# Synthesis of 5-benzyl-2,6-dimethylpyridazin-3(2H)-one 

## Nour-Eddine Benchat, Abderazak Benalla, Fouad El Kalai, Mohammed Ramdani and Said Daoui

Laboratory of Chemistry applied and environment, University Mohamed I, Sciences Faculty, 60000 Oujda, Morocco

* Author to whom correspondence should be addressed; E-mai: n_benchat@yahoo.fr

Received: 11 September 2008 / Accepted: 5 November 2008 / Published: 23 November 2008

Keywords: Pyridazines, alkylation, microwave, anticancer activity.

Recentely, Rubat et al. [1] synthesized a series of products by alkylation of pyridazines, the authors showed that these products are good analgesics and have a low toxicity. In our ongoing reseach program, we have synthesized compound (II); it will be subjected to further pharmacological investigations, especially tests of its anticancer activity.


The product (II) was prepared from 5-benzyl-6-methylpyridazin-3(2H)-one (I) by solid-liquid PTC conditions without solvent [2]. To pyridazinone (I) ( $1.2 \mathrm{~g}, 5 \mathrm{mmol}$ ) were added potassium carbonate ( $0.692 \mathrm{~g}, 5 \mathrm{mmol}$ ), TBAB ( $0.3 \mathrm{~g}, 1 \mathrm{mmol}$ ) and methyl iodide ( $0.73 \mathrm{~g}, 5 \mathrm{mmol}$ ). The mixture was placed in a pyrex tube which was then introduced into a Maxidigest MX 350 Prolabo microwave monomode reactor, fitted with a rotational system. At the end of the irradiation time ( $10 \mathrm{~min}, 90 \mathrm{~W}$ irradiation power), the mixture was cooled to ambient temperature. The precipitate formed was filtered and washed with water, yield: $96 \%$ of (II).

Melting point: $89-93^{\circ} \mathrm{C}$

IR (KBr): $1663(\mathrm{CO}), 1591(\mathrm{C}=\mathrm{N}), 1430,1495(\mathrm{C}=\mathrm{C})$.
${ }^{1} \mathrm{H}$ NMR ( $300.14 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta(\mathrm{ppm}): 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 6.53 (s, 1H, H-4), 7.25 (m, 5H, aromatic protons).
${ }^{13} \mathrm{C}$ NMR ( $75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta(\mathrm{ppm}) 19.12\left(\mathrm{CH}_{3}\right), 35.85\left(\mathrm{CH}_{2}\right), 39.67\left(\mathrm{NCH}_{3}\right), 127.66\left(\mathrm{CH}_{\text {aromatic }}\right)$, $127.87\left(\mathrm{CH}_{\text {aromatic }}\right), 129.32\left(2 \mathrm{CH}_{\text {aromatic }}\right), 129.51\left(2 \mathrm{CH}_{\text {aromatic }}\right), 135.66,145.25,146.52,160.63(\mathrm{C}=\mathrm{O})$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ : \%C: 72.89; \%H: 6.54;; \%N: 13.08. Found: \%C: 72.47; \%H: 6.43; \%N: 12.72.

## References

1. Rubat, C.G.; Coudert, P.; Couquelet, J.; Bastide, P.; Bastide, J. Chem. Pharm. Bull. 1988, 36, 1558.
2. De La Hoz, A.; Diaz-Ortiz, A.; Moreno, A. Chem. Soc. Rev. 2005, 34, 164.
© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
