ISSN 1420-3049
http://www.mdpi.org

Triisobutylaluminium (TIBAL) Promoted Rearrangement of C-glycosides

Matthieu Sollogoub* and Pierre Sinaÿ

Ecole Normale Supérieure, Département de Chimie, UMR 8642 : CNRS-ENS-UPMC Paris 6, 24 rue
Lhomond, 75231 Paris Cedex 05, France; http://www.chimie.ens.fr/UMR8642/Glycoscience/index.html

* Author to whom correspondence may be addressed; e-mails: Matthieu.Sollogoub@ens.fr

Received: 8 October 2004; in revised form: 4 November 2004 / Accepted: 10 November 2004
Published: 31 August 2005

Abstract

Triisobutylaluminium-promoted rearrangement of unsaturated glycosides containing electron-donating aglycons, such as C-aryl glycosides, provides direct access to highly functionalised cyclohexane derivatives.

Keywords: Carbohydrates, C-glycosides, carbocycles, rearrangements

Introduction

The conversion of carbohydrates into carbocycles provides a powerful method for the preparation of highly functionalised enantiomerically pure carbocycles. The pyranose-cyclohexane conversion has received particular attention due to the myriad of bioactive substances such as aminocyclitols, inositols and carbasugars, which are attainable. Among those a more complex one has attracted particular attention: pancratistatine [1-3] (Figure 1). It is a polyfunctionalised cyclohexane directly connected to an aromatic ring.

The classical Ferrier-II reaction [2] involving Hg (II) catalysed rearrangement of readily available hex-5-enopyranosides into cyclohexanones has, thus far, been the most widely exploited. In 1997 we reported that the same starting material used for the Ferrier-II reaction, carbohydrate based vinyl acetals (hex-5-enopyranosides) such as $\mathbf{1}$, undergo smooth reductive rearrangement with triisobutylaluminium (TIBAL) to afford highly functionalized cyclohexanes such as 2 (Scheme 1) [3].

Figure 1

(+)-pancratistatine

In sharp contrast with the Ferrier-II reaction, this rearrangement proceeds with retention of the aglycon moiety, due to initial endo-glycosidic bond cleavage leading to a carbacationic intermediate \mathbf{A} stabilised by the methoxy group. On the other hand, the original anomeric configuration is preserved.

Scheme 1

We next reasoned that it should be possible to replace the methoxy group by other electron-donating groups (EDG) that would stabilise the analogous carbacationic intermediate \mathbf{B} and therefore promote endo cleavage. (Scheme 2) We would like to concentrate in this article on C-glycosides and provide a full experimental account of our preliminary results [4].

Scheme 2

Results and Discussion

The C-aryl-glycosides are a family of C-glycosides possessing an electron-donating aglycon, and their carbocyclisation could constitute a new entry into pancratistatine and similar structures. To test this hypothesis we first synthesised the unsaturated C-phenyl glycoside 7. Starting from acetobromoglucose 3 [5] we introduced the phenyl group using a Grignard reagent and then reacetylated to obtain the C-glucoside 4 [6]. Selective iodination, elimination, and protecting group exchange afforded the unsaturated C-phenyl glucoside 7 (Scheme 3).

Scheme 3.

3

4, 62 \%

5, 74 \%

6, 73 \%

7, 68 \%

Reagents and conditions: i) $\mathrm{PhMgBr}, \mathrm{Et}_{2} \mathrm{O}$, reflux, 1 hour; ii) $\mathrm{Ac}_{2} \mathrm{O}$, Pyr., R.T., 12 hours; iii) MeONa , MeOH, R.T., 5 hours; iv) $\mathrm{I}_{2}, \mathrm{PPh}_{3}$, DMF, R.T., 45 min.; v) $\mathrm{Ac}_{2} \mathrm{O}$, Pyr., R.T., 4 hours; vi) DBU, THF, reflux, 3 hours; vii) MeONa, MeOH, 12 hours; viii) BnBr, NaH, DMF, R.T., 5 hours.

