1,3-Dipolar Cycloaddition Reactions of 1-(4-Phenylphenacyl)-1,10-phenanthrolinium N-Ylide with Activated Alkynes and Alkenes

F. Dumitrascu ${ }^{1, *}$, M. R. Caira ${ }^{2}$, C. Draghici ${ }^{1}$, M. T. Caproiu ${ }^{1}$ and A. Badoiu ${ }^{1}$
${ }^{1}$ Centre of Organic Chemistry "C. D. Nenitzescu", Romanian Academy, Spl. Independentei 202B, Bucharest 060023, Romania
${ }^{2}$ Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa

* Author to whom correspondence should be addressed; fdumitra@.cco.ro

Received: 8 October 2004; in revised form: 4 November 2004/ Accepted: 10 November 2004 /
Published: 28 Febryary 2005

Abstract

The $3+2$ cycloaddition reaction of 1-(4-phenylphenacyl)-1,10phenanthrolinium ylide 4 with activated alkynes gave pyrrolo[1,2a][1,10]phenanthrolines $\mathbf{6 a - d}$. The "one pot" synthesis of $\mathbf{6 a , b}, \mathbf{d}$ from $\mathbf{4}$, activated alkenes, $\mathrm{Et}_{3} \mathrm{~N}$ and tetrakis-pyridine cobalt (II) dichromate (TPCD) is described. The helical chirality of pyrrolophenanthrolines $\mathbf{6 b - d}$ was put in evidence by NMR spectroscopy.

Keywords: N-ylides, 1,3-dipolar cycloaddition, pyrrolophenanthrolines, helical chirality.

Introduction

The synthesis of pyrrolo[1,2-a][1,10]phenanthroline by 1,3-dipolar cycloaddition of 1,10phenanthrolinium N-ylides and acetylenic dipolarophiles was recently described. [1-4] Owing to the angular condensation, it was expected that the skeleton of this heterocyclic system might deviate from planarity, conferring helicity on the molecule. Here we describe the reaction of 1-(4-phenylphenacyl)-1,10-phenanthrolinium N-ylide (4) with activated alkynes and alkenes giving new pyrrolo[1,2a][1,10]phenanthrolines 6a-d. The 1,3 -dipolar cycloaddition of 1,10 -phenanthrolinium N-ylides to activated alkenes is described in detail for the first time.

Results and Discussion

1-(4-Phenylphenacyl)-1,10-phenanthrolinium bromide (3) was obtained by refluxing 1,10 phenanthroline monohydrate (1) and 2-bromo-4'-phenylacetophenone (2) in acetone. The structure of the cycloimmonium bromide was assigned by elemental analysis and NMR spectroscopy. In the ${ }^{1} \mathrm{H}$ NMR spectrum of salt $\mathbf{3}$, recorded in DMSO- d_{6}, the methylenic hydrogens appeared as a broad singlet. This is due to non-planarity of the phenanthroline, as we reported recently [5].

The 1,10-phenanthrolinium N-ylide 4, being unstable, was generated in situ by deprotonation of the cycloimmonium salt $\mathbf{3}$ with triethylamine. The ylide $\mathbf{4}$ can react as 1,3-dipole with acetylenic dipolarophiles. Treatment of the ylide $\mathbf{4}$ with dimethyl, diethyl or diisopropyl acetylenedicarboxylates in dichloromethane at room temperature gave a mixture of cis-3,3a-dihydro pyrrolophenanthrolines 5a-c, along with variable amounts of pyrrolophenanthrolines 6a-c.[1-3] Refluxing the above mixture in ethanol leads to the pyrrolophenanthrolines 6a-c in yields of over 60% (Scheme 1).

