Molecules 2005, 10, 195-200

ISSN 1420-3049 http://www.mdpi.org

Addition to Electron Deficient Olefins of α -Oxy Carbon-Centered Radicals, Generated from Cyclic Ethers and Acetals by the Reaction with Alkylperoxy- λ^3 -iodane

Takuya Sueda, Yasunori Takeuchi, Takashi Suefuji and Masahito Ochiai *

Faculty of Pharmaceutical Sciences, University of Tokushima, 1-78 Shomachi, Tokushima 770-8505, Japan, Tel. (+81) 88 633 7281, Fax (+81) 88 633 9504.

* Author to whom correspondence should be addressed; e-mail: mochiai@ph.tokushima-u.ac.jp

Received: 11 May 2004; in revised form: 24 November 2004 / Accepted: 25 November 2004 / Published: 31 January 2005

Abstract: Thermal decomposition of 1-*tert*-butylperoxy-1,2-benziodoxol-3(1*H*)-one in cyclic ethers and acetals at 50 °C generates α -oxy carbon-centered radicals, which undergo an addition reaction with vinyl sulfones and unsaturated esters.

Keywords: Radical, iodane, ether, vinyl sulfone, maleate

Introduction

Commercially available crystalline 1-*tert*-butylperoxy-1,2-benziodoxol-3(1*H*)-one (1) serves as a versatile oxidizing agent [1]; thus, sulfides, secondary and tertiary amines and amides are readily oxidized with the *tert*-butylperoxy $-\lambda^3$ -iodane 1 to the corresponding sulfoxides, imines, *tert*-butylperoxyamino acetals and imides, respectively [2]. Oxidation of 4-substituted phenols affords 4-(*tert*-butylperoxy)-2,5-cyclohexadien-1-ones in good yields [3].

The λ^3 -iodane **1** is stable in the solid state but gradually decomposes in solution at ambient temperature to generate *tert*-butylperoxy radical and [9-I-2] iodanyl radical **2** through homolytic

cleavage of the hypervalent iodine(III)-peroxy bond. These radicals are responsible for the oxidation of benzyl and allyl ethers with the λ^3 -iodane **1** in the presence of alkali metal carbonates, yielding the corresponding esters *via* the intermediacy of benzylic and allylic radicals [4]. Recently, we found that the gentle heating of a THF solution of the peroxy- λ^3 -iodane **1** at 50 °C for 10 h under argon produced a mixture of *o*-iodobenzoic acid (**5**, 55%) and the acid-labile 2-tetrahydrofuranyl *o*-iodobenzoate (**6**, 45%) (Scheme 2) [5]. The formation of *o*-iodobenzoate **6** probably involves the following sequence: (a) α -hydrogen atom abstraction from THF by the *tert*-butylperoxy radical and/or the iodanyl radical **2** to give the α -tetrahydrofuranyl radical **3**, (b) a single-electron transfer from α -THF radical **3** to the peroxy- λ^3 -iodane **1** (or *tert*-butylperoxy radical and the iodanyl radical **2**), generating the oxonium ion **4**, and finally, (c) nucleophilic attack of *o*-iodobenzoic acid **5**, generated *in situ* on **4**, yielding the ester **6**. This mechanism was supported by the finding that the decomposition of the λ^3 -iodane **1** in THF in the presence of an alcohol results in a competition between the formation of **6** and the tetrahydrofuranylation of the alcohol.

Since α -THF radical **3** is nucleophilic in nature and undergoes addition to electron-deficient olefins such as maleate esters [6] and vinyl sulfones [7], it seems reasonable to assume that, when the decomposition of the peroxy- λ^3 -iodane **1** in THF is carried out in the presence of an electrophilic olefin, addition of α -THF radical **3** to the double bond would take place, if the radical addition is faster than a single-electron transfer from α -THF radical **3** to the peroxy- λ^3 -iodane **1**. We report herein the λ^3 -iodane-induced addition of α -oxy carbon-centered radicals generated from cyclic ethers and acetals to electron deficient olefins, which proceeds under mild conditions.