Compound 7 was then reacted with TIBAL and gave the desired carbocycle $8(35 \%)$ along with the de-O-benzylated [7] open-chain product 9 (35%).

Scheme 4.

7

8, 35%

9, 35%

Reagents and conditions: i) TIBAL (10 eq.), Toluene, $50^{\circ} \mathrm{C}$, 12 hours

Product 9 is the result of an overall reductive cleavage of the endocyclic C5-O bond, a reaction which has already been described in enol ethers [8,9]. A hydro-alumination-elimination mechanism, as shown in Scheme 5, may explain this process.

Scheme 5

The reaction was here slower than usual, indicating that the phenyl might not be a strong enough EDG. We therefore turned our attention to anisole as EDG and synthesised unsaturated compound $\mathbf{1 3}$ in the same manner as $\mathbf{7}$ via the known $\mathbf{1 0}$ [10]. (Scheme 6)

Scheme 6.

Reagents and conditions: i) (MeO) $\mathrm{PhMgBr}, \mathrm{Et}_{2} \mathrm{O}$, reflux, 1 hour; ii) $\mathrm{Ac}_{2} \mathrm{O}$, Pyr., R.T., 12 hours; iii) MeONa , MeOH, R.T., 5 hours; iv) $\mathrm{I}_{2}, \mathrm{PPh}_{3}$, DMF, R.T., 45 min.; v) $\mathrm{Ac}_{2} \mathrm{O}$, Pyr., R.T., 8 hours; vi) DBU, THF, reflux, 3 hours; vii) MeONa, $\mathrm{MeOH}, 12$ hours; viii) $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{DMF}$, R.T., 5 hours.

Under the action of TIBAL compound $\mathbf{1 3}$ only gave 10% of the open-chain product 16 and 86% of a mixture of expected carbocycles 14 and 15 in a $4 / 1$ ratio. (Scheme 7)

Scheme 7.

Reagents and conditions: i) TIBAL (6 eq.), Toluene, $50^{\circ} \mathrm{C}, 1$ hour

To achieve the demonstration that a better EDG gives a better reaction we synthesised compound 20, using again the same methodology, except for the C-glycosylation of trimethoxybenzene to give C-glucoside 17 [11]. (Scheme 8)

Scheme 8.

Reagents and conditions: i) $\mathrm{Ph}(\mathrm{OMe})_{3}, \mathrm{ZnO}$, M.S., $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$, reflux, 30 min.; ii) MeONa , MeOH , R.T., 5 hours; iii) I_{2}, PPh_{3}, DMF, R.T., 45 min .; iv) $\mathrm{Ac}_{2} \mathrm{O}$, Pyr., R.T., 4 hours; v) DBU, THF, reflux, 2 hours; vi) $\mathrm{MeONa}, \mathrm{MeOH}, 12$ hours; vii) $\mathrm{BnBr}, \mathrm{NaH}$, DMF, R.T., 2 hours.

Indeed, when compound 20 is submitted to the action of TIBAL, carbocyclic products 21 and 22 are the only ones obtained in a 3:2 molar ratio. (Scheme 9)

Scheme 9.

Reagents and conditions: i) TIBAL (5 eq.), Toluene, $50^{\circ} \mathrm{C}, 30 \mathrm{~min}$.

To really complete the demonstration, we also need to show that a weak EDG only induces the ring opening. To that end we selected the known C-butyl unsaturated derivative 27 [12]. Its synthesis, shown in Scheme 10, is slightly different from the previous ones and starts from lactone 23 [13] (Scheme 10).

Scheme 10.