Scheme 1

R: 4-C $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}$; E : a: $\mathrm{CO}_{2} \mathrm{CH}_{3}$, b: $\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$, c: $\mathrm{CO}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$

The structure of the dihydroderivatives 5 was assigned by ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectroscopy. The $\mathrm{H}-$ 3 atom ($\delta=4.59 \mathrm{ppm}$) appeared as a doublet with coupling constant $J=13.8 \mathrm{~Hz}$, whereas H-3a $(\delta=$ $5.41 \mathrm{ppm})$ gave a double triplet with coupling constants of $13.8,2.6$ and 2.1 Hz , the last two values corresponding to the coupling with $\mathrm{H}-4$ and $\mathrm{H}-5$ hydrogens. In turn, the $\mathrm{H}-4$ and $\mathrm{H}-5$ atoms gave two double doublets at $\delta=6.41 \mathrm{ppm}, J=2.6$ and 9.7 Hz and at $\delta=5.94 \mathrm{ppm}, J=2.1$ and 9.7 Hz , respectively. The large value of the vicinal coupling constant between $\mathrm{H}-3$ and $\mathrm{H}-3 \mathrm{a}$ ($J=13.8 \mathrm{~Hz}$) indicated cis configuration, in agreement with similar values in pyrrolinic moieties $[6,7]$.

The 1,3-dipolar cycloaddition between ylide 4 and unsymmetrical alkyne ethyl propiolate is regiospecific and the pyrrolophenanthroline derivative $\mathbf{6 d}$ is obtained (Scheme 2).

Scheme 2

The pyrrolophenanthrolines $\mathbf{6 a}, \mathbf{b}$ were also obtained by synthesis from salt $\mathbf{3}$, methyl or ethyl maleate, triethylamine and tetrakis-pyridine cobalt (II) dichromate $\left[\mathrm{Py}_{4} \mathrm{Co}\left(\mathrm{HCrO}_{4}\right)_{2}, \mathrm{TPCD}\right]$ in DMF, at $80-90^{\circ} \mathrm{C}$ (Scheme 3). Similarly, the compound $\mathbf{6 d}$ was obtained from bromide 3, triethylamine, ethyl acrylate and TPCD. This method was described previously in the case of other heteroaromatic N-ylides [8-10].

Scheme 3

R: $4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}$; E: a: $\mathrm{CO}_{2} \mathrm{CH}_{3}$, b: $\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$

The structures of the pyrrolophenanthrolines $\mathbf{6 a - d}$ were assigned by elemental analysis and NMR spectroscopy. In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{6 b}$, recorded in CDCl_{3}, the methylenic hydrogens of the ester group appeared as two ABX_{3} patterns multiplets. A similar observation was made for compound $\mathbf{6 d}$. At room temperature, the same ABX_{3} pattern multiplets for the methylenic hydrogens was observed [11]. In the case of the compund $\mathbf{6 c}$, the methyl groups in each isopropyl radical were found to be non-equivalent in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum as well as in the ${ }^{13} \mathrm{C}$-NMR spectrum.

The behaviour can be explained by non-coplanarity between pyrrolic and pyridinic moieties, which imparts helical chirality to the molecules of $\mathbf{6 b} \mathbf{- d}$, at room temperature.[12] This behaviour renders the molecular framework chiral, explaining thereby the non-equivalence of the diastereotopic methylene and methyl (in the isopropyl group) hydrogens in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra. This hypothesis was confirmed by X-ray analysis of the compound $\mathbf{6 d}$ [11].

Conclusions

The new pyrrolo [1,2-a][1,10]phenanthrolines 6a-d were obtained by 1,3-dipolar cycloaddition between N-ylide 4 and activated alkynes. A new approach to 1,3 -dipolar cycloaddition to $1,10-$
phenanthrolinium N-ylides is described, namely the "one pot" reaction with activated alkenes, in the presence of a versatile mild oxidant (TPCD).

Experimental

General

Melting points were determined on a Boëtius hot plate and are uncorrected. The NMR spectra were recorded on a Varian Gemini 300 BB instrument, operating at 300 MHz for ${ }^{1} \mathrm{H}$ and 75 MHz for ${ }^{13} \mathrm{C}$.

