

ISSN 1420-3049 http://www.mdpi.org

Pechmann Reaction Promoted by Boron Trifluoride Dihydrate

Edmont V. Stoyanov ^{1,*} and Jochen Mezger ²

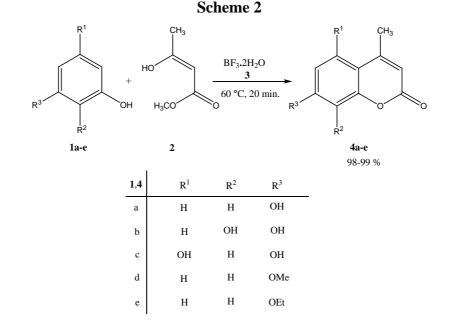
¹ Faculty of Pharmacy, Medical University of Sofia, Dunav 2, BG-1000 Sofia, Bulgaria
² Fachhochschule Aalen, Beethovenstr.1, D-73430 Aalen, Germany

* Author to whom correspondence should be addressed; e-mail: estoyanov@yahoo.com

Received: 8 October 2004; in revised form: 21 October 2004 / Accepted: 18 December 2004 / Published: 31 August 2005

Abstract: The Pechmann reaction of substituted phenols **1a-e** with methyl acetoacetate (**2**) can be activated by boron trifluoride dihydrate (**3**) to give the corresponding 4-methyl-coumarin derivatives **4a-e** in excellent yield (98-99 %).

Keywords: Pechmann Reaction, 4-methylcoumarins, boron trifluoride dihydrate.


Introduction

The coumarin moiety is widespread in nature and its derivatives find applications as fragrances, pharmaceuticals and agrochemicals [1]. Some 4-methylcoumarins are also useful as antioxidants in lipid peroxidation [2]. Their 7-methoxy- and 7-ethoxy derivatives have remained the most selective inhibitors for the coumarin 7-hydroxylase (Coh) enzyme [3,4]. The main method for the synthesis of coumarins is the Pechmann reaction of substituted phenols of type **1** with methyl, **2**, or ethyl aceto-acetate in the presence of protonic acid (conc. H_2SO_4), Lewis acids (AlCl₃, ZnCl₂, ZnCl₂/Al₂O₃, ZrCl₄ etc.), dehydrating agents (P₂O₅) or montmorillonite clay [5-10]. The mechanism of this condensation involves three reactions: hydroxyalkylation, transesterification, and dehydration, which occur concomitantly condensing the two reactants to form the coumarin heterocycle [5]. Recently, solid acid catalysis has been found effective in the synthesis of 7-hydroxy-4-methylcoumarin (**4a**), giving moderate yields (40-50 %) using commercially available solid acid catalysts (Amberlyst IR 120 or Nafion 417) [11]. In 1934 Meerwein and Pannwitz reported that by reaction of boron trifluoride with water two kinds of products are formed – boron trifluoride dihydrate (**3**) and boron trifluoride monohydrate (Scheme 1) [12].

The monohydrate is a fuming liquid, too unstable to be stored at room temperature. It loses one mole of BF₃ to form the dihydrate **3** (Scheme 1) [12]. The boron trifluoride monohydrate is a known superacid and several applications in organic syntheses have already been published [13-17]. In contrast to this, the dihydrate **3** is more stable and can be even distilled under reduced pressure. Meerwein and Pannwitz also described that the reaction of **3** with water is reversible and the starting compound could be recovered [12]. Although its crystal structure was determined [18] nothing was to be found in the literature about its chemistry, e.g. its application in organic synthesis, and to the best of our knowledge, the use of **3** as an activator for organic reactions has not been reported until now. The aim of the present work was to study the use of boron trifluoride dihydrate (**3**) as a promoting reagent for the *Pechmann* condensation.

Results and Discussion

The reaction of substituted phenols **1a-e** with methyl acetoacetate (**2**) was carried out at room temperature and at 60 $^{\circ}$ C (Scheme 2).

In contrast to the *Pechmann* synthesis activated by conc. H_2SO_4 , the reaction promoted by boron trifluoride dihydrate (**3**) is not perceivably exothermic and no cooling is necessary. This could be an important advantage for industrial applications. Resorcinol (**1a**) gave 7-hydroxy-4-methylcoumarin (**4a**) in yields ranging from 90-95 % under stirring for 3 hours at 18-20 °C and almost quantitatively (99 %) after 20 minutes at 60 °C. Of all obtained coumarins only the product **4a** is soluble in **3** at room temperature.

