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Abstract: Paralytic shellfish poisoning (PSP), due to saxitoxin and related compounds, 
typically results from the consumption of filter-feeding molluscan shellfish that 
concentrate toxins from marine dinoflagellates. In addition to these microalgal sources, 
saxitoxin and related compounds, referred to in this review as STXs, are also produced in 
freshwater cyanobacteria and have been associated with calcareous red macroalgae. STXs 
are transferred and bioaccumulate throughout aquatic food webs, and can be vectored to 
terrestrial biota, including humans. Fisheries closures and human intoxications due to 
STXs have been documented in several non-traditional (i.e. non-filter-feeding) vectors. 
These include, but are not limited to, marine gastropods, both carnivorous and grazing, 
crustacea, and fish that acquire STXs through toxin transfer. Often due to spatial, temporal, 
or a species disconnection from the primary source of STXs (bloom forming 
dinoflagellates), monitoring and management of such non-traditional PSP vectors has been 
challenging. A brief literature review is provided for filter feeding (traditional) and non-
filter feeding (non-traditional) vectors of STXs with specific reference to human effects. 
We include several case studies pertaining to management actions to prevent PSP, as well 
as food poisoning incidents from STX(s) accumulation in non-traditional PSP vectors. 
 
Keywords: saxitoxins, STXs, paralytic shellfish poisoning, PSP, saxitoxin puffer fish 
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1. Paralytic Shellfish Toxins and Sources 

Neurotoxic paralytic shellfish toxins, which comprise saxitoxin and saxitoxin related compounds 
(STXs), are responsible for the sometimes fatal toxic seafood-related syndromes, paralytic shellfish 
poisoning (PSP) and saxitoxin puffer fish poisoning (SPFP). These compounds are produced by 
bloom-forming microalgae – mainly marine dinoflagellates -- approximately ten Alexandrium species, 
Gymnodinium catenatum, and Pyrodinium bahamense -- and freshwater or brackish cyanobacteria, 
Anabaena circinalis, A. lemmermannii, Aphanizomenon gracile, A. issatschenkoi (as A. flos-aquae), 
Cylindrospermopsis raciborskii, Lyngbya wollei, Planktothrix sp., and Rivularia sp. STXs comprise 
saxitoxin and at least 21 derivatives [1] that in various combinations and concentrations have been 
associated with PSP. No natural toxigenic dinoflagellate or cyanobacteria population has been found to 
contain all naturally occurring STX derivatives (Table 1). The toxin profile (i.e., the toxin components 
produced) is considered by some to be characteristic of the microalgal strain or species [2-3], but this 
finding has not been consistent among all species in all areas. Some of the STX derivatives are highly 
toxic (as sodium channel-blocking agents in mammals) and include the carbamate toxins, saxitoxin 
(STX), neosaxitoxin (NEO), and gonyautoxins (GTX1-4). The decarbamoyl analogues (dcSTX, 
dcNEO, dcGTX1-4) and the deoxydecarbamoyl analogues (doSTX, doGTX2, doGTX3) are of 
intermediate toxicity. The least toxic derivatives are the N-sulfocarbamoyl toxins, B1 (GTX5), B2 
(GTX6), and C1-C4 [1, 4]. Although not usually associated with PSP, Cochlodinium polykrikoides (as 
Cochlodinium type ’78) has been shown to produce two unique, zinc-bound, NEO-like compounds [5]. 
In 1977, Cochlodinium sp. was implicated in PSP outbreaks in Venezuela [6], but corroborative 
evidence is lacking. 

Numerous microalgal species have been documented to produce STXs and all are potentially 
human health risks via the food chain. However, the sources of the majority of PSP reports are the 
marine dinoflagellates Alexandrium tamarense, A. fundyense, A. catenella, Gymnodinium catenatum, 
and Pyrodinium bahamense1 [84-85]. Because STXs are also produced by freshwater cyanobacteria, 
there is a potential for STXs to be transferred through the freshwater food web and pose a risk to 
human consumers of freshwater products (e.g. mollusks) contaminated by these toxins [86]. STX(s) 
composition and concentration can vary amongst microalgal species and strains; with geographical 
location, with environmental factors, and under different experimental conditions [25, 39, 87-88]. 
Because the toxin profiles of STX-producing dinoflagellate species differ, the exposure dose and the 
proportion of highly toxic STX derivatives to which animals are exposed will also vary [89-90]. 

 
                                                 
1 Steidinger et al. (1980) [49] distinguished P. bahamense var. compressa from P. bahamense var. bahamense 
based on morphological, dimensional, and toxicological characteristics. P. bahamense var. compressa was 
reported to be the toxic variety responsible for Indo-Pacific PSP events while P. bahamense var. bahamense 
was reported to be non-toxic. Landsberg et al. (2006) [58] reported for the first time STX(s) production from P. 
bahamense in Florida, USA putatively responsible for several cases of SPFP. Badylak et al. (2004) [57] 
confirmed that the P. bahamense variety occurring in Florida waters still conformed to Steidinger et al. (1980) 
[49] description of P. bahamense var. bahamense except that it now appeared to be toxic. The description of P. 
bahamense var. compressa vs. P. bahamense var. bahamense is currently being re-evaluated (K. Steidinger, 
personal communication), therefore throughout the text P. bahamense without varietal designation is used.  
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Table 1. Microalgal sources of saxitoxins and saxitoxin derivatives (no reference is made to other toxins produced by these species). 
 

Species Saxitoxin and derivatives References 
Dinoflagellates 

Alexandrium acatenella STX  7-9 
Alexandrium andersoni STX, NEO 10-11 
Alexandrium angustitabulatum unknown toxin composition 12 
Alexandrium catenella  STX, GTX1-4, NEO,B1-2, C1-4 13-21 
Alexandrium cohorticula STX, GTX1-4 22-23 
Alexandrium fundyense STX, NEO, GTX1-4, C1-2, B1 9, 24-25 
Alexandrium minutum (= A. lusitanicum) GTX1-4  20, 26-30 
Alexandrium ostenfeldii GTX2-3, B2, C1-2  31-34 
Alexandrium tamarense STX, NEO, GTX1-4, B1, C1, C2, C4 9, 21, 35-40 
Alexandrium tamiyavanichi STX, GTX1-4, B1, C1-4 41-42 
Cochlodinium polykrikoides (= C. 
heterolobatum, Cochlodinium type’78) 

zinc-bound carbamoyl hydroxy NEO 5 

Gymnodinium catenatum STX, NEO, trace GTX2-3, B1-2, C1-4 30, 41, 43-46 
Pyrodinium bahamense STX, NEO, B1-B2  41, 47-58 

 
Cyanobacteria 

Anabaena circinalis STX, GTX1-4, C1-C2, dcGTX2-3 3, 59-66 
Anabaena lemmermannii STX 67 
Aphanizomenon gracile STX, NEO 68 
Aphanizomenon issatschenkoi (as A. flos-
aquae) 

NEO, STX 69-77 

Cylindrospermopsis raciborskii STX, NEO, GTX2-3 78-79 
Lyngbya wollei dcSTX, dcGTX2-3, acetylated STX 

analogues 
80-81 

Planktothrix sp.  STX 82 
Rivularia sp.  GTX2, GTX4 83 



Mar. Drugs 2008, 6 311
 

STXs are present in a wide range of aquatic organisms and they have been documented to occur 
when dinoflagellates were apparently absent [91]. Knowledge of the widespread distribution of STXs 
and results of a series of experimental studies has led to the conclusion that in some cases 
dinoflagellates are not the only source of STXs [92]. Although still not definitively proven, a bacterial 
origin for STXs has been proposed, and bacteria may play a role in the production of STXs in certain 
dinoflagellate species [22, 92-97]. 

STXs are highly lethal, having an LD50 in mice (intraperitoneally [i.p]) of 10�µg/kg (as compared 
to an LD50 for sodium cyanide at 10 mg/kg [27]. STXs are potent neurotoxins that bind to site 1 on the 
voltage-dependent sodium channel, block the influx of sodium into excitable cells, and restrict signal 
transmission between neurons. Symptoms of PSP are paresthesia and numbness, first around the lips 
and mouth and then involving the face and neck; muscular weakness; sensation of lightness and 
floating; ataxia; motor incoordination; drowsiness; incoherence; progressively decreasing ventilatory 
efficiency; and in high doses, respiratory paralysis and death [98-99].  

