is ethically questionable [100]. However, after many years of routine application, it has proved 
to be very effective to screen for the presence of DSP and other lipophilic toxins for public health 
protection purposes. 

6.2. In vitro assays 

a) Functional assays. These assays depend on a characteristic response linked to the mode of action of 
the toxin in cultured cells; therefore they correlate well with real toxicity. The disadvantages are 
that: viable cell-strains are necessary, they are sensitive to interferences and that expertise is 
required to perform the assays. In addition, it is not possible to distinguish between different YTX 
analogues using them. A series of functional assays for YTXs have been recently developed: 
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- Cytotoxicity assays: Initially designed to detect DSP toxins, these assays are also able to detect 
YTXs [101]. These assays are based on the microscopic examination of the morphological 
changes observed in freshly prepared rat hepatocytes after toxin exposure. With these assays it is 
possible to differentiate between OA, DTX1, PTX1 and YTXs as OA and DTX1 induce irregular-
shaped cells with surface blebs, while PTX1 produces dose dependent vacuolisation or YTXs 
produce tiny blebs on the surface of cells but do not induce changes in the shape of the cells. 
However, this information is only qualitative, as cell changes produced by the toxins are not dose 
dependent. 

- Accumulation of fragmented E-cadherin [102]: In this assay the accumulation of a 100kDa 
fragment of E-cadherin induced by YTX in the epithelial MCF-7 breast cancer cells is measured. 
The increase of the fragmentation of this fragment of E-cadherin is concentration-dependent and is 
detected by Immunoblotting using anti-E-cadherin antibodies. It is a very sensitive and specific 
method (detection limit around 100 µg YTX equivalents/Kg) [103]. 

- Intracellular decrease of adenosine 3´,5´-cyclic monophosphate (cAMP) [82, 104]: YTX in the 
presence of calcium activate PDEs activity with the consequent decrease in cAMP levels. This 
phenomenon is concentration-dependent and it is detected using a fluorescent derivative of cAMP, 
anthranyloyl-cAMP. To be exact, it is detected by a decrease in fluorescence, due to the improved 
hydrolytic effect of PDEs in anthranyloyl-cAMP [104]. The rate of cAMP hydrolysis is linearly 
correlated with different concentrations of YTX between 0.5 and 10 μM. 

b) Structural assays (immunoassays) based on measurements of the recognition of this toxin by 
specific antibodies. However, these assays not necessarily related to the biological activity of the 
toxin, therefore any correlation with real toxicity is not always as good as it is for functional assays. 

- ELISA (enzyme-linked immunosorbent assay): a specific ELISA to detect YTXs in shellfish, 
microalgae and/or seawater samples has been recently developed by Briggs et al. [105], and is 
now commercially available as a kit for rapid screening of YTXs [106]. It is a competitive, 
indirect immunoassay based on the use of polyclonal antibodies against YTX. The antibodies 
used, were obtained using conjugated YTX-protein (cBSA), and have a broad specificity for 
YTXs, because the YTXs have been conjugated in the non-sulphated end of the molecule. The 
working range is 70-1300 pgYTX/mL. The disadvantages of this method are due to the cross-
reactivity of the antibody, and therefore it is not possible to distinguish among analogues. 
Moreover, the cross-reactivity of the antibodies is limited to compounds with specific compatible 
moieties, therefore it is not possible to detect all the analogues with the significant risk of 
obtaining false negatives. This assay has the advantage of being sensitive, rapid, relatively cheap, 
suitable for HTS screening large number of samples; it is affordable for most labs and operators 
require minimal training. 

6.3. Chemical methods 

Chemical methods consist of a first step of toxin separation followed by identification and 
quantification of each toxin. These methods rely on the measurement of an instrumental response that 
is proportional to the concentration of toxin. However, quantification always requires a previous 
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calibration step of the equipment with toxin standards. The chemical methods used to determine YTXs 
are essentially liquid chromatography with fluorescence detection (HPLC-FLD) or coupled with mass 
spectrometry (LC-MS): 

a) Liquid chromatography with fluorescence detection (HPLC-FLD) [20]: This method is extensively 
used for the qualitative and quantitative analysis of YTXs both in molluscs and microalgae [107]. It is 
based on the determination of a fluorescent derivative of the toxin obtained by precolum derivatization 
with the dienophile reagent 4-(2-(6,7-dimethoxy-4-methyl-3-oxo-3,4dihydroquinoxalimylethyl)-1,2,4-
triazoline-3,5-dione (DMEQ-TAD) (Figure 8). 

Figure 8. DMEQ-TAD derivatization reaction for yessotoxin 

O

O
H

H

H

HO

J
K

O
N

H3CN

OCH3

OCH3

N

N N
OO

O
N

H3CN

OCH3

OCH3

N

N N
OO

O

O
H

H

H

HO

O
N

H3CN

OCH3

OCH3

N

N N
OO

42
42

+

+

42S 42R

DMEQ-TAD

YTX

47
47

45

45

H
H40

40

H
H

52
52

53
53

J
K

HO3SO

HO3SO

O

O

O

O

O

O

O
O

O
O

O

H H H H H
H

H

H

H

H

H H H H H

H

H

HO

A B C D E
F

G

H

I

J

K

OH

1
9

18

26

32

40

47

48

49
50

51

H

52

5354

55

H

 

     
Previous to the analysis, a clean-up of the sample using solid phase extraction (SPE) cartridges is 

required to eliminate interferences. The fluorogenic reagent reacts with the conjugated diene in the 
side-chain and, as a consequence, this method can only detect YTX, 45-OH-YTX, trinor-YTX [20], 
desulfo-YTX [33], homo-YTX, 45-OHhomo-YTX and G-YTXs [108]. Other analogues such as 
carboxy-YTX, diOH-YTX, and noroxo-YTX or adriatoxin without the diene moiety can not be 
detected by HPLC-FLD. The fluorescent adduct gives two diasteroisomeric peaks due to the formation 
of both C-42 epimers in a 3:1 ratio for YTX (Figure 8) [20]. YTX analogues elute at different retention 
times, therefore the use of toxin standards is necessary for toxin identification. 
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Weaknesses of this method are that the detection of new analogues are limited to the presence of a 
conjugated diene, and that it is difficult to distinguish between analogues with similar retention times, 
such as YTX and homo-YTX [15]. On the other hand, advantages are that it is a very sensitive method 
with a linear response (0.4-6 mg/Kg), requires relatively low-cost equipment, it is affordable to many 
labs and it is faster than the mouse bioassay. 