Reagents and conditions: i) $\mathrm{BuLi}, \mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$.; ii) $\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{BF}_{3} . \mathrm{OEt}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$.; iii) TFA, $\mathrm{Ac}_{2} \mathrm{O}$, R.T., 2 hours, iv) MeOH , MeONa, R.T., $10 \mathrm{~min} . ;$ v) $\mathrm{I}_{2}, \mathrm{PPh}_{3}$, Imidazole, toluene, $70^{\circ} \mathrm{C}, 30$ min.; vi) DBU, THF, $70^{\circ} \mathrm{C}, 1$ hour.

Compound 27 reacts with TIBAL to give a single open-chain product 28 [14], hence achieving our demonstration. (Scheme 11)

Scheme 11.

Reagents and conditions: i)TIBAL (5 eq .), toluene, $50^{\circ} \mathrm{C}$, 2 hours 30 min .

Conclusions

We have demonstrated that unsaturated C-glycosides could be carbocyclised by the action of TIBAL, provided that the aglycon is sufficiently electron-donating in nature. Among other applications, this reaction opens a new access to compounds of the pancratistatine family.

Experimental Section

General

Melting points were recorded on a Büchi 510 apparatus and are uncorrected. Optical rotations were measured on a Perkin Elmer 241 digital polarimeter with a path length of 1 dm . Mass spectra were recorded on a Nermag R10-10 spectrometer, using chemical ionisation with ammonia. Elemental
analyses were performed by the Service d'Analyse de l'Université Pierre et Marie Curie, 75252 Paris Cedex 05, France. NMR spectra were recorded on a Brüker AM-400 (400 MHz and 100.6 MHz , for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively) or Brüker AC-250 (250 MHz and 63 MHz , for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively) using CDCl_{3} as solvent and TMS as internal standard. TLC was performed on silica gel $60 \mathrm{~F}_{254}$ (Merck) and developed by charring with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. Flash column chromatography was performed using silica gel 60 (230-400 mesh, Merck).

(2,3,4-Tri-O-acetyl-6-deoxy-6-iodo- β-D-glucopyranosyl) benzene (5)

A catalytic amount of sodium is added to a solution $4(3.74 \mathrm{~g}, 6.7 \mathrm{mmol})$ in methanol $(40 \mathrm{~mL})$, and the solution is stirred for 5 hours. It is then neutralised using IR $120\left(\mathrm{H}^{+}\right)$resin, filtered and evaporated in vacuo. The residue is dissolved in anhydrous DMF (15 mL), then $\mathrm{PPh}_{3}(4.8 \mathrm{~g}, 13.4 \mathrm{mmol})$ is added and the solution is cooled to $0^{\circ} \mathrm{C}$ under argon. A solution of diiodine ($4.6 \mathrm{~g}, 13.4 \mathrm{mmol}$) in anhydrous DMF (5 mL) is then added dropwise and the solution stirred for 45 min at R.T, until the completion of the reaction is detected by TLC ($9: 1$ dichloromethane $/ \mathrm{MeOH}$). The solvent is evaporated and the residue is next dissolved in pyridine $(20 \mathrm{~mL})$ and acetic anhydride $(10 \mathrm{~mL})$. The reaction, monitored by TLC ($7: 3$ cyclohexane/AcOEt), is complete in 4 hours at R.T. The solvent is then removed in vacuo and the residue purified by silica gel flash column chromatography (1:4 AcOEt/cyclohexane) to afford compound $5(2.9 \mathrm{~g}, 74 \%)$ as a white solid. $[\alpha]_{\mathrm{D}}^{20}=+6\left(\mathrm{c}=1.25, \mathrm{CHCl}_{3}\right)$; m.p. $=162-163{ }^{\circ} \mathrm{C}$ (AcOEt/cyclohexane); ${ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}): \delta=7.31-7.20\left(5 \mathrm{H}, \mathrm{H}\right.$ arom.), $5.29\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3}=9.4 \mathrm{~Hz}, J_{3,4}\right.$ $=9.4 \mathrm{~Hz}, \mathrm{H}-3), 5.06\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{4,5}=9.4 \mathrm{~Hz}, \mathrm{H}-4\right), 5.05\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=9.7 \mathrm{~Hz}, \mathrm{H}-2\right), 4.38(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1)$, $3.46\left(\mathrm{ddd}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=3.0 \mathrm{~Hz}, J_{6 \mathrm{~b}, 5}=5.7 \mathrm{~Hz}, \mathrm{H}-5\right), 3.34\left(\mathrm{dd}, 1 \mathrm{H}, J_{6 \mathrm{~b}, 6 \mathrm{a}}=11.1 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 3.16(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-$ 6b), 2.02, 1.94, $1.74(3 \mathrm{x} \mathrm{s}, 3 \times 3 \mathrm{H}, 3 \mathrm{Ac}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(63 \mathrm{MHz}): \delta=170.2,169.2,168.6(3 \mathrm{x} \mathrm{Ac})$, 136.1 (C arom. quat.), 128.7, 128.3, 126.9 (5 C arom.), 79.6 (C-1), 76.3 (C-5), 73.7 (C-3), 72.7 (C-2), 72.4 (C-4), 20.6, 20.5, 20.2 (3 x Ac), $3.9(\mathrm{C}-6)$; MS m/z $494\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$; Anal. calc. C, 45.39; H, 4.44; found. C, 45.51; H, 4.51 .