If polyhydroxy benzenes such as pyrogallol (1b) or phloroglucinol (1c) are used, the condensation with 2 slows down at 18-20 °C, probably due to the lower solubility of the starting compounds in 3. The reaction was complete in 10-12 hours. By heating at 60 °C a clear solution was formed from which within 5 minutes the 7,8-dihydroxy-4-methylcoumarin (4b) and the 5,7-dihydroxy-4-methylcoumarin (4c) precipitated. The yields at both reaction conditions were excellent (98-99 %, Table 1).

Product ^a	\mathbf{R}^{1}	\mathbf{R}^2	R ³	m.p. ^b / Lit. m.p. (°C)	Yield, %	Reaction time at 60 °C, min
4 a	Н	Н	OH	184-186 / 186 [19]	99	20
4b	Н	OH	OH	235-237 / 233-235 [19]	99	5
4 c	OH	Н	OH	289-291 / 286 ^c [20]	98	5
4d	Н	Н	OMe	158-160 / 160 [21]	98	20
4e	Н	Н	OEt	113-115 / 115 [22]	99	20

Table 1. Substituted 4-methylcoumarins 4a-e produced via Scheme 2

^aThe identity of all the products was confirmed by comparison of the m.p.'s, R_f values and IR spectra with authentic samples; ^bRecrystallization solvents: for **4a** 50 % EtOH, for **4b** H₂O, for **4c-e** EtOH; ^cFrom MeOH/H₂O.

The condensation of methyl acetoacetate (2) with 3-methoxy- (1d) and 3-ethoxyphenol (1e) was also successful. At room temperature the corresponding 7-methoxy- (4d) and 7-ethoxy-4-methyl-coumarin (4e) were isolated after 15-18 hours in very good yields (85-90 %). If the reactions were carried out at 60 °C for 20 minutes, the yields increased to 98-99 % (Table 1). In order to compare the activation ability of 3 with that of conc. H_2SO_4 for the synthesis of 4d and 4e, we repeated the same experiments using concentrated sulfuric acid, but the yields were always lower (40-70 %).

To isolate the products **4a-e**, the reaction mixtures were poured into 50 g of crushed ice and the solids formed were collected by filtration. The boron trifluoride dihydrate (**3**) can be reused several times after mild evaporation of the aqueous phase under reduced pressure.

Conclusions

In summary, to the best of our knowledge the use of the boron trifluoride dihydrate (**3**) as an activator in organic synthesis is now reported by us for the first time. The title compound **3** can be used in the *Pechmann* condensation, giving substituted 4-methylcoumarins in excellent yields (98-99%). The possibility of reusing **3** also provides a cheaper and easier method for the synthesis of **4**.

Experimental

General procedure

A mixture of the corresponding phenol **1a-e** (30 mmol), methyl acetoacetate (**2**, 3.48 g, 30 mmol) and boron trifluoride dihydrate (**3**, 20.8 g, 200 mmol) was heated at 60 °C for 20 minutes. After cooling to room temperature, the mixture was poured into 50 g of crushed ice. The crystals formed were filtered off, washed with water and air dried to give crude, tlc-pure products **4a-e** (POLYGRAM SIL G/UV₂₅₄ plates, solvent CH₂Cl₂:CH₃COOC₂H₅ 9:1). If necessary the products can be recrystallized from the solvents given in Table 1.

