Molecules 2005, 10, 312-316

Asymmetric Synthesis of Double Bond Isomers of the Structure Proposed for Pyrinodemin A and Indication of Its Structural Revision

Haruaki Ishiyama, Masashi Tsuda, Tadashi Endo and Jun'ichi Kobayashi*

Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan. Tel: (+81) 11-706-4985, Fax: (+81) 11-706-4989.

* Author to whom correspondence should be addressed; E-mail: jkobay@pharm.hokudai.ac.jp

Received: 28 December 2004; in revised form: 24 January 2005/ Accepted: 24 January 2005 / Published: 31 January 2005

Abstract: Asymmetric synthesis of double bond isomers (+)-2 ($\Delta^{15',16'}$) and (+)-3 ($\Delta^{14',15'}$) of the structure (1) ($\Delta^{16',17'}$) proposed for pyrinodemin A, a cytotoxic *bis*-pyridine alkaloid with a unique *cis*-cyclopent[*c*]isoxazolidine moiety from a marine sponge, has been accomplished. Pyrinodemin A was indicated to be a 1:1 racemic mixture of 2 from comparison of C₁₈ and chiral HPLC analysis for pyrinodemin A and the synthetic compounds as well as ESIMS data of oxidative degradation products of pyrinodemin A.

Keywords: Pyrinodemin A, Amphimedon sp., asymmetric synthesis, structural revision

Pyrinodemin A, a cytotoxic *bis*-pyridine alkaloid with a unique *cis*-cyclopent[*c*]isoxazolidine moiety, has been isolated from a marine sponge *Amphimedon* sp., and its relative stereostructure was proposed as $1 (\Delta^{16',17'})$ on the basis of spectral data [1]. The unique structure of pyrinodemin A has prompted synthetic chemists to its total synthesis of **1** as well as syntheses of the double bond isomers $2 (\Delta^{15',16'})$ and $3 (\Delta^{14',15'})$ [2-4] followed by different proposals of the structural revision of pyrinodemin A to be **2** [2] or **3** [3,4].

In order to examine the correct structure of pyrinodemin A, we have synthesized (+)-2 and (+)-3, the double bond isomers of 1, as an optically active form, and compared HPLC profiles of the synthetic compounds and pyrinodemin A. In addition, oxidative degradation experiments were performed for a remaining small amount of pyrinodemin A to determine the position of a double bond. In this paper, we describe asymmetric synthesis of (+)-2 and (+)-3, and indication of the structure of pyrinodemin A to be (\pm) -2.

The $\Delta^{15',16'}$ double bond isomer (+)-2 was synthesized as follows (Scheme 1). The synthesis of hydroxylamine **6a** commenced with known pivaloate **5a** [5]. Oxidation of alcohol **5a** with 2-iodobenzoic acid (IBX) [6] in DMSO and THF afforded its aldehyde. Treatment of the aldehyde with NH₂OH·HCl and NaOAc in MeOH provided oxime which was reduced with NaBH₃CN in MeOH to afford hydroxylamine **6a** [7,8]. Condensation of **6a** and optically active aldehyde **7** [8] in CHCl₃ containing Na₂SO₄ at r.t. gave the nitrone **8a**, which was followed by heating to afford *cis*-cyclopent[*c*]isoxazolidine [9] **9a** in 58% yield.

Scheme 1.

Reagents and conditions: (a) IBX, DMSO, THF (69%); (b) H₂NOH·HCl, AcONa, MeOH (96%); (c) NaBH₃CN, MeOH, pH 3, 0 °C; (d) Na₂SO₄, **6**, CHCl₃, r.t.~reflux (58% for 2 steps); (e) 3N HCl, dioxane (80%); (f) NaIO₄, MeCN, H₂O, 0 °C; (g) Br⁻[Ph₃⁺(CH₂)₅CH₂OH], *n*-BuLi, THF, 0 °C (51% for 2 steps); (h) TIPSCl, imidazole, CH₂Cl₂ (75%); (i) H₂, Pd-C, MeOH (93%); (j) DIBAL, CH₂Cl₂, -78 °C (75%); (k) IBX, DMSO (80%); (l) Br⁻[Ph₃P⁺(CH₂)₇CH₂OH], *n*-BuLi, THF, 0 °C (81%); (m) 46% HF, MeCN (55%); (n) CBr₄, Ph₃P (80%); (o) 3-methylpyridine, LDA, DMPU, -40 °C (64%)