(2,3,4-Tri-O-acetyl-6-desoxy- β-D-xylo-hex-5-enopyranosyl) benzene (6)

Compound $5(2.9 \mathrm{~g}, 6.7 \mathrm{mmol})$ is dissolved in dry THF (30 mL) and DBU ($6.1 \mathrm{~mL}, 40.6 \mathrm{mmol}$) is added. The mixture is heated at $70^{\circ} \mathrm{C}$ until after 3 hours the end of the reaction is detected by TLC (7:3 cyclohexane/AcOEt). The solvent is then removed in vacuo and the residue purified by silica gel flash column chromatography ($1: 5 \mathrm{AcOEt} /$ cyclohexane) to afford compound $\mathbf{6}(1.7 \mathrm{~g}, 73 \%)$ as a white solid. $[\alpha]_{\mathrm{D}}^{20}=-53\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right) ; \mathrm{m} . \mathrm{p} .=132{ }^{\circ} \mathrm{C}(\mathrm{AcOEt} / \mathrm{cyclohexane}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}): \delta=7.32-7.22$
($5 \mathrm{H}, \mathrm{H}$ arom.), $5.59-5.51$ (m, 1H, H-4), 5.29-5.12 (m, 2H, H-3, H-2), 4.79 (s, 1H, H-6a), 4.51 (s, 1H, H-6b), 4.49-4.39 (m, 1H, H-1), 2.09, 1.96, $1.74(3 \mathrm{x} \mathrm{s}, 3 \times 3 \mathrm{H}, 3 \times \mathrm{Ac}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(63 \mathrm{MHz}): \delta=170.1$, 169.3, 168.8 (3 x Ac), 153.8 (C-5), 135.9 (C arom. quat.), 129.1, 128.5, 127.1 (5 C arom.), 96.5 (C-6), 80.8 (C-1), 73.4 (C-3), 72.7 (C-2), $69.6(\mathrm{C}-4), 20.7,20.6,20.3(3 \mathrm{x} \mathrm{Ac}) ; \mathrm{MS}: \mathrm{m} / \mathrm{z} 366\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} ; 349$ $(\mathrm{M}+\mathrm{H})^{+}$; Anal. calc. C, 62.06 ; H, 5.79; found. C, $62.05 ; \mathrm{H}, 5.88$.

