Asymmetric Synthesis of Double Bond Isomers of the Structure Proposed for Pyrinodemin A and Indication of Its Structural Revision

Haruaki Ishiyama, Masashi Tsuda, Tadashi Endo and Jun’ichi Kobayashi*
Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan. Tel:
(+81) 11-706-4985, Fax: (+81) 11-706-4989.
* Author to whom correspondence should be addressed; E-mail: jkobay@pharm.hokudai.ac.jp
Received: 28 December 2004; in revised form: 24 January 2005/ Accepted: 24 January 2005 / Published: 31 January 2005

Abstract

Asymmetric synthesis of double bond isomers (+)-2 ($\left.\Delta^{15^{\prime}, 16^{\prime}}\right)$ and (+)-3 ($\left.\Delta^{144^{4}, 15^{\prime}}\right)$ of the structure (1) ($\Delta^{16^{6}, 17^{\prime}}$) proposed for pyrinodemin A, a cytotoxic bis-pyridine alkaloid with a unique cis-cyclopent[c]isoxazolidine moiety from a marine sponge, has been accomplished. Pyrinodemin A was indicated to be a $1: 1$ racemic mixture of 2 from comparison of C_{18} and chiral HPLC analysis for pyrinodemin A and the synthetic compounds as well as ESIMS data of oxidative degradation products of pyrinodemin A.

Keywords: Pyrinodemin A, Amphimedon sp., asymmetric synthesis, structural revision

Pyrinodemin A, a cytotoxic bis-pyridine alkaloid with a unique cis-cyclopent[c]isoxazolidine moiety, has been isolated from a marine sponge Amphimedon sp., and its relative stereostructure was proposed as $\mathbf{1}\left(\Delta^{16,17}\right)$ on the basis of spectral data [1]. The unique structure of pyrinodemin A has prompted synthetic chemists to its total synthesis of $\mathbf{1}$ as well as syntheses of the double bond isomers $\mathbf{2}\left(\Delta^{15^{\prime}, 16^{\prime}}\right)$ and $\mathbf{3}\left(\Delta^{14^{4}, 15^{\prime}}\right)$ [2-4] followed by different proposals of the structural revision of pyrinodemin A to be 2 [2] or $\mathbf{3}[3,4]$.

In order to examine the correct structure of pyrinodemin A, we have synthesized $(+)-\mathbf{2}$ and $(+) \mathbf{- 3}$, the double bond isomers of $\mathbf{1}$, as an optically active form, and compared HPLC profiles of the synthetic compounds and pyrinodemin A. In addition, oxidative degradation experiments were performed for a remaining small amount of pyrinodemin A to determine the position of a double bond. In this paper, we describe asymmetric synthesis of $(+)-2$ and $(+)-\mathbf{3}$, and indication of the structure of pyrinodemin A to be (\pm)-2.

The $\Delta^{15^{\prime}, 16^{\prime}}$ double bond isomer (+)-2 was synthesized as follows (Scheme 1). The synthesis of hydroxylamine 6a commenced with known pivaloate 5a [5]. Oxidation of alcohol 5a with 2iodobenzoic acid (IBX) [6] in DMSO and THF afforded its aldehyde. Treatment of the aldehyde with $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$ and NaOAc in MeOH provided oxime which was reduced with $\mathrm{NaBH}_{3} \mathrm{CN}$ in MeOH to afford hydroxylamine 6a [7,8]. Condensation of $\mathbf{6 a}$ and optically active aldehyde 7 [8] in CHCl_{3} containing $\mathrm{Na}_{2} \mathrm{SO}_{4}$ at r.t. gave the nitrone 8a, which was followed by heating to afford ciscyclopent[c]isoxazolidine [9] 9a in 58\% yield.

Scheme 1.

$$
\begin{aligned}
& \mathrm{PivO}_{x+n} \mathrm{OH} \xrightarrow{\mathbf{a}, \mathbf{b}, \mathbf{c}} \mathrm{PivO}_{x+} \mathrm{NHOH} \\
& \text { 5a; } n=5 \quad 6 a ; n=5 \\
& \text { 5b; } n=6 \quad 6 b ; n=6
\end{aligned}
$$

Reagents and conditions: (a) IBX, DMSO, THF (69\%); (b) $\mathrm{H}_{2} \mathrm{NOH} \cdot \mathrm{HCl}, \mathrm{AcONa}, \mathrm{MeOH}$ (96\%); (c) $\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{MeOH}, \mathrm{pH} 3,0^{\circ} \mathrm{C}$; (d) $\mathrm{Na}_{2} \mathrm{SO}_{4}, \mathbf{6}, \mathrm{CHCl}_{3}$, r.t. \sim reflux (58% for 2 steps); (e) 3 N HCl , dioxane (80%); (f) $\mathrm{NaIO}_{4}, \mathrm{MeCN}, \mathrm{H}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}$; (g) $\mathrm{Br}^{-}\left[\mathrm{Ph}_{3}{ }^{+}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{2} \mathrm{OH}\right], n$-BuLi, THF, $0{ }^{\circ} \mathrm{C}$ (51% for 2 steps); (h) TIPSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (75\%); (i) H_{2}, $\mathrm{Pd}-\mathrm{C}$, MeOH (93\%); (j) DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ (75%); (k) IBX, DMSO (80\%); (l) $\mathrm{Br}^{-}\left[\mathrm{Ph}_{3} \mathrm{P}^{+}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{2} \mathrm{OH}\right], n$-BuLi, THF, $0{ }^{\circ} \mathrm{C}$ (81%); (m) $46 \% \mathrm{HF}, \mathrm{MeCN}$ (55\%); (n) $\mathrm{CBr}_{4}, \mathrm{Ph}_{3} \mathrm{P}$ (80\%); (o) 3-methylpyridine, LDA, DMPU, $-40^{\circ} \mathrm{C}$ (64%)