2. Traditional Vectors of Saxitoxins to Human Consumers 

Most humans who experience PSP have consumed toxic bivalves [84], but occasionally, non 
traditional vectors such as toxic gastropods and crustaceans [85], and rarely toxic fish [52, 100] are 
implicated (see section 3). Numerous fatal cases of PSP have been reported globally [101] but the 
successful implementation of programs monitoring for the presence of both STX-producing 
microalgae and the presence of STXs in shellfish in many countries has helped to minimize public 
health risks. To our knowledge, all documented human PSP cases have been caused by toxic marine 
dinoflagellates; for the most part, the geographical distribution of such PSP outbreaks has been related 
to the global distribution of the various STX-producing species and their toxigenic strains [90].  

Because PSP outbreaks typically result from the consumption of toxic marine shellfish, most 
studies on STXs concern those vector species that are edible, economic resources. Globally, STXs 
have been documented in numerous species of mollusks, primarily bivalves, and extensive reviews are 
available on their toxic occurrence, distribution, exposure, biotransformation, and effects [84, 101-
104]. Only a brief literature survey of STXs in traditional bivalve vectors will be provided here.  

STX was first isolated from toxic Washington butterclams, Saxidomus gigantea [105-106]. In the 
USA, the first red tide bloom that led to a major PSP outbreak occurred in September 1972 from 
southern Maine to Cape Ann, Massachusetts. Blue mussels (Mytilus edulis) and softshell clams (Mya 
arenaria) were most susceptible to STX(s) accumulation and were the most toxic bivalves. Northern 
quahogs (Mercenaria mercenaria) did not accumulate toxins, even in areas where blue mussels and 
softshell clams had high STX(s) levels. Eastern oysters (Crassostrea virginica) had very low STX 
levels [107]. In a few isolated areas, softshell clams and blue mussels remained toxic until April 1973 
[108], but it is not known whether this was due to slow depuration or a re-occurrence of toxic cells.  

The fate and distribution of STXs in bivalves varies according to harmful algal bloom (HAB) 
characteristics; environmental conditions; prior history of exposure; species, intrapopulation, and 
individual variability; uptake dynamics and detoxification mechanisms; anatomical localization and 
retention; physiological breakdown or biotransformation mechanisms; and differences in initial 
toxicity of dinoflagellates [84, 101, 103-104, 109-115]. Differences between bivalve species in the 
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ability to accumulate STXs have been correlated with each species’ in vitro nerve sensitivity to STX 
and ability to continue actively feeding during toxic blooms [116-117]. Some bivalves demonstrate 
resistance to STXs [118] contributing to an increased risk of PSP in humans [119].  

Bivalves retain STXs for different lengths of time, and the toxic components retained vary; 
knowledge about these differences aids in the management and prevention of PSP. Some species 
depurate toxins rapidly whereas others are slow to depurate. A range of STX toxicity levels is found in 
different bivalve species. Extremely high STX concentrations have been found in the mussels Mytilus 
trossulus and M. edulis, in softshell clams and Washington butterclams, and in the scallops 
Patinopecten yessoensis and Placopecten magellanicus. In other bivalves, such as northern quahogs 
and oysters, Crassostrea spp., STXs are at low levels or are absent [84, 89, 104]. Depuration times 
also vary between species. Most species can eliminate STXs within weeks [84, 101], whereas 
Washington butterclams, sea scallops (P. magellanicus), and Atlantic surfclams (Spisula solidissima), 
are known to retain high levels of toxins for long periods of time (from months to more than five 
years) [102, 109, 120].  

The toxin profiles of toxic bivalves and associated PSP risks to human consumers vary depending 
upon the toxigenicity of the dinoflagellate species to which the mollusks are exposed. For example, in 
general, bivalves exposed to Alexandrium tamarense, A. catenella, and A. minutum accumulate high 
GTX levels, whereas bivalves exposed to Pyrodinium bahamense and G. catenatum accumulate very 
low levels of GTX [89]. Bivalve toxin profiles also vary by geographic region, by season, and by the 
distribution of toxic components in different tissues [2, 102, 109-110, 120-122]. The location and 
deposition weight of toxin components in the various bivalve organs vary between species. For 
example, in the scallops P. magellanicus and P. yessoensis, the majority of the toxins are concentrated 
in the digestive gland, and while toxicity levels in the gills, gonads, and adductor muscles are typically 
less than the regulatory action level of 80 μg STXeq/100g, concentrations in gills and gonads have on 
occasion been above regulatory limits [123]. Since toxins are not readily accumulated in the adductor 
muscle of scallops, when this is the only part of the shellfish consumed, they are usually considered 
safe for public consumption, even in the presence of toxic algae [102].  

Because they naturally ingest a variety of dinoflagellate species and strains, bivalves are exposed to 
a variety of toxic components. Knowledge of which toxins are deposited in which tissues and how they 
are biotransformed at each trophic level may be critical for determining the public health risk 
associated with the consumption of different shellfish species and their consumable tissues. For 
example, Atlantic surfclams and sea scallops are naturally exposed in New England to STXs 
associated with Alexandrium spp. STXs are typically stored in the tissues of these species, whereas 
other potentially poisonous substances such as the carbamate-derivative gonyautoxins are converted to 
less toxic compounds. The ability to convert carbamate toxins to their corresponding nontoxic 
decarbamoyl derivatives has been demonstrated in a few bivalves, such as Atlantic surfclams; Pacific 
littleneck clams, Protothaca staminea; and the Japanese clams Peronidia venulosa and Mactra 
chinensis [1, 110, 117, 124]. Because of public health concerns and the development of safety 
protocols, it is critical that we understand the dynamics of toxin distribution in different species, 
particularly in edible tissues.  
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3. Non-Traditional Vectors of Saxitoxins to Human Consumers 

Non-bivalve invertebrates, the primary focus of this review, have increasingly been documented to 
accumulate STXs [85] and have been implicated in PSP incidents. Amongst the mollusks, apart from 
traditional bivalve vectors, gastropods (Table 2) and rarely cephalopods (the octopus Abdopus sp. 
[125]), accumulate STXs apparently without any obvious ill effects [126, 127].  

3.1 Gastropods 

Molluscan gastropods including oysterdrills, volutes, whelks, periwinkles, moon snails, conch, 
slipper limpets, and turban shells (Table 2) accumulate STXs primarily acquired through predation (in 
many cases of toxic bivalves) [85, 128]. 

Because gastropods are able to bioaccumulate high concentrations of STXs, they are a significant 
risk to human consumers, and have been the cause of multiple fatalities, particularly in the Far East 
(Table 2). In gastropods, STXs are typically concentrated in the digestive gland but some species such 
as the moon snail, Lunatia heros, concentrate toxin in the muscle tissue [85]. Variability in toxicity is 
also a function of species differences in predatory habits, differential acquisition of toxins by 
individuals, sporadic feeding, their ability to move away from toxin sources, and because gastropods 
are slow to depurate toxins [85]. 

3.1.1 Case Study 1: STXs in Abalone 

Unlike filter-feeding bivalve mollusks, gastropods such as abalone (other common names: ormer and 
perlemon) feed by scavenging, predation, and grazing. Their diet primarily consists of kelp and other 
seaweeds, making them unlikely candidates for PSP. However, there have been reports of PSP toxins 
in abalone off the northwest coast of Spain [83, 148-149] and the west and south coasts of South 
Africa [150].  
 