(2,3,4-Tri-O-benzyl-6-desoxy- β-D-xylo-hex-5-enopyranosyl) benzene (7)

A catalytic amount of sodium is added to a solution $\mathbf{6}(1.1 \mathrm{~g}, 3.2 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ and the solution is stirred for 12 hours. The solvent is evaporated without neutralisation and the residue dissolved in dry DMF $(100 \mathrm{~mL})$ to which benzyl bromide $(4.4 \mathrm{~mL}, 32 \mathrm{mmol})$ and $\mathrm{NaH}(0.9 \mathrm{~g}, 60 \%$ in suspension in oil, 19.2 mmol) are added. The mixture is stirred at R.T. until the end of the reaction is detected after 5 hours by TLC ($9: 1$ cyclohexane/AcOEt). Excess NaH is quenched with methanol, and the mixture is extracted with ether and washed with water. The organic layer is dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue is purified by silica gel flash column chromatography (1:99 $\mathrm{AcOEt} / \mathrm{cyclohexane})$ to afford compound $7(1.05 \mathrm{~g}, 68 \%)$ as a white solid. $[\alpha]_{\mathrm{D}}^{20}=-51(\mathrm{c}=1.1$, $\left.\mathrm{CHCl}_{3}\right)$; m.p. $=71{ }^{\circ} \mathrm{C}$ (AcOEt/cyclohexane); ${ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}): \delta=7.31-6.92(20 \mathrm{H}, \mathrm{H}$ arom.) , 4.70 (d, 1H, J=11.3 Hz, -CHPh), $4.65(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz},-\mathrm{CHPh}), 4.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.59(\mathrm{~d}, 1 \mathrm{H}, J=11.2$ $\mathrm{Hz},-\mathrm{CHPh}), 4.53(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz},-\mathrm{CHPh}), 4.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 4.37\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=9.7 \mathrm{~Hz}, \mathrm{H}-1\right)$, $4.19(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz},-\mathrm{CHPh}), 3.91\left(\mathrm{~d}, 1 \mathrm{H}, J_{4,3}=7.4 \mathrm{~Hz}, \mathrm{H}-4\right), 3.64(\mathrm{~d}, 1 \mathrm{H}, J=11.9 \mathrm{~Hz},-\mathrm{CHPh})$, $3.62\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3}=7.7 \mathrm{~Hz}, \mathrm{H}-3\right), 3.47(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(63 \mathrm{MHz}): \delta=156.6(\mathrm{C}-5), 138.7,138.5$, 138.0, 137.7 (4 C arom. quat.), 128.6-127.7 (20 C arom.), 95.2 (C-6), 84.7 (C-3), 83.7 (C-2), 81.3 (C-1), 79.3 (C-4), 74.7, 74.6, 73.0 (3 CHPh); MS :m/z $510\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$; Anal. calc. C, 80.46; H, 6.64; found. C, 80.45; H, 6.59.
(1R,2S,3S,4R,5R)-2,3,4-Tri-O-benzyl-2,3,4,5-tetrahydroxycyclohexyl) benzene (8) and 2,4-di-O-benzyl-5,6-dehydro-1-C(S)-phenyl-D-glucitol (9)

A solution of TIBAL ($0.6 \mathrm{~mL}, 0.6 \mathrm{mmol}, 1 \mathrm{M}$ in toluene) is added to a solution of $7(55 \mathrm{mg}, 0.11$ $\mathrm{mmol})$ in dry toluene $(1 \mathrm{~mL})$ at R.T. under argon. The mixture is stirred at $50^{\circ} \mathrm{C}$ for 12 hours, until the end of the reaction is detected by TLC ($4: 1$ cyclohexane/AcOEt). The mixture is cooled to R.T. and water (2 mL) is slowly added, and stirred for 15 min . After extraction with $\operatorname{AcOEt}(3 \times 10 \mathrm{~mL})$ and washing with water $(10 \mathrm{~mL})$ the organic layer is dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent is evaporated. The residue purified by silica gel flash column chromatography (1:9 AcOEt/cyclohexane) to afford two major products $\mathbf{8}(18 \mathrm{mg}, 35 \%)$, as a white solid, and $\mathbf{9}(16 \mathrm{mg}, 35 \%)$ as an oil.
(1R,2S,3S,4R,5R)-2,3,4-Tri-O-benzyl-2,3,4,5-tetrahydroxycyclohexyl) benzene (8)