b) Liquid chromatography coupled with mass spectrometry (LC-MS): currently this is the most 
powerful analytical tool used to identify multiple toxins. This technique has several advantages, such 
as its high sensitivity and selectivity. In addition, collision experiments (MS/MS) can provide valuable 
structural information in the confirmation of toxin identities, as well as in the identification of new 
toxins. It does not require complex derivatization and purification steps needed for HPLC-FLD 
methods. It is possible to analyze all the YTXs, even those derivatized with DMEQ-TAD [108], and 
also different algal toxins. In fact, several multi-toxin detection methods have been developed [109]. 
However, as is the case for other chemical methods, calibration standards are required for method 
development and toxin quantification. LC-MS methods can provide relevant information about the 
presence of compounds related to a known structure, even if the toxin standard is available only for 
one relevant toxin of the group. The main disadvantage of this technique is that the equipment is 
expensive. 

Several specific LC-MS methods have been developed for YTX detection, which differ basically in 
the mobile or stationary phase used or the electrospray mode selected (positive or negative) [25, 110-
115]. Most methods use negative ion mode detection because YTXs easily lose a proton from the 
sulfate group. The fragmentation of YTX is achieved easily even when low collision energies (C.E.) 
are used and the loss of the sulfate group and the subsequent fragmentation of the unsaturated side 
chain are characteristic (Figure 9) [111]. Recently an ultra-performance liquid chromatography mass 
spectrometry (UPLC) method has been developed [116]. 

c) Capillary electrophoresis with UV/MS detection: This is an analytical method designed as an 
alternative to HPLC-FLD for the determination of YTXs. It shows high resolution and small amounts 
of sample are required. Coupled with MS instrumentation it allows confirmation of the presence of 
YTXs in samples [117]. 

7. Current regulations for yessotoxins 

Taking into account the existing knowledge about YTXs, in 2002 these toxins were classified and 
regulated separately from the DSP toxins by the European Commission with the Directive 
2002/225/EC [118]. This Directive was recently derogated by Regulation Nº 853/2004/EC [9], which 
was amended by Regulation 2074/2005/EC [96] of the European Commission. 
Regulation Nº 853/2004/EC establishes the maximum permitted levels of some marine biotoxins in 
molluscs for human consumption. In the case of YTXs the regulatory limit is 1 mg of YTX 
equivalents/Kg (measured in the whole body or any edible part separately) (Chapter V, Section VII of 
Annex III of the Regulation). Regulation 2074/2005/EC lays down the recognised testing methods for 
detecting marine biotoxins by the competent authorities (Annex III of the Regulation). According to 
this Regulation a single mouse bioassay may be used to detect OA, DTXs, PTXs, YTXs and AZAs. 
Due to the lack of specificity of the mouse bioassay, it is not possible to distinguish which of the 
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lipophilic toxins contribute to the toxic effects that may be observed, and both false negatives or 
positives are known to occur. Therefore it is clear that a solution to this analytical problem is still an 
open-ended question. In this sense Regulation 2074/2005/EC also states that methods, such as HPLC-
FLD, LC-MS, inmunoassays and functional assays, may be used as alternatives or supplementary to 
the biological methods, if they are not less effective than the biological methods and if their 
implementation provides an equivalent level of public health protection (Annex III of the Regulation). 

Figure 9. Characteristic product ions in MS3 fragmentation of [M-H]- ions of common 
yessotoxin skeletons (n=1) and above of homoyessotoxin skeletons (n=2). 
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Finally, the Directive also states that if new analogues of importance to public health are 
discovered they should be considered, and that biological methods shall be replaced by alternative 
detection methods as soon as reference materials for detecting the toxins prescribed in Chapter V of 
Section VI of Annex III to Regulation (EC) Nº 853/2004 are readily available and the methods have 
been validated. 

8. Conclusions 

As stated in this review, different aspects of the toxicology of YTXs are relatively unknown, and 
this fact, together with the high structural variability in the YTX analogues mean that YTXs require 
further study. The scarcity of toxicological studies on YTX and its analogues, which are necessary to 
assess its human health risks, have been hampered until now, by the limited availability of the toxin. 
Reference YTXs are needed, but the availability of such standards is very limited or they are not 
commercially available at all. For all these reasons, the study of YTX and its analogues is still an 
important challenge for all those groups dedicated to the study of marine natural products.  



Mar. Drugs 2008, 6             
 

 

94

Acknowledgements 

We thank Santiago Fraga and Isabel Bravo for their useful discussions. Authors acknowledge 
financial support from the Spanish MEC (AGL2005-07924-C04-01 and 02/ALI), INIA (ACU-02-005) 
and CCVIEO projects  

References and Notes 

1. Moestrup, Ø.; Codd, G. A.; Elbrächter, M.; Faust, M. A.; Fraga, S.; Fukuyo, Y.; Cronberg, G.; 
Halim, Y.; Taylor, F. J. R.; Zingone, A. IOC Taxonomic Reference List of Toxic Algae, 
UNESCO. http://ioc.unesco.org/hab/data.htm. 2004.  

2. Aune, T.; Sorby, R.; Yasumoto, T.; Ramstad, H.; Landsverk, T. Comparison of oral and 
intraperitoneal toxicity of yessotoxin towards mice. Toxicon 2002, 40, 77-82. 

3. Tubaro, A.; Sosa, S.; Carbonatto, M.; Altinier, G.; Vita, F.; Melato, M.; Satake, M.; Yasumoto, 
T. Oral and intraperitoneal acute toxicity studies of yessotoxin and homoyessotoxins in mice. 
Toxicon 2003, 41, 783-792. 