Treatment of $9 \mathbf{a}$ with 3 N HCl in dioxane gave diol, which was converted into its aldehyde by treatment with NaIO_{4} and then into alcohol 10a by Wittig reaction [10]. Protection of alcohol 10a as its TIPS ether followed by reduction with Pd-C gave its saturated TIPS ether, which was converted
into alcohol 11a with DIBAL. IBX oxidation of 11a followed by Wittig reaction [10] afforded its unsaturated alcohol, which was subjected to deprotection with HF to give diol 12a in 55%. Treatment of diol 12a with CBr_{4} and PPh_{3} provided its dibromide, which was coupled with 3-methypyridine using LDA and DMPU [11] in THF to furnish optically active compound (+)-2. This is the first synthesis of optical active form of 2, although its racemic form $((\pm)-2)$ has been synthesized [2-4]. The $\Delta^{14,15}$, double bond isomer $(+) \mathbf{3}$ was prepared from pivaloate $\mathbf{5 b}$ by almost same procedure as described for synthesis of $(+)-2$ (Scheme 1).

The position of a double bond and the stereochemistry of pyrinodemin A were examined as follows. Compounds (\pm)-1 [2], $(\pm)-\mathbf{2}$ [2], and (+)- $\mathbf{3}$ were subjected to C_{18} HPLC [Wako sil-II 5 C 18 RS, Wako Ind., Ltd., $4.6 \times 250 \mathrm{~mm}$; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$: eluent; $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (91:9); UV detection at 263 nm] and found to be separated ($\mathbf{1}, \mathrm{t}_{R} 21.6 \mathrm{mim} ; \mathbf{2}, \mathrm{t}_{R} 17.0 \mathrm{~min} ; \mathbf{3}, \mathrm{t}_{R} 15.8 \mathrm{~min}$), while the retention time $\left(\mathrm{t}_{R} 17.0 \mathrm{~min}\right)$ of pyrinodemin A was identical with that of 2 under the same condition, indicating that the position of a double bond of pyrinodemin A corresponded to that ($\Delta^{15^{\prime}, 16^{\prime}}$) of $\mathbf{2}$. To elucidate the stereochemistry of pyrinodemin A, compound (\pm)-2 was subjected to chiral HPLC [CHIRALCELL OD-H, Daicel Co., Ltd., $4.6 \times 250 \mathrm{~mm}$; flow rate $1.0 \mathrm{~mL} / \mathrm{min}$: eluent: hexanes $/ i-\mathrm{PrOH}$ (95:5); UV detection at 263 nm] and found to be separated ($\mathrm{t}_{R} 44$ and 47 min), while the retention time of $(+)-2$ was 47 min (Figure 1). On the other hand, pyrinodemin A gave the two peaks corresponding to those of (\pm) - $\mathbf{2}$ in a ratio of $1: 1$ under the same conditions, indicating that pyrinodemin A is a $1: 1$ racemic mixture of 2. Furthermore, pyrinodemin A was treated with OsO_{4} and then NaIO_{4} to give degradation products, one of which showed an ESIMS fragment ion peak at $m / z 242(\mathrm{M}+\mathrm{Na})^{+}$, corresponding to an aldehyde (13) of C-7' $\sim \mathrm{C}-15$ ' segment connected to a pyridine ring (Scheme 2). From the results described above, it was indicated that the olefin position of pyrinodemin A was C-15' and C-16’ (2), as proposed by Snider's group [2], and that pyrinodemin A was a 1:1 racemic mixture of $\mathbf{2}$.

Figure 1. Chiral HPLC profiles of (a) synthetic compounds (\pm)-2, (b) (+)-2, and (c) pyrinodemin A

Scheme 2

Acknowledgments

We thank Professor B. B. Snider (Brandeis University) for generous offer of synthetic samples of $(\pm) \mathbf{- 1}$ and (\pm)-2. This work was supported in part by grants from the Akiyama Foundation and the Takeda Science Foundation and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Experimental

General

Optical rotations were determined on a JASCO P-1030 polarimeter. Infrared spectra were obtained on a JASCO FT/IR-230 spectrometer. Proton and carbon NMR spectra were recorded on a Bruker 600 MHz spectrometer. Chemical shifts are reported in δ values relative to chloroform ($\delta 7.26$ for proton and $\delta 77.0$ for carbon NMR. EI mass spectra were measured on a JEOL JMS-DX303 spectrometer.