Spain – STXs were first detected in the Galician abalone Haliotis tuberculata in 1991. 
Subsequently, abalone in this region was affected by toxin concentrations sufficiently high enough to 
enforce indefinite closure of the industry in 1993 [148]. dcSTX was the most abundant toxin reported 
in abalone, followed by low concentrations of STX [83, 148-149]. The source of these toxins remains 
unknown. The dinoflagellates Gymnodinium catenatum and Alexandrium minutum are the common 
STX(s) producers in this region; however, they do not display temporal or geographical distributions 
corresponding to that of abalone toxicity [83, 151]. Also, the toxin profile of these potential sources 
differs from that of the abalone; although biotransformation may be responsible for this discrepancy. 
The authors postulated that cyanobacteria may be the source of the toxin and they report measurable 
STX(s) concentrations for the cyanobacterium Rivularia sp. It is noteworthy that no other PSP 
problems were reported for other mollusks or crustaceans in this region [149]. Anatomical distribution 
showed high toxicity in the epipodial fringe [149, 151] with as much as 2.6 times more toxin in the 
epithelium compared to the foot. Toxicity generally increased with increasing abalone size. Depuration 
of toxin in abalone did not occur during three months of monitoring cultured abalone fed a variety of 
macroalgae [83]. No other abalone PSP reports have been reported for this area in the recent literature. 
However, there was a report by Huchette and Clavier (2004) [152] that indicated the abalone fishery 
reopened in Spain in 2002, but was closed again shortly thereafter due to an oil spill. 
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Table 2. Maximum STX concentrations, microalgal sources, and global PSP reports in gastropods. 
 

Gastropod species and 
presumptive microalgal 

source 

Common name Maximum STX(s) concentration Incident Location Reference 

 
Alexandrium acatenella 

Polinices lewisii Lewis moon snail 176-600 µg STX eq./100g tissue  British Columbia, Canada 129 
 
Alexandrium catenella 

Adelomelon ancilla Volute toxic  Chile 85 
Argobuccinum sp. Whelk Stomach 5629 µg STX eq./100g 

tissue; Muscle 92 µg STX eq./100g 
tissue 

 

Concholepas concholepas Barnacle rock shell toxic  
Trophon sp. Trophon toxic  
Nassarius sp. Nassa mud snail (dog 

whelk) 
9 µg STX eq./100g tissue  Washington, USA 85 

Neptunea spp.  200-250 MU* 100 g-1 whole 
individuals 

 Alaska, USA 85 

Thais sp.  Oyster drill 23 µg STX eq./100g tissue (GTX 2 
and GTX 3 only) 

 Washington, USA 85 

Thais lamellosa Oyster drill Whole animal positive  
Thais lima Oyster drill Whole animal 180 µg STX eq./100g 

tissue 
 

 
Alexandrium tamarense 

     

Littorina sitkana Sitka periwinkle Trace whole animal  Washington, USA 85 
Lunatia heros (as Polinicies 
heros) 

Northern moon snail 1450 µg STX eq./100g tissue 2 cases PSP Massachusetts, USA 130 

Buccinum undatum Waved whelk whole body 608 µg STX eq./100g 12 cases PSP, 4 Quebec, Canada 85, 131 
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tissue; digestive gland 1600 µg STX 
eq./100g tissue  

fatalities  

3337 µg STX eq./100g tissue Illnesses and 
deaths 

Gulf of Maine, USA 85, 132 

Crepidula fornicata Slipper limpet 46-58 µg STX eq./100g tissue  
Colus stimpsoni Stimpson’s colus toxic  
Lunatia heros (=Euspira 
heros, Polinices heros) 

Northern moon snail 2922 µg STX eq./100g tissue  

Neptunea decemcostata Ten-ridged whelk Raw~3000-4000, steamed 1060 µg 
STX eq./100g tissue 

 

Thais lapillus Purpura 34 µg STX eq./100g tissue  
Lunatia heros (=Euspira 
heros, Polinices heros) 

Northern moon snail 247 µg STX eq./100g tissue  Gulf of St. Lawrence, 
Canada 

133 

Adelomedon brasiliana Volute 28 MU g-1 whole  Argentina 134 
Zidona angulata* Volute 210 MU g-1 viscera; 25 MU g-1 foot; 

17 MU g-1 mucus 
Mild case of PSP 

Busycon spp. Whelk 50-500 MU 100 g-1  Quebec, Canada 85 

Rapana venosa Veined rapa whelk 11.4 MU g-1 viscera  Hiroshima Bay, Japan 135 

 
Gymnodinium catenatum  

     

Haliotis tuberculata Abalone 467 µg STX eq./100g muscle  Spain  83 
 
Pyrodinium bahamense 

     

Lambis lambis Spider conch ND – 175 MU 100 g-1 whole Several PSP cases Sabah, Malaysia 136-137  
Oliva vidua fulminans Olive 2525 MU 100 g-1 whole 5 human fatalities; 

8 cases of PSP 
Malaysia 136-138 

Natica sp.** “Tekuyong” 71-876 MU 100 g-1  Borneo 139-140 
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Unknown origin 

Nassarius siguijorensis Nassa 370 MU 100 g-1  Daya Bay, Guangdong 
Province 

141 

Nassarius succinctus Nassa  68 cases of PSP, 
March-Aug 1979; 
1 fatality and 7 
hospitalized 

Zhejiang Povince, China 128, 142 

Nassarius spp. Nassa  50 PSP cases, 3 
fatalities, April-
May 2002 

Fujian Province, China 128 

55 PSP cases, 1 
fatality; summer 
2004 

Yin Chuan city, China 128 

Nassarius spp. Nassa 107,413 MU 100 g-1  Zhoushan Islands, China 128 

Charonia lampas Trumpet shell 17.5 MU g-1 digestive gland  Galicia, Spain  143 

Natica lineata Lined moon shell PSP toxins  Taiwan 144 

Natica vitellus Calf moon shell 
Niotha clathrata Basket shell PSP, GTX-3  144-145 
Neptunea arthritica Arthritic neptune GTX 1-4, neoSTX, STX  Sanriku coast, Japan 146 
Tectus fenestratus Fenestrate top shell 18.7 µg STX eq./100g tissue  Northwest Australia 147 

Tectus nilotica maxima Top shell 5.0 MU g-1 whole  Ishigaki Island, Japan  52 
Tectus pyramis Top shell 19 MU g-1 whole  Ishigaki Island, Japan  52 
Turbo argyrostoma Turban shell 20 MU g-1 whole  Ishigaki Island, Japan  52 
Turbo marmorata Turban shell 4.2 MU g-1 whole  Ishigaki Island, Japan  52 

 
* MU = mouse units (1MU = 0.18 µgSTX) 
** Presumed, genus and species name not given by author.
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South Africa – Abalone harvesting represents an old fishery in South Africa and currently this 
fishery includes recreational, subsistence and commercial harvesting. In addition to wild harvest, the 
1990’s represented a period of movement towards land-based abalone farms. In 1999, STXs were 
detected in abalone from two farms located along the west coast of South Africa [150]. Subsequent 
testing also found the presence of toxins in wild abalone. Throughout this evaluation of abalone PSP, 
toxicity was tested using the AOAC mouse bioassay with levels reported from below the limit of 
detection to greater than 1600 µg STX eq/100 g. For most of these cases, analysis was conducted on 
the entire animal; however, some samples were separated into specific body parts to examine 
anatomical distribution. As with other organisms, there appears to be large variability in toxicity 
between individuals (5-10 fold variability reported). Observations of detached and paralyzed abalone 
in the wild were made and analysis confirmed the presence of STXs. Pitcher et al. [150] found a 
geographical gradient in toxicity with the highest toxicity observed in abalone from the north and a 
general decrease southwards. The notable distinction in toxin composition for South African abalone 
compared to those from Spain is that only STX was detected in the former [150]. This profile is 
different from the known STX(s) source (Alexandrium catenella) and other vectors (e.g. mussels 
Mytilus galloprovincialis) in the area [150, 153]. Given the toxin profile differences and the feeding 
behavior of abalone, it is uncertain what the source of STXs is to the abalone. Further investigations 
by Etheridge et al. [154] indicated the putative source of toxins to be from their natural diet, the 
macroalgal kelp Eklonia mamixa. Depuration studies suggest that either abalone can retain the toxins 
for long periods of time or the toxin was still present during the studies. Pitcher et al. (2001) [150] 
found that abalone retained toxins for at least seven months with no apparent decline in toxicity when 
kept under controlled laboratory experiments with kelp as the diet. Controlled feeding experiments 
[154] were conducted using juvenile abalone (2 cm in length, average wet weight 0.6 ± 0.3 g) and 
demonstrated that depuration did not occur when abalone were either fed kelp or were starved. 
However, depuration rates of 6.3 µg per 100g per day were observed when abalone was fed artificial 
feed. Initial toxicity in the abalone was 160 ± 38 µg STX eq per 100g and after being fed artificial feed 
for two weeks toxin levels decreased to 72.3 ± 12.5 µg STX eq per 100. Thus, it is possible that 
feeding farmed abalone artificial feed prior to market could reduce the risk of PSP. Toxin distribution 
among abalone tissues demonstrates differential uptake and compartmentalization. Thus, the 
contribution of each tissue to total toxin burden is a function of both its absolute toxicity and relative 
weight contribution. Pitcher et al. [150] found moderate amounts in the foot and viscera and high 
amounts in the epipodial fringe. Given the high surface area of the epipodial fringe, it contributes 
significantly to the total toxin burden. Abalone is often marketed with the foot for human 
consumption; therefore, it has been suggested that scrubbing and/or removing epithelial tissue could 
decrease toxicity to safe levels for consumption. This could potentially be used as a strategy to reduce 
toxin levels prior to market. 