1-(4-Phenylphenacyl)-1,10-phenanthrolinium bromide (3)

1,10-Phenanthroline hydrate ($4 \mathrm{~g}, 20 \mathrm{mmol}$) and 2'-bromo-4-phenylacetophenone ($5.5 \mathrm{~g}, 20 \mathrm{mmol}$) were refluxed in acetone (80 mL) for 24 hrs . The precipitate formed was filtered by suction and washed with acetone (50 mL). Yield 75%, m.p. $227-230{ }^{\circ} \mathrm{C}$ (from ethanol); Anal. Calcd. For $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}$: C 68.58; H 4.21; Br 17.55; N 6.15. Found C 68.91, H 4.53, Br 17.93; N 6.42; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d $\left.{ }_{6}, \delta, \mathrm{ppm}, ~ J, ~ H z\right): ~ 7.36 ~(b s, ~ 2 H, ~ C H 2) ; ~ 7.48-7.51 ~(m, ~ 1 H, ~ H-4 ") ; ~ 7.54-7.59 ~(m, ~ 2 H, ~ H-3 ", ~ H-~$ 5"); 7.85-7.88 (m, 2H, H-2", H-6"); 7.91 (dd, 1H, 8.2, 4.3, H-8); 8.04 (d, 2H, 8.5, H-3', H-5'); 8.28 (d, $2 \mathrm{H}, 8.5, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} \mathbf{6}^{\prime}$); 8.48 and 8.51 (2d, 2H, 8.9, H-5, H-6); 8.53 (dd, 1H, 4.3, 1.8, H-9); 8.64 (dd, 1H, 8.2, 5.9, H-3); 8.78 (dd, 1H, 8.2, 1.8, H-7); 9.62 (dd, 1H, 8.2, 1.4, H-4); 9.71 (dd, 1H, 5.9, 1.4, H-2); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO-d $\left.{ }_{6}, 8, \mathrm{ppm}\right): 69.6\left(\mathrm{CH}_{2}\right) ; 124.8(\mathrm{C}-3) ; 125.5(\mathrm{C}-8) ; 127.0(\mathrm{C}-6) ; 127.1$ (C-2", C-6"); 127.4 (C-3', C-5'); 128.7 (C-4"); 128.9 (C-2', C-6'); 129.2 (C-3", C-5"); 130.7 (C-5); 131.5 (C-4a); 132.0 (C-6a); 133.1 (C-1'); 136.3 (C-10b); 138.0 (C-7); 138.4 (C-10a); 138.6 (C-1"); 145.3 (C-4'); 148.1 (C-4); 148.9 (C-9); 152.1 (C-2); 190.2 (COAr).

Diesters of 1-(4-phenylbenzoyl)-pyrrolo[1,2-a][1,10]phenanthroline-2,3-dicarboxylate (6a-c): General procedure:

Phenanthrolinium salt 3 ($2.3 \mathrm{~g}, 5 \mathrm{mmol}$) was suspended in dichloromethane (25 mL) and then dimethyl (diethyl or diisopropyl) acetylenedicarboxylate (5.5 mmol) was added. Under vigorous stirring, triethylamine ($0.7 \mathrm{~mL}, 5 \mathrm{mmol}$, dissolved in 5 mL of methylene chloride) was added dropwise. After 20 min the reaction mixture was washed twice with water $(50 \mathrm{~mL})$ and the solvent evaporated. The residue was refluxed in ethanol for an hour and the precipitate was isolated by filtration.