Results and Discussion

Exposure of phenyl vinyl sulfone (7) to an equivalent amount of the peroxy- λ^3 -iodane 1 in THF at 50 °C for 24 h under argon resulted in an addition reaction of THF with formation of 2-[2-(phenyl-sulfonyl)ethyl]tetrahydrofuran (8a) in 83% yield (Scheme 2 and Table 1, Entry 2). Use of 0.3 equivalents of 1 decreased the yield of 8a to 66%. 1,3-Dioxolane serves as an excellent hydrogen donor for the attack of electrophilic radicals such as *t*-BuO• [8]. Thus, in 1,3-dioxolane with the use of 0.3 equivalents of 1, the addition product 8c was obtained in 76% yield. Less reactive tetrahydropyran (THP) and 1,4-dioxane afforded moderate yields (50-52%) of 2-alkylated ethers 8b and 8d, respectively (Table 1, Entries 3 and 5). These reactivity differences seem to correlate well with their corresponding C-H bond dissociation energies: THF (2-H), 89.8 kcal/mol; 1,3-dioxolane (2-H), 90.0 kcal/mol; THP (2-H), 92.1 kcal/mol; 1,4-dioxane, 93.2 kcal/mol [8a]. Attempted addition of 1,3-dioxolane to (*E*)-1-propenyl phenyl sulfone was found to be fruitless [7c,d].

Scheme 2

The formation of the 2-alkylated 1,3-dioxolane **8c** in good yield is very interesting, because 2-alkyl- and 2-aryl-1,3-dioxolanes undergo oxidative ring cleavage by the reaction with the peroxy- λ^3 -iodane **1** in the presence of *tert*-butyl hydroperoxide and potassium carbonate in benzene at room temperature, yielding glycol monoesters [9].

Entry	λ ³ -Iodane 1 (equiv)	Ether	Product		
			Structure	8	Yield (%) ^b
1	0.3	THF	SO ₂ Ph	8a	66
2	1	THF	SO ₂ Ph	8a	83
3	1	THP	SO ₂ Ph	8b	50
4	0.3	1,3-dioxolane	SO ₂ Ph	8c	76
5	1	1,4-dioxane	SO ₂ Ph	8d	52
6	1 °	1,3-dioxolane	Me SO ₂ Ph	8e	0

Table 1. Addition of cyclic ethers to phenyl vinyl sulfone 7^a

^a Reactions were carried out at 50 °C for 24 h under argon. ^b Isolated yields. ^c Reaction with (*E*)-1-propenyl phenyl sulfone.

Unsaturated esters serve as efficient acceptors for α -oxy carbon-centered radicals generated from cyclic ethers and acetals [10]. The reaction with diethyl fumarate (*E*)-(**9**) in the presence of the peroxy- λ^3 -iodane **1** (1 equiv.) in THF at 50 °C for 24 h under argon afforded diethyl 2-tetrahydrofuranylsuccinate (**10a**) as a 1:1 mixture of diastereoisomers in 47% yield (Table 2). With diethyl maleate (*Z*)-(**9**), a higher yield (61%) of the succinate **10a** (a 1:1 mixture of diastereoisomers) was obtained. 1,3-Dioxolane also undergoes an addition reaction toward the unsaturated diesters to give diethyl (1,3-dioxolan-2-yl)succinate (**10b**) in high yields (Table 2, Entries 3 and 4). In these reactions, diethyl maleate (*Z*)-(**9**) served as a more efficient acceptor of α -oxy carbon-centered radicals than diethyl fumarate (*E*)-(**9**) [10a,b].

Table 2. Addition of cyclic ethers to unsaturated esters 9^a

E. A.	Olefin	Edu	Product	
Entry		Etner	10	Yield (%) ^b
1	(E)- 9	THF	10a	47 (53) ^c
2	(Z) -9	THF	10a	61 (70) ^c
3	(E) -9	1,3-dioxolane	10b	81
4	(Z) -9	1,3-dioxolane	10b	88

^a Reactions were carried out using one equiv. of the peroxy- λ^3 -iodane 1 at 50 °C for 24 h under argon. ^b Isolated yields. Values in parentheses are GC yields. ^c A 1:1 mixture of stereoisomers.

The addition of cyclic ethers to the electron-deficient olefins probably involves the reaction sequence shown in Scheme 4. Addition of the nucleophilic α -oxy carbon-centered radical **3** to the electron-deficient olefins produces the carbon radicals **11** bonded to the electron-withdrawing group (EWG). This process may compete with a single-electron transfer from α -THF radical **3** to the peroxy- λ^3 -iodane **1** (or *tert*-butylperoxy radical and the iodanyl radical **2**), generating the oxonium ion **4**.

Scheme 4

Experimental

General

¹H-NMR spectra were recorded in CDCl₃ on JEOL AL 300 or JNM GX-400 spectrometers using tetramethylsilane as an internal standard. The IR spectra were recorded on a Jasco FT-IR 420

General Procedure for Addition of Cyclic Ethers to Phenyl Vinyl Sulfone (2). A Typical Example: 2-[2-(Phenylsulfonyl)ethyl]tetrahydrofuran (8a) (Table 1, Entry 2).