Treatment of **9a** with 3N HCl in dioxane gave diol, which was converted into its aldehyde by treatment with $NaIO_4$ and then into alcohol **10a** by Wittig reaction [10]. Protection of alcohol **10a** as its TIPS ether followed by reduction with Pd-C gave its saturated TIPS ether, which was converted

into alcohol **11a** with DIBAL. IBX oxidation of **11a** followed by Wittig reaction [10] afforded its unsaturated alcohol, which was subjected to deprotection with HF to give diol **12a** in 55 %. Treatment of diol **12a** with CBr₄ and PPh₃ provided its dibromide, which was coupled with 3-methypyridine using LDA and DMPU [11] in THF to furnish optically active compound (+)-**2**. This is the first synthesis of optical active form of **2**, although its racemic form ((\pm)-**2**) has been synthesized [2-4]. The $\Delta^{14^{\circ},15^{\circ}}$ double bond isomer (+)-**3** was prepared from pivaloate **5b** by almost same procedure as described for synthesis of (+)-**2** (Scheme 1).

The position of a double bond and the stereochemistry of pyrinodemin A were examined as follows. Compounds (±)-1 [2], (±)-2 [2], and (+)-3 were subjected to C_{18} HPLC [Wako sil-II 5C18 RS, Wako Ind., Ltd., 4.6 x 250 mm; flow rate 1.0 mL/min: eluent; MeOH/H₂O (91:9); UV detection at 263 nm] and found to be separated (1, t_R 21.6 mim; 2, t_R 17.0 min; 3, t_R 15.8 min), while the retention time $(t_{R}17.0 \text{ min})$ of pyrinodemin A was identical with that of 2 under the same condition, indicating that the position of a double bond of pyrinodemin A corresponded to that $(\Delta^{15',16'})$ of **2**. To elucidate the stereochemistry of pyrinodemin A, compound (±)-2 was subjected to chiral HPLC [CHIRALCELL OD-H, Daicel Co., Ltd., 4.6 x 250 mm; flow rate 1.0 mL/min: eluent: hexanes/i-PrOH (95:5); UV detection at 263 nm] and found to be separated (t_R 44 and 47 min), while the retention time of (+)-2 was 47 min (Figure 1). On the other hand, pyrinodemin A gave the two peaks corresponding to those of (\pm) -2 in a ratio of 1:1 under the same conditions, indicating that pyrinodemin A is a 1:1 racemic mixture of 2. Furthermore, pyrinodemin A was treated with OsO_4 and then $NaIO_4$ to give degradation products, one of which showed an ESIMS fragment ion peak at m/z 242 (M+Na)⁺, corresponding to an aldehyde (13) of C-7'~C-15' segment connected to a pyridine ring (Scheme 2). From the results described above, it was indicated that the olefin position of pyrinodemin A was C-15' and C-16' (2), as proposed by Snider's group [2], and that pyrinodemin A was a 1:1 racemic mixture of 2.

Figure 1. Chiral HPLC profiles of (a) synthetic compounds (±)-2, (b) (+)-2, and (c) pyrinodemin A

Scheme 2

Acknowledgments

We thank Professor B. B. Snider (Brandeis University) for generous offer of synthetic samples of (\pm) -1 and (\pm) -2. This work was supported in part by grants from the Akiyama Foundation and the Takeda Science Foundation and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Experimental

General

Optical rotations were determined on a JASCO P-1030 polarimeter. Infrared spectra were obtained on a JASCO FT/IR-230 spectrometer. Proton and carbon NMR spectra were recorded on a Bruker 600 MHz spectrometer. Chemical shifts are reported in δ values relative to chloroform (δ 7.26 for proton and δ 77.0 for carbon NMR. EI mass spectra were measured on a JEOL JMS-DX303 spectrometer.