4. Tubaro, A.; Sidari, L.; Della-Loggia, R.; Yasumoto, T. Occurrence of yessotoxin-like toxins in 
phytoplankton and mussels from northern Adriatic Sea. In: Reguera, B.; Blanco, J.; Fenández, 
M. L.; Wyatt, T., eds. Harmful Algae: Xunta de Galicia and IOC of UNESCO, 1998, 470-472. 

5. Ogino, H.; Kumagai, M.; Yasumoto, T. Toxicologic evaluation of yessotoxin. Nat. Toxins 
1997, 5, 255-259. 

6. Konishi, M.; Yang, X.; Li, B.; Fairchild, C. R.; Shimizu, Y. Highly cytotoxic metabolites from 
the culture supernatant of the temperate dinoflagellate Protoceratium cf. reticulatum. J. Nat. 
Prod. 2004, 67, 1309-1313. 

7. Bianchi, C.; Fato, R.; Angelin, A.; Trombetti, F.; Ventrella, V.; Borgatti, A. R.; Fattorusso, E.; 
Ciminiello, P.; Bernardi, P.; Lenaz, G.; Parenti, C. G. Yessotoxin, a shellfish biotoxin, is a 
potent inducer of the permeability transition in isolated mitochondria and intact cells. Biochim. 
Biophys. Acta 2004, 1656, 139-147. 

8. Pérez-Gómez, A.; Novelli, A.; Ferrero-Gutiérrez, A.; Franco, J. M.; Paz, B.; Fernández-
Sánchez, M. T. Potent neurotoxic action of the shellfish biotoxin yessotoxin on cultured 
cerebellar neurons. Toxicol. Sci. 2006, 90, 168-177. 

9. EC. Regulation Nº 853/2004 of the European Parlamient and of the Council of 29 April 2004, 
laying down specific hygiene rules for food of animal origin. 2004, L 226, p. 22. 

10. Ciminiello, P.; Dell-Aversano, C.; Fattorusso, E.; Forino, M.; Grauso, L.; Magno, S.; Poletti, 
R.; Tartaglione, L. Desulfoyessotoxins from Adriatic Mussels: a new problem for seafood 
safety control. Chem. Res. Toxicol. 2007, 20, 95-98. 

11. Miles, C. O.; Wilkins, A. L.; Allan, D. H.; Selwood, A. I.; Jensen, D. J.; Cooney, J. M.; 
Beuzenberg, V.; MacKenzie, A. L. Identification of 45-hydroxy-46,47-dinoryessotoxin, 44-
oxo-45,46,47-trinoryessotoxin, and 9-methyl-42,43,44,45,46,47,55-heptanor-38-en-41-
oxoyessotoxin, and partial characterization of some minor yessotoxins, from Protoceratium 
reticulatum. Toxicon 2006, 47, 229-240. 



Mar. Drugs 2008, 6             
 

 

95

12. Eiki, K.; Satake, M.; Koike, K.; Ogata, T.; Mitsuya, T.; Oshima, Y. Confirmation of yessotoxin 
production by the dinoflagellate Protoceratium reticulatum in Mutsu Bay. Fish Sci. 2005, 71, 
633-638. 

13. Ciminiello, P.; Dell-Aversano, C.; Fattorusso, E.; Forino, M.; Magno, S.; Guerrini, F.; 
Pistocchi, R.; Boni, L. Complex yessotoxins profile in Protoceratium reticulatum from north-
western Adriatic sea revealed by LC–MS analysis. Toxicon 2003, 42, 7-14. 

14. Samdal, I. A.; Olseng, C. D.; Sandvik, M.; Miles, C. O.; Briggs, L.; Torgersen, T.; Jensen, D. 
J.; Cooney, J. M. Profile of yessotoxin analogues in a Norwegian strain of Protoceratium 
reticulatum. In: Henshilwood, K., Deegan, B., McMahon, T., Cusack, C., Keaveney, S., Silke, 
J., O'Cinneide, M., Lyons, D., Hess, P., ed. Galway, Ireland, 2006, 118. 

15. Paz, B.; Riobó, P.; Ramilo, I.; Franco, J. M. Yessotoxins profile in strains of Protoceratium 
reticulatum from Spain and USA. Toxicon 2007, 50, 1–17. 

16. Suzuki, T.; Satake, M.; Yoshimatsu, S.; Oshima, Y.; Horie, Y.; Koike, K.; Iwataki, M. 
Yessotoxin analogues in several strains of Protoceratium reticulatum in Japan determined by 
liquid chromatography-hybrid triple quadrupole/linear ion trap mass spectrometry. J. 
Chromatogr. A 2007, 1142, 172-177. 

17. Murata, M.; Masanori, K.; Lee, J.-S.; Yasumoto, T. Isolation and structure of Yessotoxin, a 
novel polyether compound implicated in diarrhetic shellfish poisoning. Tetrahedron Lett. 1987, 
28, 5869-5872. 

18. Lee, J.-S.; Tangen, K.; Dahl, E.; Hovgaard, P.; Yasumoto, T. Diarrhetic shellfish toxins in 
Norwegian mussels. Nippon Suisan Gakkaishi/Bull. Jap. Soc. Sci. Fish 1988, 54, 1953-1957. 

19. Ciminiello, P.; Fattorusso, E.; Forino, M.; Magno, S.; Poletti, R.; Satake, M.; Viviani, R.; 
Yasumoto, T. Yessotoxin in mussels of the northern Adriatic Sea. Toxicon 1997, 35, 177-183. 

20. Yasumoto, T.; Takizawa, A. Fluorometric measurement of yessotoxins in shellfish by high-
pressure liquid chromatography. Biosci. Biotechnol. Biochem. 1997, 61, 1775-1777. 

21. Arévalo, F.; Pazos, Y.; Correa, J.; Salgado, C.; Moroño, A.; Paz, B.; Franco, J. M. First report 
of yessotoxins in mussels of Galician Rías during a bloom of Lingulodinium polyedra Stein 
(Dodge). In: Henshilwood, K., Deegan, B., McMahon, T., Cusack, C., Keaveney, S., Silke, J., 
O'Cinneide, M., Lyons, D., Hess, P., ed. Galway, Ireland, 2006, 184-189. 