To a mixture of *tert*-butylperoxy- λ^3 -iodane **1** (67 mg, 0.2 mmol) and phenyl vinyl sulfone (**2**, 34 mg, 0.2 mmol) was added THF (1.2 mL) at room temperature under argon and the stirred mixture was heated at 50 °C for 24 h. The reaction was quenched by addition of a 5% aqueous K₂CO₃ solution and the mixture extracted with dichloromethane. The combined organic extracts were washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo* to give an oil which was purified by preparative TLC (hexane-ethyl acetate 6:4) to give the sulfone **8a** (39.7 mg, 83%)[7a]; ¹H-NMR (300 MHz): δ 7.92 (2H, d, *J*= 7.7 Hz), 7.67 (1H, t, *J*= 6.9 Hz), 7.57 (2H, dd, *J*= 6.9, 7.7 Hz), 3.90-3.63 (3H, m), 3.37-3.23 (1H, m), 3.20-3.08 (1H, m), 2.07-1.76 (5H, m), 1.53-1.39 (H, m).

2-[2-(Phenylsulfonyl)ethyl]tetrahydropyran (**8b**): ¹H-NMR (400 MHz) δ 7.91 (2H, d, *J*= 8.0 Hz), 7.65 (1H, t, *J*= 8.0 Hz), 7.56 (2H, t, *J*= 8.0 Hz), 3.88 (1H, br d, *J* = 12.0 Hz), 3.37-3.23 (3H, m), 3.20-3.10 (1H, m), 1.96-1.85 (1H, m), 1.85-1.72 (2H, m), 1.56-1.39 (4H, m), 1.30-1.17 (1H, m); IR (neat) v (cm⁻¹) 3063, 2935, 2847, 1585, 1446, 1308, 1146, 1086, 1047, 880, 742, 690; EIMS m/z (%) 254 (M⁺, 24), 225 (19), 143 (15), 112 (100), 85 (42), 77 (33); HRMS (EI) calcd. for C₁₃H₁₈O₃S (M⁺): 254.0977, found 254.0990.

2-[2-(Phenylsulfonyl)ethyl]-1,3-dioxolane (**8c**) [7b]: ¹H-NMR (300 MHz): δ 7.92 (2H, d, *J*= 7.7 Hz), 7.67 (1H, t, *J*= 6.9 Hz), 7.57 (2H, dd, *J*= 6.9, 7.7 Hz), 4.97 (1H, t, *J*= 3.6 Hz), 3.95-3.79 (4H, m), 3.31-3.14 (2H, m), 2.13-2.03 (2H, m).

2-[2-(Phenylsulfonyl)ethyl]-1,4-dioxane (**8d**) [7b]: ¹H-NMR (300 MHz): δ 7.91 (2H, br d, *J*= 7.7 Hz), 7.67 (1H, br t, *J*= 6.9 Hz), 7.58 (2H, dd, *J*= 6.9, 7.7 Hz), 3.73-3.08 (9H, m), 1.90-1.66 (2H, m).

General Procedure for Addition of Cyclic Ethers to Unsaturated Ester (9). A Typical Example: Diethyl (Tetrahydrofuran-2-yl)succinate (10a) (Table 2, Entry 1).

To a stirred suspension of *tert*-butylperoxy- λ^3 -iodane **1** (50 mg, 0.15 mmol) in THF (1.5 mL) was added diethyl fumarate (*E*)-(**9**) (26 mg, 0.15 mmol) at room temperature under argon and the mixture was heated at 50 °C for 24 h. The reaction was quenched by addition of a 5% aqueous K₂CO₃ solution and the mixture was extracted with diethyl ether. The combined organic extracts were washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo* to give an oil, which was purified by preparative TLC (hexane-ethyl acetate 6:4) to give the ester **10a** (17.2 mg, 47%) as a 1:1 mixture of diastereoisomers (as determined by analytical GC) [6]. Ester **10a** with a larger Rf value: ¹H-NMR (300 MHz): δ 4.17 (2H, q, *J*= 6.9 Hz), 4.13 (2H, q, *J*= 6.9 Hz), 4.00 (1H, q, *J*= 6.9 Hz),

3.87-3.67 (2H, m), 2.93-2.86 (1H, m), 2.78 (1H, dd, J= 8.8, 16.5 Hz), 2.69 (1H, dd, J= 5.2, 16.5 Hz), 2.07-1.67 (4H, m), 1.27 (3H, t, J= 6.9 Hz), 1.24 (3H, t, J= 6.9 Hz). Ester **10a** with a smaller Rf value: ¹H-NMR (300 MHz): δ 4.19 (2H, q, J= 6.9 Hz), 4.13 (2H, q, J= 6.9 Hz), 4.12-4.02 (1H, m), 3.92-3.81 (1H, m), 3.79-3.68 (1H, m), 3.13-3.03 (1H, m), 2.75 (1H, dd, J= 9.6, 16.5 Hz), 2.47 (1H, dd, J= 4.1, 16.5 Hz), 2.0-1.81 (3H, m), 1.73-1.61 (1H, m), 1.27 (3H, t, J= 6.9 Hz), 1.25 (3H, t, J= 6.9 Hz).