Dimethyl 1-(4-phenylbenzoyl)-pyrrolo[1,2-a][1,10]phenanthroline-2,3-dicarboxylate (6a). Yellow crystals (from DMF). Yield 60%, m.p. $286-7^{\circ} \mathrm{C}$; Anal. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}$: C 74.70 , H 4.31, N 5.44. Found C 75.02, H 4.62, N 5.71; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}+\mathrm{TFA}, \delta, \mathrm{ppm}, \mathrm{J}, \mathrm{Hz}\right): 3.68,3.96\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$; 7.38-7.42 (m, 1H, H-4"); 7.43-7.47 (m, 2H, H-3", H-5"); 7.50-7.55 (m, 2H, H-2", H-6"); 7.51 (d, 2H, 8.3, H-3', H-5'); 7.62 (d, 2H, 8.3, H-2', H-6'); 7.96 (d, 1H, 9.5, H-5); 8.22 (dd, 1H, 8.2, 6.3, H-9); 8.29, 8.38 (2d, 2H, 8.9, H-6, H-7); 8.58 (d, 1H, 9.5, H-4); 9.15 (dd, 1H, 8.1, 1, H-8); 9.42 (dd, 1H, 6.3, $1, \mathrm{H}-10) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}+\mathrm{TFA}, \delta, \mathrm{ppm}\right): 52.7$, 53.6 (2 CH3); 96.5 (C-3); 117.7, 119.2, 122.5, 126.4,
126.9, 128.5, 130.5 (C-1, C-2, C-3a, C-5a, C-7a, C-11a, C-11b); 124.3 (C-5); 124.6 (C-9); 124.7 (C-4); 125.9 (C-7); 126.1 (C-3', C-5'); 127.0 (C-2", C-6"); 127.8 (C-2', C-6'); 128.4 (C-4"); 129.0 (C-3", C5'); 130.2 (C-6); 139.0, 139.4 (C-1', C-1"); 144.4 (C-4'); 144.5 (C-10); 147.1 (C-8); 164.0 (2-CO2Me); 166.3 ($3-\mathrm{CO}_{2} \mathrm{Me}$); 184.2 (COAr).

Diethyl 1-(4-phenylbenzoyl)-pyrrolo[1,2-a][1,10]phenanthroline-2,3-dicarboxylate (6b). Yellow crystals (from nitromethane). Yield 84%, m.p. $228-31^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$: C $75.26, \mathrm{H}$ 4.83 , N 5.16. Found C 75.55, H 5.09, N 5.38; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}, J, \mathrm{~Hz}\right): 1.07$ (t, 3H, 7.1, 2$\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 1.38\left(\mathrm{t}, 3 \mathrm{H}, 7.1,3-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 3.77,3.80\left(2 \mathrm{q}, 1 \mathrm{H}, 10.2,7.1,2-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{3}\right) ; 3.92,3.95(2 \mathrm{q}$, $1 \mathrm{H}, 10.4,7.1,2-\mathrm{CH}_{\mathrm{A}} \mathbf{H}_{\mathbf{B}} \mathrm{CH}_{3}$); 4.13-4.47 (m, 2H, 3-CH2 CH_{3}); 7.32 (dd, 1H, 8.1, 4.3, H-9); 7.41-7.44 (m, 1H, 7.4, H-4"); 7.47-7.52 (m, 2H, 7.4, H-3", H-5"); 7.68 (d, 1H, 9.2, H-5); 7.69-7.71 (m, 1H, 7.4, H-2", H-6"); 7.75 (d, 2H, 8.4, H-3', H-5'); 7.78 and 7.84 (2d, 2H, 8.6, H-6, H-7); 8.08 (dd, 1H, 4.3, 1.7, H-10); 8.15 (dd, 1H, 8.1, 1.7, H-8); 8.23 (d, 2H, 8.4, H-2', H-6'); 8.56 (d, 1H, 9.2, H-4); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right): 13.7,14.3\left(2 \mathrm{CH}_{3}\right) ; 60.2,61.6\left(2 \mathrm{CH}_{2}\right) ; 104.1(\mathrm{C}-3) ; 120.3(\mathrm{C}-4) ; 122.5(\mathrm{C}-9) ; 125.3$ (C-7); 125.7, 125.9, 127.7, 129.0, 130.8, 137.3, 137.4 (C-1, C-2, C-3a, C-5a, C-7a, C-11a, C-11b); 126.0 (C-5); 126.6 (C-3', C-5'); 126.7 (C-6); 127.3 (C-2", C-6"); 128.2 (C-4"); 129.0 (C-3", C-5"); 130.6 (C-2', C-6'); 136.0 (C-8); 136.8 (C-1’); 140.1 (C-1"); 144.8 (C-4'); 145.8 (C-10); 163.6 (2$\left.\mathrm{CO}_{2} \mathrm{Et}\right) ; 165.6\left(3-\mathrm{CO}_{2} \mathrm{Et}\right) ; 184.1$ (COAr).