$[\alpha]_{\mathrm{D}}^{20}=-24\left(\mathrm{c}=0.6, \mathrm{CHCl}_{3}\right) ;$ m.p. $=96{ }^{\circ} \mathrm{C}(\mathrm{AcOEt} /$ cyclohexane $) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}): \delta=7.42-6.90$ $(20 \mathrm{H}, \operatorname{arom} . \mathrm{H}), 4.85(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz},-\mathrm{CHPh}), 4.79(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz},-\mathrm{CHPh}), 4.72(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $11.5 \mathrm{~Hz},-\mathrm{CHPh}), 4.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.5 \mathrm{~Hz},-\mathrm{CHPh}), 4.41(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.2 \mathrm{~Hz},-\mathrm{CHPh}), 4.17-4.09(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-5), 3.88\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{2,3}=9.2 \mathrm{~Hz}, \mathrm{~J}_{3,4}=9.2 \mathrm{~Hz}, \mathrm{H}-3\right), 3.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.2 \mathrm{~Hz},-\mathrm{CHPh}), 3.53(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{J}_{4,5}=3.0 \mathrm{~Hz}, \mathrm{H}-4\right), 3.47\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1,2}=9.1 \mathrm{~Hz}, \mathrm{H}-2\right), 3.27\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}_{1,6 \mathrm{a}}=11.0 \mathrm{~Hz}, \mathrm{~J}_{1,6 \mathrm{e}}=3.7 \mathrm{~Hz}, \mathrm{H}-1\right)$, $2.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{OH}), 2.04\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}_{6 \mathrm{e}, 6 \mathrm{a}}=14.5 \mathrm{~Hz}, \mathrm{~J}_{6 \mathrm{e}, 5}=3.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{e}\right), 1.65(\mathrm{br} \mathrm{t}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}) ;{ }^{13} \mathrm{C}-$ NMR (63 MHz) $: \delta=142.4,139.0,138.3,138.1(4 \mathrm{C}$ arom. quat.), 128.6-126.7 (20 C arom.), $86.0(\mathrm{C}-2)$, 83.4 (C-3), 83.3 (C-4), 76.0, 75.4, 72.8 (3 CHPh), 66.8 (C-5), 42.8 (C-1), 34.3 (C-6); MS: m/z 512 $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$; Anal. calc. C, 80.13; H, 6.93; found. C, 79.95 ; H, 7.08 .

2,4-Di-O-benzyl-5,6-dehydro-1-C(S)-phenyl-D-glucitol (9)

$[\alpha]_{\mathrm{D}}^{20}=-2\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): \delta=7.39-7.29(15 \mathrm{H}, \operatorname{arom} . \mathrm{H}), 5.54\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}_{5,6 \mathrm{a}}=\right.$ $\left.10.5 \mathrm{~Hz}, \mathrm{~J}_{5,6 \mathrm{~b}}=17 \mathrm{~Hz}, \mathrm{~J}_{5,4}=8 \mathrm{~Hz}, \mathrm{H}-5\right), 5.33\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{6 \mathrm{a}, 6 \mathrm{~b}}=1.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 5.23(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 5.20$ $\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=5.1 \mathrm{~Hz}, J_{1, \text { OH }}=6.7 \mathrm{~Hz}, \mathrm{H}-1\right), 4.60(\mathrm{~d}, 1 \mathrm{H}, J=11.3 \mathrm{~Hz},-\mathrm{CHPh}), 4.58(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}$, $-\mathrm{CHPh}), 4.46(\mathrm{~d}, 1 \mathrm{H}, J=11.3 \mathrm{~Hz},-\mathrm{CHPh}), 4.34(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz},-\mathrm{CHPh}), 4.06\left(\mathrm{t}, 1 \mathrm{H}, J_{4,3}=8 \mathrm{~Hz}\right.$, $\mathrm{H}-4), 3.94(\mathrm{~d}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}, 1-\mathrm{OH}), 3.72\left(\mathrm{ddd}, J_{3,2}=1.8 \mathrm{~Hz}, J_{3, \mathrm{OH}}=3.2 \mathrm{~Hz}, \mathrm{H}-3\right), 3.60(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2)$, 3.12 (d, 1H, 3-OH); ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}): \delta=141.6,137.7,137.6$ (3 C arom. quat.), 134.3 (C-5), 128.5-126.1 (15 C arom.), 120.9 (C-6), 81.3 (C-4), 79.4 (C-2), 73.0 (C-1), 72.9 (C-3), 71.7, 70.6 (2 CHPh); MS: m/z $422\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$; Anal. calc. C, 77.20 ; H, 6.98; found. C, 77.56 ; H, 7.09.