22. Vershinin, A.; Moruchkov, A.; Morton, S. L.; Leighfield, T. A.; Quilliam, M. A.; Ramsdell, J. 
S. Phytoplankton composition of the Kandalaksha Gulf, Russian White Sea: Dinophysis and 
lipophilic toxins in the blue mussel (Mytilus edulis). Harmful Algae 2006, 5, 558-564. 

23. Morton, S. L.; Vershinin, A.; Leighfield, T. A.; Smith, L.; Quilliam, M. Identification of 
yessotoxin in mussels from the Caucasian Black Sea Coast of the Russian Federation. Toxicon 
2007, 50, 581-584. 

24. Satake, M.; Ichimura, T.; Sekiguchi, K.; Yoshimatsu, S.; Oshima, Y. Confirmation of 
yessotoxin and 45,46,47-trinoryessotoxin production by Protoceratium reticulatum collected in 
Japan. Nat. Toxins 1999, 7, 147-150. 

25. Stobo, L. A.; Lewis, J.; Quilliam, M. A.; Hardstaff, W. R.; Gallacher, S.; Webster, L.; Smith, 
E.; McKenzie, M. Detection of yessotoxin in UK and Canadian isolates of phytoplankton and 
optimization and validation of LC-MS methods. In: Bates, S., ed. Gulf Fisheries Centre, 
Moncton, New Brunswick, Canada, 2003, 8-14. 



Mar. Drugs 2008, 6             
 

 

96

26. Samdal, I.A.; Naustvoll, L.J.; Olseng, C.D.; Briggs, L.R.; Miles, C.O. Use of ELISA to identify 
Protoceratium reticulatum as a source of yessotoxin in Norway. Toxicon 2004, 44, 75-82. 

27. Paz, B.; Riobó, P.; Fernández, M. L.; Fraga, S.; Franco, J. M. Production and release of 
yessotoxins by the dinoflagellates Protoceratium reticulatum and Lingulodinium polyedrum in 
culture. Toxicon 2004, 44, 251-258. 

28. Draisci, R.; Ferretti, E.; Palleschi, L.; Marchiafava, C.; Poletti, R.; Milandri, A.; Ceredi, A.; 
Pompei, M. High levels of yessotoxin in mussels and presence of yessotoxin and 
homoyessotoxin in dinoflagellates of the Adriatic Sea. Toxicon 1999, 37, 1187-1193. 

29. Boni, L.; Ceredi, A.; Guerrini, F.; Milandri, A.; Pistocchi, R.; Poletti, R.; Pompei, M. Toxic 
Protoceratium reticulatum (Peridiniales, dinophyta) in the North-Western Adriatic Sea (Italy). 
In: Hallegraeff, G. M.; Blackburn, S. I.; Bolch, C. J.; Lewis, R. J., eds. Harmful Algal Blooms 
2000: IOC of UNESCO, 2001, 137-140. 

30. Ramstad, H.; Hovgaard, P.; Yasumoto, T.; Larsen, S.; Aune, T. Monthly variations in 
diarrhetic toxins and yessotoxin in shellfish from coast to the inner part of the Sognefjord, 
Norway. Toxicon 2001, 39, 1035-1043. 

31. Armstrong, M.; Kudela, R. Evaluation of California isolates of Lingulodinium poliedrum for 
the production of yessotoxin. Afr. J. Mar. Sci. 2006, 25, 399-401. 

32. Holmes, M. J.; Lewis, R. J.; Jones, A.; Wong Hoy, A. W. Cooliatoxin, the first toxin from 
Coolia monotis (Dinophyceae). Nat. Toxins 1995, 3, 355-362. 

33. Daiguji, M.; Satake, M.; Ramstad, H.; Aune, T.; Naoki, H.; Yasumoto, T. Structure and 
fluorometric HPLC determination of 1-desulfoyessotoxin, a new yessotoxin analog isolated 
from mussels from Norway. Nat. Toxins 1998, 6, 235-239. 

34. Rhodes, L.; McNabb, P.; de Salas, M.; Briggs, L.; Beuzenberg, V.; Gladstone, M. Yessotoxin 
production by Gonyaulax spinifera. Harmful Algae 2006, 5, 148-155. 

35. Hansen, G.; Moestrup, Ø.; Roberts, K. R. Light and Electron Microscopical observations on 
Protoceratium reticulatum (Dinophyceae). Arch. Protistenkd. 1996-97, 147, 381-391. 

36. Mackenzie, L.; Suzuki, T.; Adamson, J. Elimination and differential transformation of 
yessotoxin by the greenshell mussel Perna canaliculus and the blue mussel Mytilus 
gallopovincialis. In: Hallegraeff, G. M.; Blackburn, S. I.; Bolch, C. J.; Lewis, R. J., eds. 
Harmful Algal Blooms 2000: IOC of UNESCO, 2001, 371-374. 

37. Franchini, A.; Milandri, A.; Poletti, R.; Ottaviani, E. Inmunolocalization of yessotoxins in the 
mussel Mytilus galloprovincialis. Toxicon 2003, 41, 967-970. 

38. Poupin, J.; Cussatlegras, A.-S.; Geistdoerfer, P. Plancton Marin Bioluminescent. Inventaire 
documenté des espèces et bilan des formes les plus communes de la mer d’Iroise. In, 
Laboratoire d’Océanographie de l’École Navale, LOEN Lanvéoc-Poulmic, France, 1999, 1-83. 

39. Rodríguez, J. J. G.; Mirón, A. S.; Belarbi, E. H.; García, M. C. C.; Camacho, F. G.; Grima, E. 
M. New culture approaches for yessotoxin production from the dinoflagellate Protoceratium 
reticulatum. Biotechnol. Prog. 2007, 23, 339-350. 

40. Lewis, J.; Hallet, R. Lingulodinium polyedrum (Gonyaulax polyedra) a blooming 
dinoflagellate. Oceanogr. Mar. Biol., Annu. Rev. 1997, 35, 97-161. 

41. Latz, M. I.; Rohr, J. Luminiscent response of the red tide dinoflagellates Lingulodinium 
polyedrum to laminar and turbulent flow. Limnology and Oceanography 1999, 44, 1423-1435. 