References and Notes

- 1. O'Kennedy, R.; Thornes, R. D. In *Coumarins: Biology, Applications and Mode of Action*; Wiley & Sons: Chichester, **1997**.
- Raj, H. G.; Parmar, V. S.; Jain, S. C.; Goel, S.; Poonam, H.; Malhorta, S.; Singh, A.; Olsen, C. E.; Wengel, J. Mechanism of biochemical action of substituted 4-methylbenzopyran-2-ones. Part 3: A novel mechanism for the inhibition of biological membrane lipid peroxidation by bioxygenated 4methylcoumarins mediated by the formation of a stable ADP-Fe-inhibitor mixed ligand complex. *Bioorg. Med. Chem.* 1998, 6, 2205-2212.
- 3. Tegtmeier, M.; Legrum, W. 7-Aminocoumarins are substrates of cytochrome P450-isozymes. *Arch. Pharm.* (*Weinheim, Ger.*) **1998**, *33*, 143-148.
- 4. Moriya, T. The solubilization equilibrium of 7-Ethoxycoumarins in ionic micelles. *Bull. Chem. Soc. Jpn.* **1988**, *61*, 585-589.
- 5. v. Pechmann, H.; Duisberg, C. Über die Verbindungen der Phenole mit Acetessigäther. *Ber. Dtsch. Chem. Ges.* **1883**, *16*, 2119-2128.
- 6. Corrie, J. E. T. A convenient synthesis of *N*-(7-dimethylamino-4-methylcoumarin-3-yl)-maleimide incorporating a novel variant of the Pechmann reaction. *J. Chem. Soc. Perkin Trans. I* **1990**, *7*, 2151-2152.
- Shockravi, A.; Heravi, M. M.; Valizadeh, H. An efficient and convenient synthesis of furocoumarins via Pechmann reaction on ZnCl₂/Al₂O₃ under microwave irradiation. *Phosphorus, Sulphur*, 2003, 178, 143-147.
- 8. Smitha, G.; Sanjeeva Reddy, Ch. ZrCl₄-Catalyzed Pechmann reaction: Synthesis under solvent-free conditions. *Synth. Commun.* **2004**, *34*, 3997-4003.
- 9. Setha, S.; Phadke, R. In Organic Reactions; Wiley & Sons: New York, 1953, 7, 1-58.
- 10. Li, T. S.; Zhang, Z. H.; Yang, F.; Fu, C. G. Montmorillonite clay catalysis. Part 7. An environmentally friendly procedure for the synthesis of coumarins via Pechmann condensation of phenols with ethyl acetoacetate. *J. Chem. Research* (*S*) **1998**, *1*, 38-39.
- 11. Holden, M. S.; Crouch, R. D. The Pechmann reaction. J. Chem. Educ. 1998, 75, 1631-1632.
- 12. Meerwein, H.; Pannwitz, W. Die Molekülverbindungen des Borfluorids mit dem Wasser, den Alkoholen und den organischen Säuren. J. Prakt. Chem. **1934**, 141, 123-147.

- 14. Bagno, A.; Bukala J.; Olah, G. A. Superacid-catalyzed carbonylation of methane, methyl halides, methyl alcohol, and dimethyl ether to methyl acetate and acetic acid. *J. Org. Chem.* **1990**, *55*, 4284-4289.
- 15. Olah, G. A.; Wang, Q.; Li, X.; Prakash, G. K. S. Convenient preparation of alkyl nitrates free of nitrites with potassium nitrate and boron trifluoride hydrate. *Synthesis* **1993**, *2*, 207-208.
- 16. Olah, G. A.; Wang, Q.; Li, X.; Busci, I. Aromatic nitration with potassium nitrate or nitric acid and boron trifluoride monohydrate. *Synthesis* **1992**, *11*, 1085-1086.
- 17. Olah, G. A.; Wang, Q.; Trivedi, N. J.; Prakash, G. K. S. Boron trifluoride monohydrate catalized one-flask preparation of sulfides from carbonyl compounds with thiols and triethylsilane. *Synthesis* **1992**, *5*, 465-466.
- Bank, W. B.; Carpenter, G. B. The crystal structure of boron trifluoride dihydrate. *Acta Crystallogr.* Sect. A 1964, 17, 742-745.
- Shockravi, A.; Valizadeh, H.; Heravi, M. M. Microwave-assisted Pechmann reaction on P₂O₅/molecular sieves. Application to the preparation of 4-substituted coumarins. *Phosphorus, Sulphur*, **2002**, *177*, 2835-2841.
- 20. Reddy, B. M.; Reddy, V. R.; Giridhar, D. Synthesis of coumarins catalyzed by eco-friendly W/ZrO₂ solid acid catalyst. *Synth. Commun.* **2001**, *31*, 3603-3607.
- 21. Ahmed, B.; Khan, S. A.; Alam, T. Synthesis and antihepatotoxic activity of some heterocyclic compounds containing the 1,4-dioxane ring system. *Pharmazie*, **2003**, *58*, 173-177.
- 22. Singh, V.; Singh, J.; Kaur, K. P.; Kad, G. L. Acceleration of the Pechmann reaction by microwave irradiation: Application to the preparation of coumarins. *J. Chem. Research* (*S*) **1997**, *2*, 58-59.

Sample Availability: Available from the authors.

© 2005 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.