Periodic PSP events still occur along the west coast of South Africa. In many cases this has resulted 
in prevention of exporting live abalone. However, shucking and scrubbing (i.e. removing the epithelial 
layer of the abalone) decreased toxicity to safe levels (aggregate toxicity < 80 µg/100 g whole animal). 
For example, Pitcher et al. [150] found that toxicity levels in the foot and epipodial fringe (one of the 
largest reservoirs of STXs containing > 800 µg/100 g in some cases) both decreased significantly 
(approximately 6 to 9-fold) when scrubbed. Currently, testing for toxins is done regularly under the 
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South African Shellfish Sanitation Program run by Marine and Coastal Management under an MOU. 
When traces of toxin are detected, sampling frequency increases and farms in the affected area can be 
prevented from exporting. Again, shucking, scrubbing and cleaning remain processing options (e.g. 
canning) that can be used to safely market abalone from this region. 

3.1.2 Case Study 2: STXs in Whelks and Moon Snails 

Japan - During surveillance on the toxicity of invertebrates such as bivalves inhabiting the coasts of 
Hiroshima Bay in 2001 and 2002, the carnivorous gastropod rapa whelk Rapana venosa, collected in 
the estuary of Nikoh River, was found to contain toxins which showed paralytic actions in mice; the 
maximum toxicities (as STXs) were 4.2 MU/g (May 2001) and 11.4 MU/g (April 2002). This equated 
to total toxicities of 224 and 206 MU/viscera for these specimens (1MU = 0.18 µgSTX). In an attempt 
to identify the toxic principle(s) in this gastropod, the viscera were extracted with 80% ethanol 
acidified with acetic acid, followed by defatting with dichloromethane. The aqueous layer obtained 
was treated with activated charcoal and then applied to a Sep-Pak C18 cartridge. The unbound toxic 
fraction was analyzed by high-performance liquid chromatography. The gastropod toxin was rather 
unexpectedly identified as STXs. It was comprised of GTX3, GTX2, and STX as the major 
components, which accounted for approximately 91 mol% of all components along with STXs Cl and 
C2, which are N-sulfocarbamoyl derivatives. Judging from their toxin patterns, it was suggested that 
the STX(s) toxification mechanism of the gastropod was phytoplankton, such as Alexandrium 
tamarense, transferred to and accumulated in filter-feeders such as the short-necked clam, and then 
transferred to this carnivorous whelk through predation [137]. 
 

New England, USA - Several species of moon snail and whelk are also known to accumulate STXs 
and such gastropods are often prohibited for harvesting in waters of the states of Maine and 
Massachusetts, USA. Closures in waters off the coast of Maine are made by the Department of Marine 
Resources and are posted on their website (http://www.maine.gov/dmr/rm/public_health/closures/- 
pspclosures.htm [accessed 3 March, 2008]). The moon snail of interest in this area is Lunatia heros, 
and the whelks impacted by closures are of the family Muricidae and Buccinidae. In Maine state 
waters, harvesting of moon snails and the whelk Buccinum undatum is closed as a precaution 
whenever the blue mussel Mytilus edulis exceeds the regulatory limit for STXs, due to the observation 
that if there are any bivalves carrying STXs then any co-occurring carnivorous gastropods will be 
toxic as well (D. Couture, pers. comm.). The Division of Marine Fisheries is responsible for the safety 
of seafood harvested in Massachusetts state waters and their closures can be found on their website 
(http://www.mass.gov/dfwele/dmf [accessed 3 March, 2008]). Off the coast of Massachusetts, closures 
are often in effect for the lobed moon snail Polinices duplicatus and the northern moon snail L. heros, 
as well as the channeled whelk Busycon canaliculatum and the knobbed whelk B. carica (M. Hickey, 
pers. comm.). Notably, harvesting closures are often extended for moon snails longer than for other 
species because they accumulate higher levels of toxin by feeding on toxic bivalves. Certain 
carnivorous mollusks also appear to retain toxins for longer periods of time than the source bivalves. 
For example, an extensive Alexandrium fundyense bloom occurred off the coast of New England in 
2005 resulting in PSP closures of vast regions in state and federal waters [155]. The U.S. Food and 
Drug Administration is responsible for the safety of seafood harvested in federal waters and they 
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began sampling shellfish in the impacted areas during the 2005 bloom. Sampling continued in 2006 
and toxicity levels above the action level were still being detected for moon snails and whelk from 
federal waters off the coast of Massachusetts (Table 3). In that region, the only other species that 
remained toxic was the sea scallop (P. magellanicus), in the viscera (Table 3). Sea scallops are known 
to retain toxins in viscera for long periods of time compared to other co-occurring species [104]. These 
data demonstrate the need to monitor toxicity for these non-traditional seafood products, even after 
bloom conditions have dissipated.  
 

Table 3. Shellfish collected from New England, USA, federal waters in 2006. All testing 
was done by H3STX receptor binding assay. Highlighted results indicate individuals above 
the action level (80 µg STX eq./100g tissue). M = male, F = female; LOD = below 
detection limit. 
 

Sampling 
Date 

Common 
Name 

Scientific Name 
Number of 

Animals 
Sampling 

Coordinates 
STX eq. 

(µg/100g) 

7-8-06 Ocean Quahog Arctica islandica 8 
41 00.183N  
70 44.543W 

7.2 

7-8-06 Ocean Quahog Arctica islandica 3 
41 06.476N  
70 27.150W 

11.6 

7-9-06 Whelk Busycon sp. 3 
41 25.057N  
70 02.751W 

234.3 

7-9-06 
Atlantic 
Surfclam 

Spisula 
solidissima 

3 
41 25.057N  
70 02.751W 

15.6 

7-9-06 Blue Mussels Mytilus edulus 12 
41 23.836N  
69 53.954W 

19.5 

7-9-06 Blue Mussels Mytilus edulus 12 
41 23.836N  
69 53.954W  

26.3 

7-9-06 
Northern 

Moon Snail 
Lunatia heros 3 

41 26.084N  
70 03.000W 

265.5 

7-9-06 
Northern 

Moon Snail 
Lunatia heros 7 

41 23.836N  
69 53.954W 

321.0 

7-10-06 Sea Scallops 
Placopecten 
magellanicus 

9 
42 09.865N  
70 18.279W 

228.8 

7-10-06 
Sea Scallop 
viscera (F) 

Placopecten 
magellanicus 

1 
42 09.865N 
70 18.279W 

93.6 

7-10-06 
Sea Scallop 
viscera (M) 

Placopecten 
magellanicus 

1 
42 09.865N  
70 18.279W 

131.9 

7-11-06 Ocean Quahog Arctica islandica 11 
42 12.025N  
70 22.017W 

<LOD 

7-11-06 Sea Scallop 
Placopecten 
magellanicus 

6 
42 11.391N  
70 19.700W 

50.6 

7-11-06 
Northern 

Moon Snails 
Lunatia heros 6 

42 11.391N  
70 19.700W 

318.9 
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7-11-06 
Ocean 

Quahogs 
Arctica islandica 12 

42 12.025N  
70 22.017W 

<LOD 

7-11-06 Blue Mussels Mytilus edulus 9 
42 12.025N  
70 22.017W 

5.0 

7-11-06 
Atlantic 
Surfclam 

Spisula 
solidissima  

2 
42 11.391N  
70 19.700W 

16.1 

7-11-06 Ocean Quahog Arctica islandica 5 
42 12.025N  
70 22.017W 

12.0 

7-11-06 Ocean Quahog Arctica islandica 4 
42 11.391N  
70 19.700W 

0.2 

* Number of whole animals homogenized to form representative sample. 
** For sea scallops only combined viscera and gonad tested, unless otherwise indicated. 