Mar. Drugs 2008, 6             
 

 

97

42. Lewis, J.; Burton, P. A study of newly excysted cells of Gonyaulax poyedra (Dinophyceae) by 
electron microscopy. Br. phycol. J. 1988, 23, 49-60. 

43. Figueroa, R. I.; Bravo, I. Sexual reproduction and two different encystment strategies of 
Lingulodinium polyedrum (Dinophyceae) in culture. Journal of Phycology 2005, 41, 370-379. 

44. Hansen, G.; Moestrup, O.; Roberts, K. R. Fine structural observations on Gonyaulax spinifera 
(Dinophyceae), with special emphasis on the flagellar apparatus. Phycologia 1996, 354-366. 

45. Steidinger, K.; Tangen, K. Dinoflagellates. San Diego. Academic Press, 1996, 387-598. 
46. Wall, D.; Dale, B. Modern dinoflagellate cysts and evolution of the Peridiniales. 

Micropaleontology 1968, 14, 265-304. 
47. Dale, B. Dinoflagellate resting cysts: benthic plankton. In: Fryxell, G. A., ed. Survival 

strategies of the algae. Cambridge: Cambridge Univ. Press, 1983, 69-136. 
48. Guerrini, F.; Ciminiello, P.; Dell-Aversano, C.; Tartaglione, L.; Fattorusso, E.; Boni, L.; 

Pistocchi, R. Influence of temperature, salinity and nutrient limitation on yessotoxin production 
and release by the dinoflagellate Protocetatium reticulatum in batch-cultures. Harmful Algae 
2007, 6, 707-717. 

49. Miles, C. O.; Samdal, I. A.; Aasen, J. A. G.; Jensen, D. J.; Quilliam, M. A.; Petersen, D.; 
Briggs, L. R.; Wilkins, A. L.; Rise, F.; Cooney, J. M.; MacKenzie, L. Evidence for numerous 
analogs of Yessotoxin in Protoceratium reticulatum. Harmful Algae 2005, 4, 1075-1091. 

50. Satake, M.; Terasawa, K.; Kadowaki, Y.; Yasumoto, T. Relative configuration of YTX and 
isolation of two new analogs from toxic scallops. Tetrahedron Lett. 1996, 37, 5955-5958. 

51. Ciminiello, P.; Fattorusso, E.; Forino, M.; Poletti, R.; Viviani, R. A new analogue of 
yessotoxin, carboxyyessotoxin, isolated from Adriatic Sea mussels. Eur. J. Org. Chem. 2000, 
291-295. 

52. Yasumoto, T.; Murata, M.; Lee, J. S.; Torigoe, K. Polyether toxins produced by 
dinoflagellates. Amsterdam: Elsevier, 1989, 375-382. 

53. Satake, M.; Eiki, K.; Ichimura, T.; Ota, S.; Sekiguchi, K.; Oshima, Y. Structure of 45,46,47-
trinorhomoyessotoxin, a new yessotoxin analog, from Protoceratium reticulatum which 
represents the first detection of a homoyessotoxin analog in Japan. Harmful Algae 2006, 5, 
731-735. 

54. Satake, M.; Tubaro, A.; Lee, J. S.; Yasumoto, T. Two new analogs of yessotoxin, 
homoyessotoxin and 45-hydroxyhomoyessotoxin, isolated from mussels of the Adriatic Sea. 
Nat. Toxins 1997, 5, 107-110. 

55. Ciminiello, P.; Fattorusso, E.; Forino, M.; Poletti, R.; Viviani, R. Structure determination of 
carboxyhomoyessotoxin, a new yessotoxin analogue isolated from adriatic mussels. Chem. Res. 
Toxicol. 2000, 13, 770-774. 

56. Aasen, J.; Samdal, I. A.; Miles, C. O.; Dahl, E.; Briggs, L. R.; Aune, T. Yessotoxins in 
Norwegian blue mussels (Mytilus edulis): uptake from Protoceratium reticulatum, metabolism 
and depuration. Toxicon 2005, 45, 265-272. 

57. Ciminiello, P.; Dell-Aversano, C.; Fattorusso, E.; Forino, M.; Magno, S.; Poletti, R. The 
detection and identification of 42,43,44,45,46,47,55-heptanor-41-oxoyessotoxin, a new marine 
toxin from adriatic shellfish, by liquid chromatography-mass spectrometry. Chem. Res. 
Toxicol. 2002, 15, 979-984. 



Mar. Drugs 2008, 6             
 

 

98

58. Ciminiello, P.; Fattorusso, E.; Forino, M.; Poletti, R. 42,43,44,45,46,47,55-Heptanor-41-
oxohomoyessotoxin, a new biotoxin from mussels of the northern Adriatic sea. Chem. Res. 
Toxicol. 2001, 14, 596-599. 

59. Miles, C. O.; Wilkins, A. L.; Hawkes, A. D.; Selwood, A.; Jensen, D. J.; Aasen, J.; Munday, 
R.; Samdal, I. A.; Briggs, L. R.; Beuzenberg, V.; MacKenzie, A. L. Isolation of a 1,3-enone 
isomer of heptanor-41-oxoyessotoxin from Protoceratium reticulatum cultures. Toxicon 2004, 
44, 325-336. 

60. Miles, C. O.; Wilkins, A. L.; Jensen, D. J.; Cooney, J. M.; Quilliam, M. A.; Aasen, J.; 
MacKenzie, A. L. Isolation of 41a-Homoyessotoxin and the identification of 9-Methyl-41a-
homoyessotoxin and Nor-ring-A-yessotoxin from Protoceratium reticulatum. Chem. Res. 
Toxicol. 2004, 17, 1414-1422. 

61. Miles, C. O.; Wilkins, A. L.; Hawkes, A. D.; Selwood, A.; Jensen, D. J.; Munday, R.; Cooney, 
J. M.; Beuzenberg, V. Polyhydroxilated amide analogs of yessotoxin from Protoceratium 
reticulatum. Toxicon 2005, 45, 61-71. 