Diisopropyl 1-(4-phenylbenzoyl)-pyrrolo[1,2-a][1,10]phenanthroline-2,3-dicarboxylate (6c). Yellow crystals (from acetonitrile). Yield 80%, m.p. 193- $5^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}$: C 75.77, H 5.30, N 4.91. Found C 76.1, H 5.58, N 5.07; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}, J, \mathrm{~Hz}\right): 0.90,1.12(2 \mathrm{~d}, 6 \mathrm{H}, 6.3,2-$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 1.37,1.40\left(2 \mathrm{~d}, 6 \mathrm{H}, 6.3,3-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 4.78\left(\mathrm{sep}, 1 \mathrm{H}, 6.3,2-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 5.32(\mathrm{sep}, 1 \mathrm{H}, 6.3$, 3-CH($\left.\mathrm{CH}_{3}\right)_{2}$); 7.32 (dd, 1H, 8.2, 4.3, H-9); 7.41-7.43 (m, 1H, 7.3, H-4"); 7.47-7.52 (m, 2H, 7.3, H-3", H-5"); 7.68 (d, 1H, 9.2, H-5); 7.69-7.72 (m, 2H, 7.3, H-2", H-6"); 7.75 (d, 2H, 8.2, H-3', H-5'); 7.79, 7.86 (2d, 2H, 8.5, H-6, H-7); 8.01 (dd, 1H, 4.3, 1.7, H-10); 8.15 (dd, 1H, 8.2, 1.7, H-8); 8.26 (d, 2H, 8.2, H-2', H-6'); 8.59 (d, 1H, 9.2, H-4); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right): 20.9,21.5,22.0,22.1\left(4 \mathrm{CH}_{3}\right)$; 67.8, 69.6 (2CH); 104.1 (C-3); 120.4 (C-4); 122.4 (C-9); 125.1 (C-7); 125.6 (C-5); 125.6, 125.8, 127.6, 129.1, 130.8, 137.2, 137.4 (C-1, C-2, C-3a, C-5a, C-7a, C-11a, C-11b); 126.7 (C-6); 126.8 (C3', C-5'); 127.0 (C-2", C-6"); 128.0 (C-4"); 128.9 (C-3", C-5"); 130.8 (C-2', C-6'); 135.9 (C-8); 136.7 (C-1'); 140.2 (C-1"); 144.9 (C-4'); 145.6 (C-10); 163.1 ($2-\mathrm{CO}_{2} \mathrm{iPr}$); 165.2 (3- $\mathrm{CO}_{2} \mathrm{iPr}$); 183.8 (COAr).

Ethyl 1-(4-phenylbenzoyl)-pyrrolo[1,2-a][1,10]phenanthroline-3-carboxylate (6d)

Phenanthrolinium salt 3 ($2.3 \mathrm{~g}, 5 \mathrm{mmol}$) was suspended in dichloromethane (25 mL) and then of ethyl propiolate ($0.6 \mathrm{~mL}, 6 \mathrm{mmol}$) were added. Under vigorous stirring triethylamine ($0.75 \mathrm{~mL}, 5$ mmol, dissolved in 5 mL of methylene chloride) were added dropwise. After 20 min the reaction mixture was washed with water (50 mL) and the solvent evaporated. The residue was purified by column chromatography on neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. The product was recrystallized from an acetonitrile and ethanol mixture (2:1) to give yellow crystals.Yield 37%, m.p. $234-6^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$: C 79.13, H 4.71, N 5.95. Found C 79.41, H 5.02, N $6.24 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta\right.$, ppm, J, Hz): 1.44 (t, 3H, 7.1, CH_{3}); 4.38-4.50 (m, 2H, CH2); 7.36 (dd, 1H, 8.2, 4.2, H-9); 7.41-7.47 (m,