3.2 Crustaceans 

Among non-filter feeding, non-molluscan species, STXs have been found most commonly in 
xanthid crabs (Table 4) [156-159]. In some cases, toxins were believed to be derived from the 
calcareous alga Jania sp., consumed by the crabs [160]. STXs have also been found in other crab 
species, lobsters, crayfish, penaeid shrimp, barnacles (Table 4) and a few other crustacea [85, 147]. 

Many macrocrustaceans, including lobsters, are able to tolerate and hence concentrate extremely 
high levels of STXs. Lobsters can accumulate STXs by preying on, among other species, blue mussels 
which can have maximum toxicities of up to 23,000 μg STX eq/100g [162]. Jiang et al. (2006) [175] 
demonstrated the transfer and metabolism of STXs from the scallop Chlamys nobilis to spiny lobsters 
Panulirus stimpsoni. When experimentally fed with toxic viscera of C. nobilis, the hepatopancreas of 
P. stimpsoni showed the same toxin profile as that of the scallop, including GTX1-3, C1+C2 and B1, 
and dcGTX2+3. In spiny lobsters depurated with non-toxic squid, the mildly toxic N-sulfocarbamoyl 
toxins tended to transform into more highly toxic carbamates. After being fed toxic C. nobilis for six 
days, spiny lobsters selectively accumulated N-sulfocarbamoyl toxins with low toxicity. The 
concentration of dcGTX (2+3) in P. stimpsoni decreased significantly and was not detectable after six 
days depuration, which was likely due to their initial low level of toxicity.  

Xanthid crabs can harbor toxins [176] in their tissues at concentrations (Table 4) that would be fatal 
to other animals [177]. Maximum toxin levels of more than 16,000 µg STX eq/100g were found in the 
xanthid crab Atergatis floridus in Australia, even though the majority of samples contained less than 
80 µg STX/100g [161]. In Japan, an individual Zosimus aeneus contained nearly 16,500 Mouse Units 
(MU) per g [178], which is equivalent to 300,000 µg STX eq/100g [105, 161]. Several species of 
xanthid crabs produce a hemolymph protein, saxiphilin, that binds with STX and which may confer 
some resistance to possible toxic effects [177]. This mechanism may explain why some xanthid crab 
species appear to tolerate exceptionally high levels of toxins [177]. When a mixture of GTX2 and 
GTX 3 in 3% NaCl was injected into the right chela of A. floridus, the rate of dissipation within the 
crab was fairly high and suggested that high concentrations of toxin are not accumulated in all species 
[179]. 
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Table 4. Maximum STX concentrations, microalgal sources, and geographical reports of STXs in crustaceans. 

Crustacean species and 
presumptive microalgal source 

Common name Maximum STX(s) concentration Location Reference 

 
Alexandrium catenella 

Cancer magister Dungeness crab 72 µg STX eq./100g viscera Washington, USA 85 
Cancer productus Red rock crab 285 µg STX eq./100g viscera 

27 µg STX eq./100g muscle 
Washington, USA 161 

Fabia subquadrata  Pea crab 32 µg STX eq./100g whole crabs Washington, USA 85 
Hemigrapsus nudus Purple shore crab 44 µg STX eq./100g whole body 

minus legs and carapace 
Washington, USA 161 

Hemigrapsus oregonensis Green shore crab 31 µg STX eq./100g whole Washington, USA 161 
Pagurus sp.  Hermit crab 35 µg STX eq./100g whole crabs Washington, USA 85 
Pugettia producta Northern kelp crab 146 µg STX eq./100g eggs;  

1710 µg STX eq./100g viscera; 
48 µg STX eq./100g muscle 

Washington, USA 161 

Balanus spp. Barnacles 84 µg STX eq./100g whole  Washington, USA 161 
 
Alexandrium tamarense 

Anonyx sarsi Gammarid 
amphipod 

180 µg STX eq./100g (tissue not 
specified)  

St.Lawrence estuary, Canada 162 

Cancer borealis Jonah crab 56 µg STX eq./100g (tissue not 
specified) 

Maine, USA 85 

Homarus americanus American lobster 1512 µg STX eq./100g hepato-
pancreas (bioassay); 961 µg STX 
eq./100g hepatopancreas (HPLC);  
69 µg STX eq./100g meat (HPLC) 

Bay of Gaspe, Canada 162 

 
Pyrodinium bahamense 

ND Crab 339 MU* 100 g-1  Brunei Darussalam 141 
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ND Mangrove crabs 239 MU 100 g-1 guts; 175 MU 100 g-1 
gills 

Sabah, Malaysia 138 

Portunus pelagicus Blue manna crab 175 MU 100 g-1 whole crab; 288 MU 
100 g-1 gills; 328 MU 100 g-1 guts 

Sabah, Malaysia 138 

1.8 µg STX eq./100g whole Northwest Australia 147 

Panulirus versicolor Painted spiny lobster 175 MU 100 g-1 whole lobster; 175 
MU 100 g-1 body only 

Sabah, Malaysia 138 

Panulirus longipes  Longlegged spiny 
lobster 

211 MU 100 g-1 whole lobster; 177 
MU 100 g-1 head and legs 

Sabah, Malaysia 138 

ND Penaeid shrimp 175 MU 100 g-1 frozen tails; 
268 MU 100 g-1 body only 

Sabah, Malaysia 138 

ND Penaeid shrimp 
“Udang” 

190 MU 100 g-1 Brunei Darussalam 141 

 
Unknown origin 

    

Hemigrapsus sanguineus Asian shore crab 0.16 MU g-1 hepatopancreas Sanriku coast, Japan 146 
Metopograpsus frontalis Mangrove shore 

crab 
10.0 µg STX eq./100g whole Northwest Australia 147 

Pachygrapsus crassipes Striped shore crab 0.10 MU g-1 hepatopancreas Sanriku coast, Japan 146 
Percnon planissimum  Sally lightfoot crab 7.4 MU g-1 whole Ishigaki Island, Japan 52 

Pilumnus pulcher Hairy crab 80 µg STX eq./100g whole Northwest Australia 147 
Pilumnus vespertilio Hairy crab 120 µg STX eq./100g whole Northwest Australia 147 

6.1 MU g-1 whole Ishigaki Island, Japan 52 
Schizophrys aspera Eyelash spider crab 2.3 MU g-1 whole Ishigaki Island, Japan 52 
Telmessus acutidens  Edible shore crab 2723 µg STX eq./100g viscera Fukushima Prefecture, Japan 163,164 
Actaeodes tomentosus Xanthid crab 130 MU g-1 whole Ishigaki Island, Japan 52 
Atergatis floridus Xanthid crab Positive STX, NEO, GTX2 Fiji Islands 165 

16,611 µg STX eq./100g whole Northwest Australia 147 
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490 MU g-1 whole Ishigaki Island, Japan 52 

Positive GTX 1-4 Taiwan 166 
Atergatopsis germaini Xanthid crab Positive GTX 3, NEO, STX Taiwan 167 

Demania reynaudi Xanthid crab Positive GTX 3-4, NEO Taiwan 166 
Eriphia scabricula Xanthid crab 180 MU g-1 whole Ishigaki Island, Japan 52 
Eriphia sebana Xanthid crab Positive STX, NEO, GTX1, GTX2 Great Barrier Reef, Australia 168 
Euzanthus exsculptus Xanthid crab 29 µg STX eq./100g whole Northwest Australia 147 