4-(2,3,4-Tetra-O-acetyl-6-desoxy-6-iodo- β-D-glucopyranosyl) anisole (11)

A catalytic amount of sodium is added to a solution $10(3.7 \mathrm{~g}, 8.4 \mathrm{mmol})$ in methanol $(50 \mathrm{~mL})$, and the solution is stirred for 12 hours. It is then neutralised using IR $120\left(\mathrm{H}^{+}\right)$resin, filtered and evaporated in vacuo. The residue is dissolved in anhydrous DMF (20 mL), then $\mathrm{PPh}_{3}(4.7 \mathrm{~g}, 17.9 \mathrm{mmol})$ is added, and the solution is cooled to $0^{\circ} \mathrm{C}$ under argon. A solution of diiodine ($4.5 \mathrm{~g}, 17.9 \mathrm{mmol}$) in anhydrous DMF (5 mL) is then added dropwise and the solution stirred for 30 min at R.T., until the end of the
reaction is detected by TLC ($9: 1$ dichloromethane $/ \mathrm{MeOH}$). The solvent is evaporated and the residue is dissolved in pyridine (20 mL) and acetic anhydride (10 mL). The reaction is monitored by TLC (7:3 cyclohexane/AcOEt) for 4 hours at R.T. The solvent is then removed in vacuo and the residue purified by silica gel flash column chromatography (1:4 AcOEt/cyclohexane) to afford compound $\mathbf{1 1}(2.6 \mathrm{~g}, 61$ $\%)$ as a white solid. $[\alpha]_{\mathrm{D}}^{20}=-8\left(\mathrm{c}=1.8, \mathrm{CHCl}_{3}\right) ;$ m.p. $=99^{\circ} \mathrm{C}(\mathrm{EtOH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}): \delta=7.21$ (d, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$ arom.), $6.81\left(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$ arom.), 5.29 (t, $1 \mathrm{H}, J_{2,3}=9.4 \mathrm{~Hz}, J_{3,4}=9.4$ $\mathrm{Hz}, \mathrm{H}-3$), 5.12-4.98 (m, 2H, H-4 H-2), 4.33 (d, 1H, J1,2 $=9.7 \mathrm{~Hz}, \mathrm{H}-1$), 3.73 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.44 (ddd, $\left.1 \mathrm{H}, J_{5,6 \mathrm{a}}=3.0, J_{6 \mathrm{~b}, 5}=5.7 \mathrm{~Hz}, J_{5,4}=9.3 \mathrm{~Hz}, \mathrm{H}-5\right), 3.32\left(\mathrm{dd}, 1 \mathrm{H}, J_{6 \mathrm{~b}, 6 \mathrm{a}}=11.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 3.13$ (dd, $1 \mathrm{H}, \mathrm{H}-$ 6b), 2.03, 1.94, $1.75(3 \mathrm{x} \mathrm{s}, 3 \times 3 \mathrm{H}, 3 \mathrm{x} \mathrm{Ac}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(63 \mathrm{MHz}): \delta=170.3,169.3,168.8(3 \mathrm{x} \mathrm{Ac})$, 159.9 (C arom. quat.), 128.4, 113.8 (5 C arom.), 79.4 (C-1), 76.3 (C-5), 73.8 (C-3), 72.7 (C-2), 72.4 (C4), 55.2 (OMe), 20.7, 20.6, 20.4 (3 x Ac), 4.2 (C-6); MS: m/z $524\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$; Anal. calc. C, 45.07; H, 4.58; found. C, 44.98; H, 4.54 .