Synthetic Compound (+)-2: $[\alpha]^{25}{ }_{\mathrm{D}}+5.5^{\circ}\left(c \quad 0.6, \mathrm{CHCl}_{3}\right.$); IR (neat) $1575 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.25 \sim 1.50(26 \mathrm{H}, \mathrm{m}), 1.50 \sim 1.74(9 \mathrm{H}, \mathrm{m}), 1.75(1 \mathrm{H}, \mathrm{m}), 2.01(4 \mathrm{H}, \mathrm{m}), 2.60(5 \mathrm{H}, \mathrm{m}), 2.91(2 \mathrm{H}$, m), $3.50(1 \mathrm{H}, \mathrm{m}), 4.15(1 \mathrm{H}, \mathrm{m}), 5.33(2 \mathrm{H}, \mathrm{m}), 7.22(2 \mathrm{H}, \mathrm{m}), 7.51(2 \mathrm{H}, \mathrm{m}), 8.44(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (150 MHz, CDCl_{3}) $\delta 26.3,26.4,27.0,27.1,27.2,27.5,27.8,29.1,29.3,29.4,29.7,31.1,33.0,34.2$, $49.9,57.1,72.6,77.7,123.2,129.6,130.0,135.7,137.9,147.1,149.9 ;$ HREIMS $m / z 573.4643\left[\mathrm{M}^{+}\right.$; calcd for $\mathrm{C}_{38} \mathrm{H}_{59} \mathrm{~N}_{3} \mathrm{O}_{1}$ 573.4658].

Synthetic Compound (+)-3: $[\alpha]^{25}{ }_{\mathrm{D}}+6.2^{\circ}\left(c \quad 0.8, \mathrm{CHCl}_{3}\right)$; IR (neat) $1575 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.25 \sim 1.50(26 \mathrm{H}, \mathrm{m}), 1.50 \sim 1.74(9 \mathrm{H}, \mathrm{m}), 1.77(1 \mathrm{H}, \mathrm{m}), 2.00(4 \mathrm{H}, \mathrm{m}), 2.58(5 \mathrm{H}, \mathrm{m}), 2.82(2 \mathrm{H}$, $\mathrm{m}), 3.45(1 \mathrm{H}, \mathrm{m}), 4.04(1 \mathrm{H}, \mathrm{m}), 5.33(2 \mathrm{H}, \mathrm{m}), 7.18(2 \mathrm{H}, \mathrm{m}), 7.47(2 \mathrm{H}, \mathrm{m}), 8.43(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.3,26.4,27.1,28.0,28.8,29.1,31.1,33.0,34.3,49.9,57.3,77.7,123.2,129.8$, 135.7, 137.9, 147.1, 149.9; HREIMS $m / z 573.4661$ [M^{+}; calcd for $\mathrm{C}_{38} \mathrm{H}_{59} \mathrm{~N}_{3} \mathrm{O}_{1}$ 573.4658].

References

1. Tsuda, M.; Hirano, K.; Kubota, T.; Kobayashi, J. Tetrahedron Lett. 1999, 40, 4819-4820.
2. Snider, B. B.; Shi, B. Tetrahedron Lett. 2001, 42, 1639-1642.
3. (a) Baldwin, J. E.; Romeril, S. P.; Lee, V.; Claridge, T. D. W. Org. Lett. 2001, 3, 1145-1148. (b) Romeril, S. P.; Lee, V.; Claridge T. D. W.; Baldwin, J. E. Tetrahedron Lett. 2002, 43, 327-329.
4. Morimoto, Y.; Kitao, S.; Okita, T.; Shoji, T. Org. Lett. 2003, 5, 2611-2614.
5. Yoshimoto, K.; Kawabata, H.; Nakamichi, N.; Hayashi, M. Chem. Lett. 2001, 934-945.
6. (a) Frigerio, M.; Santagostino, M.; Tetrahedron Lett. 1994, 35, 8019-8022. (b) Frigerio, M.; Santagostino, M.; Sputore, S.; Palmisano, G. J. Org. Chem. 1995, 60, 7272-7276.
7. Oppolzer, W.; Siles, S.; Snowden, R. L.; Bakker, B. H.; Petrzilka, M. Tetrahedron 1985, 41, 3497-3509.
8. LeBel, N. A.; Balasubramanian, N. J. Am. Chem. Soc. 1989, 111, 3363-3368.
9. Annunziata, R.; Cinquini, M.; Cozzi, F.; Gennari, C.; Raimondia, L. J. Org. Chem. 1987, 52, 4674-4681.
10. (a) Browne, J. E.; Driver, M. J.; Russell, J. C.; Sammes, P. G. J. Chem. Soc., Perkin Trans. 1, 2000, 653-657. (b) Lei, H.; Atkinson, J. J. Org. Chem. 2000, 65, 2560-2567.
11. Davies-Coleman, M. T.; Faulkner, D. J.; Dubouwchik, G. M.; Roth, G. P.; Polson, C.; Fairchild, C. J. Org. Chem. 1993, 58, 5925-5930.

Sample Availability: Available from the authors.
© 2005 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.