Lophozozymus octodentatus Xanthid crab  23 µg STX eq./100g whole Northwest Australia 147 

Lophozozymus pictor Xanthid crab  18.9 MU g-1 whole crab  Australia 169 

Positive GTX Taiwan 170 

Neoxanthias impressus Xanthid crab 147 µg STX eq./100g whole Northwest Australia 147 
10 MU g-1 whole Ishigaki Island, Japan 52 

Platypodia granulosa Xanthid crab 110 MU g-1 whole Ishigaki Island, Japan 52 

Platypodia pseudogranulosa Xanthid crab 10 µg STX eq./100g whole Northwest Australia 147 
Xanthias lividus Xanthid crab Positive GTX Taiwan 171 

Zosimus aeneus Xanthid crab  Positive STX, NEOSTX, GTXI-3 Fiji Islands 165 
Positive GTX Taiwan 171 
660 MU g-1 whole Ishigaki Island, Japan 52 
108,000 µg STX eq./100g chelae 
muscle; 720 µg STX eq./100g 

cephalothorax muscle 

Japan 172 

78 µg STX eq./100g whole Northwest Australia 147 
259 MU g-1 whole crab  Philippines 173 

Procambarus clarkii Red swamp crayfish 0.23 MU g-1 hepatopancreas Sanriku, Japan 146 
Carcinoscorpius rotundicauda  Mangrove horseshoe 

crab 
STX Thailand 174 

* MU = mouse units (1MU = 0.18 µgSTX); ND = no data
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3.2.1 Case Study 3: STXs in Crabs 

East Timor - In October 2000, an adult male died within hours of ingesting a xanthid crab Zosimus 
aeneus (Xanthidae) [172]. A second, yet uneaten specimen of Z. aeneus from the same meal contained 
a total toxicity of 162.8 µg STX eq/100g tissue (comprising GTX2, GTX3, NEO, dcSTX, and STX); 
these same toxins were identified in the gut contents, blood, liver and urine of the victim. Metabolism 
of STXs occurred with the ingested crab harboring GTX2, GTX3 and STX, whereas NEO, dcSTX and 
STX dominated the STXs in the victim's urine. The STX(s) composition in the gut contents, in both 
their identity and proportion, was intermediate between the eaten crab and the urine suggesting that 
toxin conversion commenced in the victim's gut. The victim's meal did not consist solely of the toxic 
crab eaten and the possibility of other food items acting in a synergistic manner with the consumed 
STXs cannot be discounted. As well as STXs, xanthid crabs are known to harbor tetrodotoxin (TTX) 
and palytoxin [180-182]. 
 

Japan - Oikawa et al. [163-164, 183-184] showed that the edible crab Telmessus acutidens both 
accumulated and retained STXs after consuming contaminated mussels (Mytilus galloprovincialis) in 
Japan. STXs in two shore crab species, T. acutidens and Charybdis japonica, were compared with the 
toxin in the prey mussel M. galloprovincialis and causative dinoflagellates Alexandrium tamarense, all 
having been collected at Onahama, Fukushima Prefecture, in the northern part of Japan. When the 
toxicities were detected in mussels by mouse bioassays, 73.7% of the sampled T. acutidens were toxic 
in the hepatopancreas. Charybdis japonica was also expected to be a possible vector species, but only 
small quantities of STXs were detected in eight specimens of the crab by HPLC analysis. The 
difference in STX(s) accumulation in both T. acutidens and C. japonica was then investigated at 
Onahama, Fukushima Prefecture, from 2002 to 2005. The level of toxin accumulation in the 
hepatopancreas of T. acutidens corresponded to that of mussels when examined on a yearly basis. In 
2003, some crabs had a high toxicity of approximately 1000 MU, which compares to one-third of the 
human minimum lethal dose. Therefore, it was concluded by the authors, that T. acutidens should be 
monitored as a vector species of PSP toxins. The toxin profile of T. acutidens was also investigated. 
Because an increase in highly toxic species of STXs with a decrease in low toxic species, such as N-
sulfocarbamoyl-11-hydroxysulfate toxins, was not clearly observed between consecutive samples, 
toxin transformation in T. acutidens was considered to have a minimal impact on toxicity. STXs were 
also detected in several specimens of C. japonica, but the highest toxicity was only 7.4 MU/g in the 
hepatopancreas. Lastly, accumulation and depuration rates of STXs in the crab T. acutidens were 
investigated by feeding toxic and non-toxic mussels under laboratory controlled conditions. The crab 
accumulated toxins in the hepatopancreas in proportion to the amount of toxic mussels they ingested, 
and the toxicity in the crab hepatopancreas became 3.2 fold of that in the prey mussels after 20 days of 
feeding. During depuration, a fast reduction of the total toxicity was observed in the crab, and the 
retention rate of the toxicity after five days depuration with feeding of non-toxic mussels was 45.8 +/- 
18.7%. The reduction of the toxicity was moderated in the later period of depuration, and the retention 
rates of the total toxicity after 10 and 20 days were 54.1 +/- 29.8% and 14.5 +/- 9.0%, respectively. 
The toxin profiles in the crab and mussel were investigated by high performance liquid 
chromatography, and reductive conversions of the toxins were observed when the toxins were 
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transferred from the mussel to the crab. Consequently, high concentrations of GTX2, GTX3, and STX 
that were not detected in the prey mussels were found in the crab. 

 
Alaska, USA - Although not thoroughly recorded in the scientific literature, the State of Alaska, 

Division of Environmental Health, Food Safety and Sanitation Program has been observing elevated 
levels of STXs in viscera from several species of commercially harvested crabs for years (Figure 1). 
PSP is endemic to the coastal communities of the State of Alaska [185]. The high frequency of STX 
producing dinoflagellates coupled with an extensive seafood harvesting industry prompted the state to 
establish a STX monitoring program. Most commercially harvested crab in Alaska is landed in the 
open waters of the Bering Sea, but limited harvesting does occur in areas where PSP toxicity is 
commonly seen in filter-feeding bivalves. In these areas, high regional and species variability in crab 
STX(s) content exists, with Dungeness crab (Cancer magister) from Kodiak Island appearing to be a 
consistent food safety concern (Figure 1, 2). To protect public safety, the State of Alaska Food Safety 
and Sanitation Program, Department of Environmental Conservation, and the Department of Fish and 
Game perform both pre-season environmental sampling and in season monitoring of both harvesting 
areas and harvested product. A conservative action level of 70 µg STX eq. /100g viscera (FDA 
regulatory action level = 80 µg STX eq. /100g tissue) has been established above which product 
cannot be marketed either live or whole cooked but must be eviscerated at the processing facility 
where it is landed (http://www.dec.state.ak.us/eh/fss/seafood/PSP/dungeness.htm [accessed 3 March, 
2008]). Due to the success of this monitoring program, no reports of PSP due to the consumption of 
commercially harvested crab have been reported even though visceral concentrations exceeding 500 
µg STX eq./100 g have been observed almost yearly in some areas (Figure 2b). 

3.3 Other invertebrates 

Other, non-molluscan invertebrates that accumulate STXs include annelid tubeworms Eudistylia sp. 
[161], and echinoderm starfish Asterias amurensis, Astropecten scoparius, A. polyacanthus, and 
Pisaster ochraceus [161, 186-187]. Thus far, these species have not been implicated in PSP cases. 

3.4 Fish 

Although not usually targeted, STXs have been incidentally found in numerous species of fish 
(Table 5). As with shellfish, because STXs are water soluble compounds, researchers believed that 
cold-blooded vertebrates such as finfish did not typically accumulate STX(s) nor were fish negatively 
affected by STXs [131]. However, the transport of STXs through the food chain and the vectoring and 
accumulation of toxins through zooplankton have been identified as important mechanisms by which 
toxins become available to higher trophic levels such as fish [188-193]. 