62. Finch, S. C.; Wilkins, A. L.; Hawkes, A. D.; Jensen, D. J.; MacKenzie, L.; Beuzenberg, V.; 
Quilliam, M. A.; Olseng, C. D.; Samdal, I. A.; Aasen, J. A. G.; Selwood, A. I.; Cooney, J. M.; 
Sandvik, M.; Miles, C. O. Isolation and identification of (44-R,S)-44,55-dihydroxyyessotoxin 
from Protoceratium reticulatum, and its occurrence in extracts of shellfish from New Zealand, 
Norway and Canada. Toxicon 2005, 46, 160-170. 

63. Souto, M. L.; Fernandez, J. J.; Franco, J. M.; Paz, B.; Gil, L. V.; Norte, M. Glycoyessotoxin A, 
a new yessotoxin derivate from cultures of Protoceratium reticulatum. J. Nat. Prod. 2005, 68, 
420-422. 

64. Miles, C. O.; Wilkins, A. L.; Selwood, A. I.; Hawkes, A. D.; Jensen, D. J.; Cooney, J. M.; 
Beuzenberg, V.; MacKenzie, A. L. Isolation of Yessotoxin 32-O-[ß-l-arabinofuranosyl-(5'-1'')-
ß-l-arabinofuranoside] from Protoceratium reticulatum. Toxicon 2006, 47, 510-516. 

65. Mitrovic, S. M.; Hamilton, B.; McKenzie, L.; Furey, A.; James, K. J. Persistence of yessotoxin 
under light and dark conditions. Mar. Environ. Res. 2005, 60, 397-401. 

66. Ciminiello, P.; Fattorusso, E.; Forino, M.; Magno, S.; Poletti, R.; Viviani, R. Isolation of 
Adriatoxin, a New Analogue of Yessotoxin from Mussels of the Adriatic Sea. Tetrahedron 
Lett. 1998, 39, 8897-8900. 

67. MacKenzie, L.; Holland, P.; McNabb, P.; Beuzenberg, V.; Selwood, A.; Suzuki, T. Complex 
toxin profiles in phytoplankton and Greenshell mussels (Perna canaliculus), revealed by LC-
MS/MS analysis. Toxicon 2002, 40, 1321-1330. 

68. Samdal, I. A.; Aasen, J. A. G.; Briggs, L. R.; Dahl, E.; Miles, C. O. Comparison of ELISA and 
LC-MS analyses for yessotoxins in blue mussels (Mytilus edulis). Toxicon 2005, 46, 7-15. 

69. Samdal, I. A. Yessotoxins in algae and mussels -Studies on its sources, disposition, and levels. 
In: Oslo, Norwegian School of Veterinary Science, 2005, 53. 

70. Satake, M. Biosynthesis of the marine polyether toxin, yessotoxin. Tenner Yuki Kagobutsu 
Toronkay Koen Yoshishu 2000, 42, 259-264. 

71. Nakanishi, K. The chemistry of brevetoxins: A review. Toxicon 1985, 23, 473-479. 
72. Vilotijevic, I.; Jamison, T. F. Epoxide-Opening cascades promoted by water. Science 2007, 

317, 1189-1192. 



Mar. Drugs 2008, 6             
 

 

99

73. Terao, K.; Ito, E.; Oarada, M.; Murata, M.; Yasumoto, T. Histopatological studies on 
experimental marine toxin poisoning-5. The effects in mice of yessotoxin isolated from 
Patinopecten yessoensis and of a desulfated derivate. Toxicon 1990, 28, 1095-1104. 

74. Satake, M.; MacKenzie, L.; Yasumoto, T. Identification of Protoceratium reticulatum as the 
biogenetic origin of yessotoxin. Nat. Toxins 1997, 5, 164-167. 

75. Suárez-Korsnes, M.; Hetland, D. L.; Espenes, A.; Tranulis, M. A.; Aune, T. Apoptotic events 
induced by yessotoxin in myoblast cell lines from rat and mouse. Toxicol. in Vitro 2006, 20, 
1077-1087. 

76. Franchini, A.; Marchesini, E.; Poletti, R.; Ottaviani, E. Acute toxic effect of the algal 
yessotoxin on Purkinje cells from the cerebellum of Swiss CD1 mice. Toxicon 2004, 43, 347-
352. 

77. Franchini, A.; Marchesini, E.; Poletti, R.; Ottaviani, E. Lethal and sub-lethal yessotoxin dose 
induced morpho-functional alterations in intraperitoneal injected Swiss CD1 mice. Toxicon 
2004, 44, 83-90. 

78. Franchini, A.; Marchesini, E.; Poletti, R.; Ottaviani, E. Swiss mice CD1 fed on mussels 
contaminated by okadaic acid and yessotoxins: effects on thymus and spleen. Eur. J. 
Histochem. 2005, 49, 179-188. 

79. Tubaro, A.; Sosa, S.; Altinier, G.; Soranzo, M. R.; Satake, M.; Loggia, R. D.; Yasumoto, T. 
Short-term oral toxicity of homoyessotoxins, yessotoxin and okadaic acid in mice. Toxicon 
2004, 43, 439-445. 

80. De la Rosa, L. A.; Alfonso, A.; Vilariño, N.; Vieytes, M. R.; Botana, L. M. Modulation of 
cytosolic calcium levels of human lymphocytes by yessotoxin, a novel marine phycotoxin. 
Biochem. Pharmacol. 2001, 61, 827-833. 

81. De la Rosa, L. A.; Alfonso, A.; Vilariño, N.; Vieytes, M. R.; Yasumoto, T.; Botana, L. M. 
Maitotoxin-induced calcium entry in human lymphocytes modulation by yessotoxin, Ca2+ 
channel blockers and kinases. Cellular Signalling 2001, 12, 711-716. 

82. Alfonso, A.; de la Rosa, L. A.; Vieytes, M. R.; Yasumoto, T.; Botana, L. M. Yessotoxin, a 
novel phycotoxin, activates phosphodiesterase activity. Effect of yessotoxin on cAMP levels in 
human lymphocytes. Biochem. Pharmacol. 2003, 65, 193-208. 