Synthetic Compound (+)-2: $[\alpha]_{25}^{25} +5.5^{\circ}(c \ 0.6, CHCl_3)$; IR (neat) 1575 cm⁻¹; ¹H-NMR (600 MHz, CDCl_3) δ 1.25~1.50 (26H, m), 1.50~1.74 (9H, m), 1.75 (1H, m), 2.01 (4H, m), 2.60 (5H, m), 2.91 (2H, m), 3.50 (1H, m), 4.15 (1H, m), 5.33 (2H, m), 7.22 (2H, m), 7.51 (2H, m), 8.44 (4H, m); ¹³C-NMR (150 MHz, CDCl_3) δ 26.3, 26.4, 27.0, 27.1, 27.2, 27.5, 27.8, 29.1, 29.3, 29.4, 29.7, 31.1, 33.0, 34.2, 49.9, 57.1, 72.6, 77.7, 123.2, 129.6, 130.0, 135.7, 137.9, 147.1, 149.9; HREIMS *m/z* 573.4643 [M⁺; calcd for C₃₈H₅₉N₃O₁ 573.4658].

Synthetic Compound (+)-3: $[\alpha]^{25}_{D}$ +6.2°(*c* 0.8, CHCl₃); IR (neat) 1575 cm⁻¹; ¹H-NMR (600 MHz, CDCl₃) δ 1.25~1.50 (26H, m), 1.50~1.74 (9H, m), 1.77 (1H, m), 2.00 (4H, m), 2.58 (5H, m), 2.82 (2H, m), 3.45 (1H, m), 4.04 (1H, m), 5.33 (2H, m), 7.18 (2H, m), 7.47 (2H, m), 8.43 (4H, m); ¹³C-NMR (150 MHz, CDCl₃) δ 26.3, 26.4, 27.1, 28.0, 28.8, 29.1, 31.1, 33.0, 34.3, 49.9, 57.3, 77.7, 123.2, 129.8, 135.7, 137.9, 147.1, 149.9; HREIMS *m*/*z* 573.4661 [M⁺; calcd for C₃₈H₅₉N₃O₁ 573.4658].

References

- 1. Tsuda, M.; Hirano, K.; Kubota, T.; Kobayashi, J. Tetrahedron Lett. 1999, 40, 4819-4820.
- 2. Snider, B. B.; Shi, B. Tetrahedron Lett. 2001, 42, 1639-1642.

- 3. (a) Baldwin, J. E.; Romeril, S. P.; Lee, V.; Claridge, T. D. W. *Org. Lett.* **2001**, *3*, 1145-1148. (b) Romeril, S. P.; Lee, V.; Claridge T. D. W.; Baldwin, J. E. *Tetrahedron Lett.* **2002**, *43*, 327-329.
- 4. Morimoto, Y.; Kitao, S.; Okita, T.; Shoji, T. Org. Lett. 2003, 5, 2611-2614.
- 5. Yoshimoto, K.; Kawabata, H.; Nakamichi, N.; Hayashi, M. Chem. Lett. 2001, 934-945.
- 6. (a) Frigerio, M.; Santagostino, M.; *Tetrahedron Lett.* **1994**, *35*, 8019-8022. (b) Frigerio, M.; Santagostino, M.; Sputore, S.; Palmisano, G. J. Org. Chem. **1995**, *60*, 7272-7276.
- 7. Oppolzer, W.; Siles, S.; Snowden, R. L.; Bakker, B. H.; Petrzilka, M. *Tetrahedron* 1985, *41*, 3497-3509.
- 8. LeBel, N. A.; Balasubramanian, N. J. Am. Chem. Soc. 1989, 111, 3363-3368.
- 9. Annunziata, R.; Cinquini, M.; Cozzi, F.; Gennari, C.; Raimondia, L. J. Org. Chem. 1987, 52, 4674-4681.
- 10. (a) Browne, J. E.; Driver, M. J.; Russell, J. C.; Sammes, P. G. J. Chem. Soc., Perkin Trans. 1, 2000, 653-657. (b) Lei, H.; Atkinson, J. J. Org. Chem. 2000, 65, 2560-2567.
- 11. Davies-Coleman, M. T.; Faulkner, D. J.; Dubouwchik, G. M.; Roth, G. P.; Polson, C.; Fairchild, C. J. Org. Chem. **1993**, *58*, 5925-5930.

Sample Availability: Available from the authors.

© 2005 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.