Diethyl (1,3-Dioxolan-2-yl)succinate (**10b**) [10a]: ¹H-NMR (300 MHz): δ 5.21 (1H, d, *J*= 3.9 Hz), 4.21 (2H, q, *J*= 6.9 Hz), 4.14 (2H, q, *J*= 6.9 Hz), 4.05-3.84 (4H, m), 3.23 (1H, dt, *J*= 9.4, 3.9 Hz), 2.78 (1H, dd, *J*= 9.4, 17.1 Hz), 2.61 (1H, dd, *J*= 3.9, 17.1 Hz), 1.28 (3H, t, *J*= 6.9 Hz), 1.26 (3H, t, *J*= 6.9 Hz). Hz).

References

- For reviews, see: (a) Ochiai, M. In *Topics in Current Chemistry*; Wirth, T., Ed.; Springer: Berlin, 2003; Vol. 224, p. 5-68; (b) Ochiai, M. *TCI Mail* 1999, No. 104, 2-11; (c) Zhdankin, V. V. *Rev. Heteroatom Chem.* 1997, *17*, 133-151; (d) Zhdankin, V. V.; Stang, P. J. *Chem. Rev.* 2002, *102*, 2523-2584; (e) Muraki, T.; Togo, H.; Yokoyama, M. *Rev. Heteroatom Chem.* 1997, *17*, 213-243.
- (a) Ochiai, M.; Nakanishi, A.; Ito, T. J. Org. Chem. 1997, 62, 4253-4259; (b) Ochiai, M.; Kajishima, D.; Sueda, T. Heterocycles 1997, 46, 71-76; (c) Ochiai, M.; Kajishima, D.; Sueda, T. Tetrahedron Lett. 1999, 40, 5541-5544.
- 3. Ochiai, M.; Nakanishi, A.; Yamada, A. Tetrahedron Lett. 1997, 38, 3927-3930.
- (a) Ochiai, M.; Ito, T.; Takahashi, H.; Nakanishi, A.; Toyonari, M.; Sueda, T.; Goto, S.; Shiro, M. J. Am. Chem. Soc. 1996, 118, 7716-7730; (b) Ochiai, M.; Ito, T.; Masaki, Y.; Shiro, M. J. Am. Chem. Soc. 1992, 114, 6269-6270.
- 5. Ochiai, M.; Sueda, T. Tetrahedron Lett. 2004, 45, 3557-3559.
- 6. Rosenthal, I.; Elad, D. *Tetrahedron* **1967**, *23*, 3193-3204.
- (a) Matthews, D. P.; McCarthy, J. R. J. Org. Chem. 1990, 55, 2973-2975; (b) Boivin, J.; Crepon, E.; Zard, S. Z. Bull. Soc. Chim. Fr. 1992, 129, 145-150; (c) Togo, H.; Aoki, M.; Yokoyama, M. Chem. Lett. 1992, 2169-2172; (d) Togo, H.; Aoki, M.; Yokoyama, M. Tetrahedron 1993, 49, 8241-8256.
- (a) Shtarev, A. B.; Tian, F.; Dolbier, W. R.; Smart, B. E. J. Am. Chem. Soc. 1999, 121, 7335-7341; (b) Malatesta, V.; Ingold, K. U. J. Am. Chem. Soc. 1981, 103, 609-614; (c) Malatesta, V.; Scaiano, J. C. J. Org. Chem. 1982, 47, 1455-1459.
- 9. Sueda, T.; Fukuda, S.; Ochiai, M. Org. Lett. 2001, 3, 2387-2390.
- (a) Watanabe, Y.; Tsuji, Y.; Takeuchi, R. Bull. Chem. Soc. Jpn. 1983, 56, 1428-1430; (b) Tsujimoto, S.; Sakaguchi, S.; Ishii, Y. Tetrahedron Lett. 2003, 44, 5601-5604; (c) Hirano, K.; Sakaguchi, S.; Ishii, Y. Tetrahedron Lett. 2002, 43, 3617-3620; (d) Rosenthal, I.; Elad, D. J. Org. Chem. 1968, 33, 805-811; (e) Kim, Y. H.; Yang, S. G. Rev. Heteroatom Chem. 1999, 20, 69-96.

© 2005 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.