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Abstract: We recently reported the asymmetric synthesis of the two title compounds 
without the configurational assignments of the newly formed chiral spirocarbons. We now 
wish to report that both compounds have a (R)-configuration at the spirocarbon based on 
1D and 2D nuclear Overhauser enhancement (nOe) experiments. 
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1. Discussion 
 

For the past few years we have studied the diastereoselective spiroannulation of simple phenols [1-
11], and we recently reported the asymmetric synthesis of two new spirolactones (+)-1 and (+)-2 
(Figure 1) from optically active (S)-3-nitrotyrosine [1]. However, at the time of publication we had yet 
to determine the absolute configuration of the newly formed spirocentre in (+)-1 and (+)-2. We now 
wish to report the absolute configuration of these two compounds as determined using one- and two-
dimensional nuclear Overhauser enhancement [nOe] NMR methods. In the absence of crystals suitable 
for X-ray analysis, we felt that nOe techniques would be the best way to determine these 
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configurations. We believe that such assignments can be made using NMR techniques since the 
structure of the two spirocompounds is rigid at the spirocarbon and the stereochemistry of carbon 3 of 
the lactone ring is known to have a (S)-configuration. 

The two possible diastereomers of (+)-1 and (+)-2 are shown in Figure 1 (structures A and B). 
Since carbon 3 in the lactone ring has a (S)-configuration as shown in Figure 1 [12], irradiation of H3 
should affect only one of H10 (structure A) or H6 (structure B) assuming that these protons are in close 
enough proximity to H3 to be affected. It is normally assumed that 1H nOe can be observed between 
protons located within 500 pm (5Ǻ) of each other [13,14]. This is about twice the distance separating 
1,3-diaxial protons on the chair form of cyclohexane (~2.6Ǻ) [14]. When comparing models of 
cyclohexane with either structures A or B, we estimated that the distance between H3 and either H10 or 
H6 falls within the range normally expected to observe nOe [15]. 

Figure 1. Possible Configurations for (+)-1 and (+)-2 

 
 
 
 
 
 
 
 
 
 

Figure 2. Portion of the Original 1H-NMR spectrum of (+)-2 in CDCl3 
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Figure 2 shows a portion of the original 1H-NMR spectrum of (+)-2 while nOe results are 
summarized in Table 1. Irradiation was carried out on all three protons (H3, H6 and H10) with a 2s 
presaturation time for each experiment. 1D nOe studies of (+)-1 showed that irradiation of H3 
produced enhancement of the signal of H10 (7%) while no nOe effect was observed for H6. The reverse 
experiment, i.e. irradiation of H10, showed nOe effect on H3 (6%) as well as enhancement of the signal 
of H9 (5%). No effect was observed between H3 and H6 when either H3 or H6 were irradiated. This data 
suggests that the correct configuration for the spirocarbon of (+)-1 is as shown in structure A found in 
Figure 1, in other words the spirocarbon has a (R)-configuration. A similar analysis can be performed 
for (+)-2.  

Table 1. Data from nOe Experiments and Chemical Shifts of Key Protonsa. 

Compound Irradiation Integration 

  H10 H9 H6 H3 

 H10 (7.06ppm) 1.00 0.05 n/a 0.06 

(+)-1 H6 (7.52ppm) n/a n/a 1.00 n/a 

 H3 (4.54ppm) 0.07 n/a n/a 1.00 

 H10 (6.92ppm) 1.00 0.04 n/a 0.05 

(+)-2 H6 (7.54ppm) n/a n/a 1.00 n/a 
 H3 (4.40ppm) 0.04 n/a n/a 1.00 

 aChemical shifts listed are reported from ref. 1. n/a: no signal visible in nOe difference spectrum 
 
Two dimensional nOe experiments (NOESY and ROESY) were also performed for (+)-1 and (+)-2, 

and confirmed our results obtained by 1D difference nOe studies. In these experiments, correlation 
between H10 and H3 for both compounds was observed while correlation between H3 and H6 was 
absent, confirming that structure A is the correct structure for both (+)-1 and (+)-2. 

Based on these studies, we can conclude that the chiral spirocarbons in both (+)-1 and (+)-2 have a 
(R)-configuration as depicted by structure A in Figure 1. We are still attempting to obtain crystals of 
the target compounds suitable for X-ray analysis in order to unambiguously assign the configurations 
of these two compounds. 
 
2. Experimental 

 
1- and 2-dimensional nOe experiments were carried out on a Bruker 300AMX spectrometer at a 

frequency of 300.13 MHz. Samples were dissolved in CDCl3 and the spectra were referenced to the 
residual solvent signal (CHCl3) at 7.26 ppm. Samples were only slightly soluble in CDCl3 but stable. 
Samples were not degassed prior to data accumulation. 1D experiments were performed with a 2s 
presaturation time, 1024 scans were recorded. Mixing times for the ROESY and NOESY experiments 
were 200ms and 300ms respectively. 
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