Determination of the Absolute Configurations of (+)-N-((3S)-3-\{[(4-methylphenyl)sulfonyl]amino\}-1-oxaspiro[4.5]deca-6,9-dien-2,8-dion-7-yl) Acetamide and Benzamide

Guy L. Plourde ${ }^{1, *}$, Lyndia M. Susag ${ }^{1}$ and David G. Dick ${ }^{2}$
${ }^{1}$ University of Northern British Columbia, Department of Chemistry, 3333 University Way, Prince George, British Columbia, V2N 4Z9, Canada
${ }^{2}$ College of the Rockies, University Studies (Chemistry), Box 8500, Cranbrook, British Columbia, V1C 5L7, Canada

* Author to whom correspondence should be addressed; E-mail: plourde@unbc.ca; Tel. +1-250-9606694; Fax: +1-250-960-5845

Received: 18 September 2008 / Accepted: 3 November 2008 / Published: 7 November 2008

Abstract

We recently reported the asymmetric synthesis of the two title compounds without the configurational assignments of the newly formed chiral spirocarbons. We now wish to report that both compounds have a (R)-configuration at the spirocarbon based on 1D and 2D nuclear Overhauser enhancement (nOe) experiments.

Keywords: Spiroannulation, stereochemistry, nOe, NMR, absolute configuration.

1. Discussion

For the past few years we have studied the diastereoselective spiroannulation of simple phenols [111], and we recently reported the asymmetric synthesis of two new spirolactones (+)-1 and (+)-2 (Figure 1) from optically active (S)-3-nitrotyrosine [1]. However, at the time of publication we had yet to determine the absolute configuration of the newly formed spirocentre in $(+) \mathbf{- 1}$ and $(+) \mathbf{- 2}$. We now wish to report the absolute configuration of these two compounds as determined using one- and twodimensional nuclear Overhauser enhancement [nOe] NMR methods. In the absence of crystals suitable for X-ray analysis, we felt that nOe techniques would be the best way to determine these
configurations. We believe that such assignments can be made using NMR techniques since the structure of the two spirocompounds is rigid at the spirocarbon and the stereochemistry of carbon 3 of the lactone ring is known to have a (S)-configuration.

The two possible diastereomers of $(+) \mathbf{- 1}$ and $(+) \mathbf{- 2}$ are shown in Figure 1 (structures A and B). Since carbon 3 in the lactone ring has a (S)-configuration as shown in Figure 1 [12], irradiation of H_{3} should affect only one of H_{10} (structure A) or H_{6} (structure B) assuming that these protons are in close enough proximity to H_{3} to be affected. It is normally assumed that ${ }^{1} \mathrm{H}$ nOe can be observed between protons located within $500 \mathrm{pm}(5 \AA$) of each other [13,14]. This is about twice the distance separating 1,3-diaxial protons on the chair form of cyclohexane ($\sim 2.6 \AA$) [14]. When comparing models of cyclohexane with either structures A or B , we estimated that the distance between H_{3} and either H_{10} or H_{6} falls within the range normally expected to observe nOe [15].

Figure 1. Possible Configurations for (+)-1 and (+)-2

$(+)-1 \mathrm{R}=\mathrm{CH}_{3}$
$(+)-2 \mathrm{R}=\mathrm{Ph}$
A
B

Figure 2. Portion of the Original ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}$ spectrum of $(+)-\mathbf{2}$ in $\mathbf{C D C l}_{3}$

Figure 2 shows a portion of the original ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $(+)-2$ while nOe results are summarized in Table 1. Irradiation was carried out on all three protons $\left(\mathrm{H}_{3}, \mathrm{H}_{6}\right.$ and $\left.\mathrm{H}_{10}\right)$ with a 2 s presaturation time for each experiment. 1D nOe studies of (+)-1 showed that irradiation of H_{3} produced enhancement of the signal of $\mathrm{H}_{10}(7 \%)$ while no nOe effect was observed for H_{6}. The reverse experiment, i.e. irradiation of H_{10}, showed nOe effect on $\mathrm{H}_{3}(6 \%)$ as well as enhancement of the signal of $\mathrm{H}_{9}(5 \%)$. No effect was observed between H_{3} and H_{6} when either H_{3} or H_{6} were irradiated. This data suggests that the correct configuration for the spirocarbon of $(+)-1$ is as shown in structure A found in Figure 1, in other words the spirocarbon has a (R)-configuration. A similar analysis can be performed for (+)-2.

Table 1. Data from nOe Experiments and Chemical Shifts of Key Protons ${ }^{\text {a }}$.

Compound	Irradiation	Integration			
(+)-1		H_{10}	H_{9}	H_{6}	H_{3}
	H_{10} (7.06ppm)	1.00	0.05	n / a	0.06
	H_{6} (7.52ppm)	n/a	n / a	1.00	n/a
	$\mathrm{H}_{3}(4.54 \mathrm{ppm})$	0.07	n / a	n / a	1.00
(+)-2	$\mathrm{H}_{10}(6.92 \mathrm{ppm})$	1.00	0.04	n/a	0.05
	$\mathrm{H}_{6}(7.54 \mathrm{ppm})$	n / a	n / a	1.00	n / a
	H_{3} (4.40ppm)	0.04	n / a	n / a	1.00

${ }^{\text {a }}$ Chemical shifts listed are reported from ref. 1. n/a: no signal visible in nOe difference spectrum

Two dimensional nOe experiments (NOESY and ROESY) were also performed for (+)-1 and (+)-2, and confirmed our results obtained by 1 D difference nOe studies. In these experiments, correlation between H_{10} and H_{3} for both compounds was observed while correlation between H_{3} and H_{6} was absent, confirming that structure A is the correct structure for both (+)-1 and (+)-2.