1H, H-4"); 7.49-7.56 (m, 2H, H-3", H-5"); 7.65 (s, 1H, H-2); 7.71 (d, 1H, 9.3, H-5); 7.73-7.78 (m, 3H, H-6/H-7, H-2", H-6"); 7.82 (d, 2H, 8.5, H-3', H-5'); 7.87 (d, 1H, 8.6, H-6/H-7); 8.14 (dd, 1H, 8.2, 1.8, H-8); 8.28 (dd, 1H, 4.2, 1.8, H-10); 8.34 (d, 2H, 8.5, H-2', H-6'); 8.60 (d, 1H, 9.3, H-4); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right): 14.5\left(\mathrm{CH}_{3}\right) ; 60.0\left(\mathrm{CH}_{2}\right) ; 106.2(\mathrm{C}-3) ; 120.0(\mathrm{C}-4) ; 121.6(\mathrm{C}-2) ; 122.3(\mathrm{C}-9) ; 124.9$, 126.5 (C-6, C-7); 125.4, 127.7, 129.6, 132.7, 136.5, 138.1 (C-1, C-3a, C-5a, C-7a, C-11a, C-11b); 125.6 (C-5); 126.9 (C-3', C-5'); 127.3 (C-2", C-6"); 128.0 (C-4"); 128.9 (C-3", C-5"); 130.7 (C-2', C$\left.6^{\prime}\right) ; 135.7$ (C-8); 138.7, 140.2, 145.0 (C-1', C-4', C-1'); 146.0 (C-10); 164.6 ($\left.\mathrm{CO}_{2} \mathrm{Et}\right) ; 184.7$ (COAr).

General procedure for "one pot" synthesis of pyrrolophenanthrolines 6a,b,d

A solution of salt $3(5 \mathrm{mmol})$, alkene (15 mmol) (dimethyl-, diethylmaleate or ethyl acrylate), triethylamine (6 mmol) and TPCD $(5 \mathrm{mmol})$ in DMF $(30 \mathrm{~mL})$ was stirred at $80-90^{\circ} \mathrm{C}$ for 6 hrs. It was then cooled to the room temperature and a 5% aqueous HCl solution (100 mL) was added. The precipitate was filtered and purified by recrystallization from a suitable solvent. The pyrrolophenanthrolines $\mathbf{6 a , b}, \mathbf{d}$ were obtained in 32-61\% yields.

References and Notes

1. Dumitrascu, F.; Mitan, C. I.; Draghici, C.; Caproiu, M. T.; Raileanu, D. Tetrahedron Lett. 2001, 8379.
2. Dumitrascu, F.; Mitan, C. I.; Draghici, C.; Caproiu, M. T. Rev. Roum. Chim. 2002, 47, 881; [Chem. Abstr. 2004, 140, 111296e].
3. Dumitrascu, F.; Mitan, C. I.; Draghici, C.; Caproiu, M. T.; Raileanu, D. Rev. Chim. 2002, 53, 787; [Chem. Abstr. 2003, 138, 368790m].
4. Ramona, D.; Rotaru, A.; Drochioiu, G.; Druta, I. J. Heterocycl. Chem. 2003, 40, 283.
5. Dumitrascu, F.; Caira, M. R.; Draghici, C.; Caproiu, M. T.; Badoiu, A. J. Chem. Crystallogr., 2004, in press.
6. Kutsuma, T.; Sekine, Y.; Fujiyama, K.; Kobayashi, Y. Chem. Pharm. Bull. 1972, 20, 2701-2706.
7. Frolich, J.; Krohnke, F. Chem. Ber. 1971, 104, 1621-1628.
8. Wei, X.; Hu, Y.; Li, T.; Hu, H. J. Chem. Soc. Perkin Trans I 1993, 2487.
9. Zhou, J.; Hu, Y.; Hu, H. J. Heterocycl. Chem. 2000, 37, 1165.
10. Wang, B.; Hu, J.; Zhang, X.; Hu, Y.; Hu, H. J. Heterocycl. Chem. 2000, 37, 1533.
11. Dumitrascu, F.; Caira, M. R.; Draghici, C.; Caproiu, M. T.; Barbu, L.; Badoiu, A. submitted to J. Chem. Crystallogr. 2004.
12. Eliel, E. L.; Wilen, S. H. Stereochemistry of Organic Compounds; Wiley: New York, 1994; pp. 1163-1166.

Sample Availability: Available from the authors.
© 2005 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.