 As they are in bivalves, the toxic profiles of STXs that accumulate in fish are likely to be partially 
determined by species-specific differences in the bioconversion process or are dependent upon the 
variety and toxin profiles of their toxic prey species. During July 1988, a small bloom of Alexandrium 
fundyense occurred in southwestern Bay of Fundy, New Brunswick, Canada. The highest 
concentration in a surface-water sample was 7.5 x 103 cells/L. Concentrations of STXs in Atlantic 
mackerel, Scomber scombrus, liver extracts were measured by mouse bioassay and ranged from 40-
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209 µg STXeq/100g wet weight. By far the dominant component in mackerel liver was STX except in 
a few fish where NEO was also dominant. GTX2 and GTX3, and rarely B2, were also detectable. The 
difference between the toxic profiles of the fish and A. fundyense was attributed to the variety of toxic 
prey consumed by the fish. The fact that mackerel accumulate STXs demonstrates the transfer of these 
toxins up the food chain [194-195, 207]. Atlantic mackerel in the Gulf of Lawrence retained STX, 
GTX2, and GTX3 all year round and progressively accumulated STXs throughout their life, likely 
vectored via zooplankton feeding on toxic Alexandrium [195]. 

Figure 1. (A) Map of the state of Alaska, U.S.A. indicating collection sites for crab STX 
testing. (B) Number of samples above and below the regulatory action limit of 80 µg STX 
eq./100 g tissue for all species of commercially harvested crab in Alaska between 1992-
2004, broken down by major testing area. All values are for crab viscera only. Sample = 1 
crab. All testing done by AOAC mouse bioassay.  
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Figure 2. (A) Number of samples above and below the regulatory action limit of 80 µg 
STX eq./100 g tissue for commercially harvested crab in Alaska between 1992-2004 for all 
testing areas, broken down by crab type: Dungeness (Cancer magister), Tanner: 
(Chionoecetes opilio and Chionoecetes bairdi), King Crab: (Red, Paralithodes 
camtschaticus; Blue, Paralithodes platypus; Brown, Lithodes aequispinus), and 
Miscellaneous (including minced, viscera, and Hair Crab, Erimacrus isenbeckii). (B) Total 
STXs (in µg STX equivalents/100 g viscera) for all commercially harvested crab species in 
Alaska for all areas from 1992-2004.  
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Table 5. Maximum STX concentrations, microalgal sources, and geographical reports of STXs in various fish tissues and species. 
 

Fish species and presumptive 
microalgal source 

Common name Maximum STX(s) concentration Location Reference 

 
Alexandrium fundyense 

Scomber scombrus Atlantic mackerel 209 µg STX eq./100g liver; 367 µg STX eq./100g liver Bay of Fundy; Gulf 
of St. Lawrence 

194-195 

 
Alexandrium tamarense 

Scomber japonicus  Chub mackerel 2800 µg STX eq./100g muscle; 500 µg STX eq./100g 
liver; 72 µg STX eq./100g gills 

Argentina  196 

 
Pyrodinium bahamense 

Rastrelliger sp.  Short mackerel 99 MU 100 g-1 tissue Brunei Darussalam 141

Sardinella sp.  Sardinella 99 MU 100 g-1 tissue Brunei Darussalam 141 

572 µg STX eq./100g guts Sabah, Malaysia 139 

Sphoeroides nephelus Southern puffer fish 1,443 µg STX eq./100g liver; 14,571 µg STX eq./100g 
muscle 

USA 58 

Sphoeroides testudineus Checkered puffer fish 51.1 µg STX eq./100g liver; 104.3 µg STX eq./100g 
muscle 

USA 58 

Sphoeroides spengleri Bandtail puffer fish 364.5 µg STX eq./100g muscle USA 58 
 
Unknown origin

Cololabis saira  Pacific saury 0.14 MU g-1 viscera Iwate, Japan 146 
Gadus macrocephalus 

 
Pacific cod 0.10 MU g-1 viscera; 

0.10 MU g-1 intestine 
Iwate, Japan 146 

Lamna ditropis Salmon shark 0.17 MU g-1 liver Iwate, Japan 146 
Oncorhynchus keta Chum salmon 1.53 MU g-1 liver; Iwate, Japan 146 
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0.69 MU g-1 viscera 
Scarus (= Ypsiscarus) ovifrons Knobsnout parrotfish 0.26 MU g-1 liver; 

1.58 MU g-1 intestine 
Iwate, Japan 146 

Arothron firmamentum Starry toadfish 740 MU g-1 ovary Japan 197 
A. hispidus White-spotted puffer  Positive STX in liver, muscle, skin, and intestine Philippines 198 
A. mappa Map puffer Positive STX in liver, muscle, skin, and intestine Philippines 198 

A. manillensis Narrow-lined puffer  Positive STX in liver, muscle, skin, and intestine Philippines 198 

A. nigropunctatus Black spotted puffer  Positive STX in liver, muscle, skin, and intestine Philippines 198 

A. reticularis Reticulated puffer  Positive STX in liver, muscle, skin, and intestine Philippines 198 
A. stellatus Starry toadfish Positive STX in liver, muscle, skin, and intestine Philippines 198 
Chelonodon patoca Milk-spotted puffer  22.0 MU g-1 muscle; 40 MU g-1 skin; 12.0 MU g-1 

liver; 2.8 MU g-1 ovary (data shown as mean) 
Bangladesh 199 

Positive STX in liver, muscle, skin, and intestine Philippines 198 
Colomesus asellus Amazon puffer  53.2 MU whole body Brazil 200 
Takifugu pardalis Panther puffer  Positive for STX in liver Japan 201 

T. poecilonotus Fine patterned puffer  Positive for STX in liver, ovary and digestive tract Japan 202 
T. radiates Puffer Positive for STX in liver Japan 202 

T. vermicularis Purple puffer  Positive for STX in liver, ovary and digestive tract Japan 202 

Tetraodon cutcutia Ocellated puffer  7.6 MU g-1 muscle; 20 MU g-1 skin; 6.0 MU g-1 liver; 
5.6 MU g-1 ovary (data shown as mean) 

Thailand 199 

182 MU 100 g-1 skin; 238 MU 100 g-1 muscle; 106 MU 
100 g-1 liver 

Bangladesh 203 

T. cochinchinensis (as T. fangi) Puffer Positive for STX whole body Thailand 204 
T. suvatii Arrowhead puffer 191 MU g-1 muscle; 230 MU g-1 skin; 174 MU g-1 

liver; 117 MU g-1 egg 
Thailand 205 

T. turgidus Brown puffer <2 MU g-1 muscle; 37 MU g-1 skin; <2 MU g-1 liver; 
27 MU g-1 ovary 

Cambodia 206 

* MU = mouse units (1MU = 0.18 µgSTX)  
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Fish, with the exception of puffer fish (see case study 5 below) are not usually vectors for STX(s) 
transfer if humans only eat the muscle. Accumulation of STXs is usually confined to the fish’s gut, and 
either certain species perish before detectable amounts of toxin appear in the muscle [207-208] or 
negligible concentrations of toxins accumulate in the muscle. In experimental studies, several fish 
species challenged with oral (LD50 = 400-750 µg/kg body weight) or i.p. (intraperitoneal) (4-12 µg/kg 
body weight) doses of STX showed similar symptoms: loss of equilibrium; gasping; reduced 
locomotor activity; short, irregular, hyperactive periods; and death within one hour. Heavy 
accumulation of STX was confined to the gut (340-840 µg per 100g tissue), while STX occurred in the 
muscle tissues at a level an order of magnitude lower than in the gut [208]. Kwong et al. [209] exposed 
green-lipped mussels Perna viridis and black sea bream Acanthopagrus schlegeli to toxic Alexandrium 
fundyense to evaluate the accumulation, distribution, transformation, and elimination of STXs in 
controlled experimental conditions. Mussels were fed A. fundyense for seven days followed by three 
weeks of depuration, and the fish were fed toxic clams for five days followed by two weeks of 
depuration. The fish viscera accumulated most of the STXs. In the fish, the ratio of C1/C2 was 3.0 
times (p < 0.01) higher when compared to the mussel tissues, indicating that conversion from C2 to C1 
might have occurred when the toxin was transferred from the clams to the fish. Jiang et al. [210] 
investigated the transmission and transformation of STXs from A. tamarense to the cladoceran Moina 
mongolica and subsequently to the larval fish Sciaenops ocellatus. STXs were transferred to S. 
ocellatus when they preyed upon STX(s)-containing M. mongolica. During the experimental period, A. 
tamarense, M. mongolica and the larval fish’s digestive glands contained C1 and C2 toxins, while the 
viscera of S. ocellatus contained NEO. The proportion of C2 to C1 toxins increased when STXs were 
transferred from A. tamarense to M. mongolica, but in the subsequent transfer from M. mongolica to S. 
ocellatus the proportion of C1 to C2 toxins increased. During depuration, the contents of C1 and C2 
toxins in fish larvae decreased with the duration of depuration, but NEO remained relatively constant. 
The present results indicated that, using a cladoceran as the vector, STXs can be transferred from toxic 
algae to a high trophic level fish and metabolized in the fish. Future work should address the metabolic 
characteristics of STXs in cladocerans and the end result when they are transferred to fishes.  