83. Pazos, M. J.; Alfonso, A.; Vieytes, M. R.; Yasumoto, T.; Botana, L. M. Kinetic Analysis of the 
Interaction between Yessotoxin and Analogues and Immobilized Phosphodiesterases Using a 
Resonant Mirror Optical Biosensor. Chem. Res. Toxicol. 2005, 18, 1155-1160. 

84. Pazos, M.-J.; Alfonso, A.; Vieytes, M. R.; Yasumoto, T.; Botana, L. M. Study of the 
Interaction between Different Phosphodiesterases and Yessotoxin Using a Resonant Mirror 
Biosensor. Chem. Res. Toxicol. 2006, 19, 794-800. 

85. Leira, F.; Alvarez, C.; Vieites, J. M.; Vieytes, M. R.; Botana, L. M. Characterization of distinct 
apoptotic changes induced by okadaic acid and yessotoxin in the BE(2)-M17 neuroblastoma 
cell line. Toxinol. in Vitro 2002, 16, 23-31. 

86. Malaguti, C.; Ciminiello, P.; Fattorusso, E.; Rossini, G. P. Caspase activation and death 
induced by yessotoxin in HeLa cells. Toxicol. in Vitro 2002, 16, 357-363. 



Mar. Drugs 2008, 6             
 

 

100

87. Suárez-Korsnes, M.; Hetland, D. L.; Espenes, A.; Aune, T. Induction of apoptosis by YTX in 
myoblast cell lines via mitochondrial signalling transduction pathway. Toxicol. in Vitro 2006, 
20, 1419-1426. 

88. Suárez-Korsnes, M.; Hetland, D. L.; Espenes, A.; Aune, T. Cleavage of tensin during 
cytoskeleton disruption in YTX-induced apoptosis. Toxicol. in Vitro 2007, 21, 9-15. 

89. Ronzitti, G.; Callegari, F.; Malaguti, C.; Rossini, G. P. Selective disruption of the E-cadherin–
catenin system by an algal toxin. Br. J. Cancer 2004, 90, 1100-1107. 

90. Malagoli, D.; Ottaviani, E. Yessotoxin affects fMLP-induced cell shape changes in Mytilus 
galloprovincialis immunocytes. Cell Biol. Int. 2004, 28, 57-61. 

91. Malagoli, D.; Casarini, L.; Ottaviani, E. Algal toxin yessotoxin signalling pathways involve 
immunocyte mussel calcium channels. Cell Biol. Int. 2006, 30, 721-726. 

92. Malagoli, D.; Marchesini, E.; Ottaviani, E. Lysosomes as the target of yessotoxin in 
invertebrate and vertebrate cell lines. Toxicol. Lett. 2006, 167, 75-83. 

93. Ferrari, S.; Ciminiello, P.; Dell-Aversano, C.; Forino, M.; Malaguti, C.; Tubaro, A.; Poletti, R.; 
Yasumoto, T.; Fattorusso, E.; Rossini, G. P. Structure-Activity relationships of yessotoxins in 
cultured cells. Chem. Res. Toxicol. 2004, 17, 1251-1257. 

94. Yasumoto, T.; Oshima, Y.; Yamaguchi, M. Occurrence of a new type of shellfish poisoning in 
the Tohoku district. Bull. Jpn. Soc. Sci. Fish. 1978, 44, 1249-1255. 

95. Yasumoto, T.; Murata, M.; Oshima, Y.; Matsumoto, G. K.; Clardy, J. Diarrhetic Shellfish 
Toxins. In: Ragelis, E. P., ed. Seafood toxins. Washington, D. C.: American Chemical Society, 
1984, 207-214. 

96. EC. Commision Regulation Nº 2074/2005 of 5 December 2005, laying down implementing 
measures for certain products under Regulation (EC) Nº 853/2004 of the European Parliament 
and of the Council and for the organisation of official controls under Regulation (EC) Nº 
854/2004 of the European Parliament and of the Council and Regulation (EC) Nº 882/2004 of 
the European Parliament and of the Council, derogating from Regulation (EC) Nº 852/2004 of 
the European Parliament and of the Council and amending Regulations (EC) Nº 853/2004 and 
(EC) Nº 854/2004. Official Journal of the European Union 2005, L 338, p. 27. 

97. Stabell, O. B.; Steffenak, I.; Pedersen, K.; Underdal, B. Diversity of shellfish toxins of 
"diarrhetic" type revealed by biological and chemical assays. J. Toxicol. Environ. Health 1991, 
33, 273-282. 

98. Suzuki, T.; Jin, T.; Shirota, Y.; Mitsuya, T.; Okomura, Y.; Kamiyama, T. Quantification of 
lipophilic toxins associated with diarrhetic shellfish poisoning in Japanese bivalves by liquid 
chromatography–mass spectrometry and comparison with mouse bioassay. Fish Sci. 2005, 71, 
1370-1378. 

99. Hess, P.; McMahon, T.; Slattery, D.; Swords, D. D., G.; McCarron, M.; Clarke, D.; Gibbons, 
W.; Silke, J.; O'Cinneide, M. Use of LC-MS texting to identify lipophilic toxins, to establish 
local trends and interspecies differences and to test the comparability of LC-MS testing with 
the mouse bioassay: an example from the Irish biotoxin monitoring programme 2001. In: 
Villalba, A.; Reguera, B.; Romalde, J. L.; Beiras, R., eds. Molluscan Shellfish Safety. Santiago 
de Compostela: Consellería de Pesca, Xunta de Galicia and IOC of UNESCO, 2003, 57-66. 



Mar. Drugs 2008, 6             
 

 

101

100. Hess, P.; Grune, B.; Anderson, D. B.; Aune, T.; Botana, L. M.; Caricato, P.; Egmond, H. P. v.; 
Halder, M.; Hall, S.; Lawrence, J. F.; Moffat, C.; Poletti, R.; Richmond, J.; Rossini, G. P.; 
Seamer, C.; Vilageliu, J. S. Three Rs approaches in marine biotoxin testing. ATLA: Alternatives 
to Laboratory Animals 2006, 36, 193–224. 