Based on these studies, we can conclude that the chiral spirocarbons in both (+)-1 and (+)-2 have a (R)-configuration as depicted by structure A in Figure 1. We are still attempting to obtain crystals of the target compounds suitable for X-ray analysis in order to unambiguously assign the configurations of these two compounds.

2. Experimental

1- and 2-dimensional nOe experiments were carried out on a Bruker 300AMX spectrometer at a frequency of 300.13 MHz . Samples were dissolved in CDCl_{3} and the spectra were referenced to the residual solvent signal $\left(\mathrm{CHCl}_{3}\right)$ at 7.26 ppm . Samples were only slightly soluble in CDCl_{3} but stable. Samples were not degassed prior to data accumulation. 1D experiments were performed with a 2 s presaturation time, 1024 scans were recorded. Mixing times for the ROESY and NOESY experiments were 200 ms and 300 ms respectively.

Acknowledgement

We acknowledge the financial contribution of the University of Northern British Columbia in support of this work.

References and Notes:

1. Plourde, G.L.; Spaetzel, R.R.; Kwasnitza, J.S.; Scully, T.W. Diastereoselective Spiroannulation of Phenolic Substrates: Advances Towards the Asymmetric Formation of the Manumycin m-C ${ }_{7} \mathrm{~N}$ Core Skeleton. Molecules 2007, 12, 2215-2222.
2. Plourde, G.L. Studies Towards the Diastereoselective Spiroannulation of Phenolic Derivatives. Tetrahedron Letters 2002, 43, 3597-3599.
3. Plourde, G.L. (\pm)-1-(4-Hydroxy-3-methoxyphenyl)-3-butanol. Molbank, 2003, M315.
4. Plourde, G.L. (\pm)-7-Methoxy-2-methyl-1-oxaspiro[4,5]deca-6,9-diene-8-one. Molbank, 2003, M316.
5. Plourde, G.L. 1-(4-Hydroxy-3-methoxyphenyl)-4-methyl-3-pentanone. Molbank, 2003, M317.
6. Plourde, G.L. (土)-1-(4-Hydroxy-3-methoxyphenyl)-4-methyl-3-pentanol. Molbank, 2003, M318.
7. Plourde, G.L. (\pm)-7-Methoxy-2- ${ }^{\text {i }}$ propyl-1-oxaspiro[4,5]deca-6,9-diene-8-one. Molbank, 2003, M319.
8. Plourde, G.L. 1-(4-Hydroxy-3-methoxyphenyl)-4,4-dimethyl-3-pentanone. Mobank, 2003, M320.
9. Plourde, G.L. (\pm)-1-(4-Hydroxy-3-methoxyphenyl)-4,4-dimethyl-3-pentanol. Molbank, 2003, M321.
10. Plourde, G.L. (\pm)-2- ${ }^{\text {t }}$ Butyl-7-methoxy-1-oxaspiro[4,5]deca-6,9-diene-8-one. Mobank, 2003, M322.
11. Plourde, G.L.; English, N.J. Diastereoselective Spiroannulation of Phenolic Substrates: Synthesis of (\pm)-2-tert-Butyl-6-methoxy-1-oxaspiro[4,5]deca-6,9-diene-8-one. Molecules 2005, 10, 13351339.
12. The configuration of the chiral centre at carbon 3 in $(+)-\mathbf{1}$ and $(+)-\mathbf{2}$ should be the same as the original chiral centre in (S)-3-nitrotyrosine under the reactions conditions used in the synthesis reported [(a) 1) TsCl, THF, 1 M NaOH 2) $1 \mathrm{M} \mathrm{KOH}, \mathrm{EtOH}, 80-85^{\circ} \mathrm{C}$; (b) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$, THF; (c) $\mathrm{CH}_{3} \mathrm{COCl}$ or $\mathrm{PhCOCl}, \mathrm{THF}$, rt ; (d) PIFA, acetone, $0^{\circ} \mathrm{C}$] (reference 1). Therefore, it is assumed that this centre remained in the (S)-configuration.
13. Eliel E.L.; Wilen S.H. Stereochemistry of Organic Compounds; John Wiley \& Sons, Inc.: New York, 1994; pp. 30-31.
14. Silverstein, R.M.; Webster, F.X. Spectrometric Identification of Organic Compounds, $6^{\text {th }}$ Edition; John Wiley \& Sons, Inc.: New York, 1998; pp. 189-191.
15. The distance between H_{3} and $\mathrm{H}_{10} / \mathrm{H}_{6}$ is estimated to be between $2.6 \AA$ and $5 \AA$. The actual distance between these protons in a solution will depend on molecular movement and steric factors found in the molecule. This distance has not been calculated.
© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