3.4.1 Case study 4: STXs in planktivorous fish 

Far East - With the puffer fish exception, because STXs do not typically accumulate in fish muscle, 
humans who consume only the muscle are unlikely to become intoxicated. However, those those who 
consume whole fish and eat the viscera are likely to become sick. In 1976 in Brunei, 14 nonfatal PSP 
cases were associated with the consumption of the planktivorous fish Rastrelliger sp. during a bloom 
of Pyrodinium bahamense var. compressum [48]. One PSP incident in 1983 in Indonesia involved 191 
cases and four human fatalities due to the consumption of the planktivorous clupeoid fish Sardinella 
spp. and Selaroides leptolepis. In a second incident in November 1983, 45 people became ill after 
consuming fish and suffered numbness, dizziness, and tingling sensations of the lips, tongue, and 
throat. Although no known toxic dinoflagellate was associated with the event [100], PSP was highly 
suspected [211]. STXs with toxin profiles similar to Pyrodinium bahamense have been confirmed in 
gut contents of Sardinella sp. from Brunei [41] and in PSP incidents involving Pyrodinium, toxic 
shellfish, and fish that were reported from the Philippines [211]. These incidents likely occurred 
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because it is customary in south-east Asia to eat small fish whole, including any potentially toxic 
viscera [211-212].  

3.4.2 Case study 5: STXs in puffer fish 

One exception to the general rule that STXs tend not to accumulate to levels associated with human 
intoxication in fish muscle is in members of the family Tetraodontidae (puffer fish) (Table 5) 
inhabiting marine and freshwater habitats. STX was first described as a minor component of highly 
toxic (with TTX) Takifugu pardalis livers in Japan [201]. Soon after, STX was confirmed as a minor 
component in the additional Japanese species T. poecilonotus and T. vermicularis [202], and as a 
major toxin in Arothron firmamentum [197]. STXs were found to be the sole toxic component in a 
range of freshwater puffer fish, some responsible for human poisoning events, in Thailand, 
Bangladesh, Brazil, and in Cambodia (Table 5). Seven species of marine puffer fish in the Philippines 
(Table 5) were found to contain both STXs and TTX, with STXs being the dominant toxin in several 
species [198].  

 
Florida, USA - Puffer fish became an important source of protein on the east coast of the United 

States during the Second World War, and supported a commercial fishery in the decades that followed. 
The primary species landed was the northern puffer fish (Sphoeroides maculatus) but limited numbers 
of the southern puffer (S. nephelus), primarily from Florida, was also harvested [213]. The industry 
was centered in the mid-Atlantic states of Virginia, Maryland, New York, and New Jersey with > 
6,000 metric tons landed in 1965 (National Marine Fisheries Service Statistics and Economics 
Division, personal communication). Fish were marketed dressed and skinned under the name “sea 
squab”. Although the commercial puffer fish industry has steadily declined since the 1970’s, today 
being only harvested as by-catch, domestic puffer fish can still be found in some U.S. fresh fish 
markets. In addition, an average of > 500,000 fish was caught annually between 1981 and 2003 by 
recreational anglers in the U.S. where they are easily obtained by a range of gear including hook and 
line (National Marine Fisheries Service Statistics and Economics Division, personal communication 
[213]).  

In January 2002, the poison control center in Tampa, Florida, USA received a report of a man 
hospitalized with symptoms of numbness and tingling of the hands, vomiting, and diarrhea after 
consuming puffer fish caught during a recreational fishing trip near Titusville, located on the northern 
Indian River Lagoon (IRL) on Florida’s central east coast [214]. After additional reports of patients 
with symptoms of neurological illness from Virginia and New Jersey, all associated with what was 
believed to be S. nephelus originating from the northern IRL, uneaten fish muscle samples from the 
New Jersey incident sent to the Canadian Institute for Marine Biosciences by the New Jersey 
Department of Health were, surprisingly, found to contain no detectable TTX but to contain significant 
amounts of STX, with lesser amounts of the STX congeners B1, and dcSTX [215]. This same 
combination of toxins was confirmed in meal remnants from two separate poisoning events in 2004 
[216]. In total, 28 cases of SPFP were reported from 2002-2004 -- all due to fish originating from the 
northern IRL [58]. These were the first reports of STXs both in Florida marine waters and in 
indigenous puffer fish in the U.S. In April 2002, the Florida Fish and Wildlife Conservation 
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Commission (FWC) placed a ban on the commercial and recreational harvesting of all puffer fish 
species for the entire IRL. At the same time, the FWC initiated intensive sampling for STXs in 
multiple species of aquatic biota in Florida’s coastal waters with emphasis on the IRL. Partial results 
of this sampling were reported [58, 217]. Analysis of IRL puffer fish found concentrations of STXs in 
muscle often well in excess of the 80 μg STX eq./100 g tissue regulatory action limit set for shellfish. 
After extended monitoring, STX concentrations in puffer muscle in certain regions of the IRL 
remained well above the action limit. As a result, the puffer fishing ban in the IRL was made indefinite 
in June 2004. Based on toxin profiles and abundance in the IRL during the first SPFP reports in 2002, 
Landsberg et al. [58] suggested the dinoflagellate Pyrodinium bahamense, not reported to produce 
STXs in Florida waters prior to 2002, as the putative toxin source. 

Deeds et al. [218] confirmed that S. nephelus from the northern IRL contained elevated 
concentrations of STX in muscle (1770 ± 159 µg STX/100g tissue) compared to liver (609 ± 432 µg 
STX/100g tissue), with only low to non-detectable amounts of TTX in all tissues tested. The additional 
IRL puffer species S. testudineus (checkered puffer) and S. spengleri (bandtail puffer), known to only 
occur further south in the lagoon system, were found to contain significantly greater concentrations of 
TTX compared to STX in all tissues (maximum concentration for TTX found in S. testudineus livers 
6076 ± 3283 µg TTX/100g tissue – maximum concentration of STX found in S. spengleri livers 74 ± 
42 µg STX/100g tissue). This work confirmed S. nephelus, a species not associated with toxicity in the 
IRL prior to these events, as the likely cause of all 28 cases of SPFP originating from the IRL during 
2002-2004. These events on the east coast of the U.S. represented the first confirmed cases of puffer 
fish poisoning due solely to STX in North America. 

4. Conclusion 

In comparison to non-traditional (i.e. non-filter feeding) vectors for PSP, more is known about STX 
sources, routes of exposure, species specific and population specific sensitivities, depuration rates, 
compartmentalization, and biotransformations in filter-feeding bivalves. As a result, monitoring and 
management of traditional bivalve vectors for PSP are, in many cases, highly successful and result in 
the protection of public health. Due to a lack of basic knowledge on the source(s) and fate of STXs in 
non-traditional vectors, human intoxications due to the consumption of these species are often more 
unpredictable, and resource closures are often longer and sometimes indefinite. With the apparent 
expansion in STX producing microrganisms world-wide, an ever-increasing demand for seafood, and 
the emergence of seafood as an economic commodity for export, particularly in developing countries, 
more study is required on STX sources, distribution, and fate in these non-traditional PSP vectors to 
assure both public safety and consumer confidence on local, national, and international scales. 
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