101. Aune, T.; Yasumoto, T.; Engeland, E. Light and scanning electron microscopic studies on 
effects of marine algal toxins toward freshly prepared hepatocytes. J. Toxicol. Environ. Health. 
1991, 34, 1-9. 

102. Pierotti, S.; Malaguti, C.; Milandri, A.; Poletti, R.; Rossini, G. P. Functional assay to measure 
yessotoxins in contaminated mussel samples. Anal. Biochem. 2003, 312, 208-216. 

103. Pierotti, S.; Albano, C.; Milandri, A.; Callegari, F.; Poletti, R.; Rossini, G. P. A slot blot 
procedure for the measurement of yessotoxins by a functional assay. Toxicon 2007, 49, 36-45. 

104. Pazos, M. J.; Alfonso, A.; Vieytes, M. R.; Yasumoto, T.; Vieites, J. M.; Botana, L. M. 
Resonant mirror biosensor detection method based on yessotoxin–phosphodiesterase 
interactions. Anal. Biochem. 2004, 335, 112-118. 

105. Briggs, L. R.; Miles, C. O.; Fitzgerald, J. M.; Ross, K. M.; Garthwaite, I.; Towers, N. R. 
Enzyme-linked immunosorbent assay for the detection of yessotoxin and its analogues. J Agric 
Food Chem. 2004, 52, 5836-5842. 

106. Kleivdal, H.; Briggs, L.; Miles, C. O. Development and validation of YTX ELISA-a rapid 
assay for the determination of yessotoxin in shellfish and environmental samples. In: Baiona, 
Spain, 2005, 53. 

107. Ramstad, H.; Larsen, S.; Aune, T. Repeatability and validity of a fluorimetric HPLC method in 
the quantification of yessotoxin in blue mussels (Mytilus edulis) related to the mouse bioassay. 
Toxicon 2001, 39, 1393-1397. 

108. Paz, B.; Riobó, P.; Souto, M. L.; Gil, L. V.; Norte, M.; Fernandez, J. J.; Franco, J. M. Detection 
and identification of glycoyessotoxin A in a culture of the dinoflagellate Protoceratium 
reticulatum. Toxicon 2006, 48, 611-619. 

109. Stobo, L. A.; Lacaze, J. P.; Scott, A. C.; Gallacher, S.; Smith, E. A.; Quilliam, M. A. Liquid 
chromatography with mass spectrometry-detection of lipophilic shellfish toxins. J. AOAC Int. 
2005, 88, 1371-1382. 

110. Draisci, R.; Giannetti, L.; Lucentini, L.; Ferretti, E.; Palleschi, L.; Marchiafava, C. Direct 
identification of yessotoxin in shellfish by liquid chromatography coupled with mass 
spectrometry and tandem mass spectrometry. Rapid Commun. Mass Spectrom. 1998, 12, 1291-
1296. 

111. Ciminiello, P.; Dell-Aversano, C.; Fattorusso, E.; Forino, M.; Magno, S.; Poletti, R. Direct 
detection of yessotoxin and its analogues by liquid chromatography coupled with electrospray 
ion trap mass spectrometry. J. Chromatogr. A 2002, 968, 61-69. 

112. Cooney, J.M.; Jensen, D.J.; Miles, C.O. Ion-trap LC-MS as a tool for structural characterisation 
of matrine algal toxins. In: Cawthron Institute, P. R., New Zealand, ed., 2003, 59-64. 

113. Draisci, R.; Palleschi, L.; Giannetti, L.; Lucentini, L.; James, K. J.; Bishop, A. G.; Satake, M.; 
Yasumoto, T. New approach to the direct detection of known and new diarrhoeic shellfish 
toxins in mussels and phytoplankton by liquid chromatography-mass spectrometry. J. 
Chromatogr. A 1999, 847, 213-221. 



Mar. Drugs 2008, 6             
 

 

102

114. Fernandez-Amandi, M.; Furey, A.; Lehane, M.; Ramstad, H.; James, K. J. Liquid 
chromatography with electrospray ion-trap mass spectrometry for the determination of 
yessotoxins in shellfish. J. Chromatogr. A 2002, 976, 329-334. 

115. Goto, H.; Igarashi, T.; Yamamoto, M.; Yasuda, M.; Sekiguchi, R.; Watai, M.; Tanno, K.; 
Yasumoto, T. Quantitative determination of marine toxins associated with diarrhetic shellfish 
poisoning by liquid chromatography coupled with mass spectrometry. J. Chromatogr. A 2001, 
907, 181-189. 

116. Fux, E.; McMillan, D.; Bire, R.; Hess, P. Development of an ultra-performance liquid 
chromatography.mass spectrometry method for the detection of lipophilic marine toxins. J. 
Chromatogr. A 2007, 1157, 273-280. 

117. De la Iglesia, P.; Gago-Martinez, A.; Yasumoto, T. Advanced studies for the application of 
high performance capillary electrophoresis for the analysis of yessotoxin and 45-
hydroxyyessotoxin. J. Chromatogr. A 2007, 1156, 160-166. 

118. EC. Commission Decision 2002/225/EC of 15 March 2002 laying down detailed rules for the 
implementation of Council Directive 91/492/EEC as regards the maximum levels and the 
methods of analysis of certain marine biotoxins in bivalve molluscs, echinoderms, tunicates 
and marine gastropods. Official Journal of the European Communities 2002, p. 62. 

 
© 2008 by the author(s); licensee Molecular Diversity Preservation International, Basel, Switzerland. 
This article is an open-access article distributed under the terms and conditions of the Creative 
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 


	Abstract
	Introduction
	Producer organisms and vectors of YTXs
	Characteristics of YTX-producer dinoflagellates

	Structures of yessotoxin and its analogues
	Analogues detected in dinoflagellates
	Analogues detected in shellfish

	Biosynthetic origin of yessotoxin
	Toxicity and mode action of yessotoxins
	Intraperitoneal toxicity
	Oral toxicity
	Mode of action of yessotoxins

	Detection and quantification methods for yessotoxin and its analogues
	In vivo assays
	In vitro assays
	Chemical methods

	Current regulations for yessotoxins
	Conclusions
	Acknowledgements
	References and Notes