(2,3,4-Tri-O-acetyl-6-desoxy- β-D-xylo-hex-5-enopyranosyl) anisole (12)

Compound $\mathbf{1 1}(1.6 \mathrm{~g}, 3.2 \mathrm{mmol})$ is dissolved in dry THF (15 mL) and DBU ($2.9 \mathrm{~mL}, 19 \mathrm{mmol}$) is added. The mixture is heated at $70{ }^{\circ} \mathrm{C}$ until the end of the reaction is detected by TLC ($7: 3$ cyclohexane/AcOEt) after 3 hours. The solvent is then removed in vacuo and the residue purified by silica gel flash column chromatography ($1: 5 \mathrm{AcOEt} /$ cyclohexane) to afford 12 ($812 \mathrm{mg}, 68 \%$) as a white solid. $[\alpha]_{\mathrm{D}}^{20}=-51\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;$ m.p. $=94{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ pentane $) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}): \delta=7.14$ (d, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$ arom.), $6.72(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$ arom.), 5.47-5.39 (m, 1H, H-4), 5.17-5.04 (m, 2H, H-3, H-2), 4.69 (sl, 1H, H-6a), 4.43 (sl, 1H, H-6b), 4.35-4.22 (m, 1H, H-1), 3.64 (s, 3H, OMe), $1.99,1.87,1.65(3 \times \mathrm{se} 3 \times 3 \mathrm{H}, 3 \times \mathrm{Ac}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(63 \mathrm{MHz}): \delta=169.9,169.1,168.6(3 \times \mathrm{Ac}), 159.9(\mathrm{C}$ arom. quat.), 153.6 (C-5), 128.3, 127.7, 113.7 (5 C arom.), 96.1 (C-6), 80.4 (C-1), 73.3 (C-3), 72.4 (C2), $69.4(\mathrm{C}-4), 55.0(\mathrm{OMe}), 20.5,20.4,20.2(3 \mathrm{x} \mathrm{Ac}) ; \mathrm{MS}: \mathrm{m} / \mathrm{z} 396\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 379(\mathrm{M}+\mathrm{H})^{+}$; Anal. calc. C, 60.31; H, 5.86; found. C, 60.17; H, 5.98 .

(2,3,4-Tri-O-benzyl-6-desoxy- β-D-xylo-hex-5-enopyranosyl) anisole (13)

A catalytic amount of sodium is added to a solution 12 ($350 \mathrm{mg}, 0.92 \mathrm{mmol}$) in methanol (3 mL), and the solution is stirred for 12 hours. The solvent is evaporated without neutralisation and the residue dissolved in dry DMF (30 mL) to which benzyl bromide ($1.1 \mathrm{~mL}, 9.2 \mathrm{mmol}$) and ($222 \mathrm{mg}, 60 \%$ in suspension in oil, 5.5 mmol) are added. The mixture is stirred at R.T. until the end of the reaction is detected by TLC ($9: 1$ cyclohexane/AcOEt) after 5 hours. Excess NaH is quenched with methanol, and
the mixture is extracted with ether and washed with water. Organic layer is dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue purified by silica gel flash column chromatography (1:99 AcOEt/cyclohexane) to afford $13(299 \mathrm{~g}, 62 \%)$ as a white solid. $[\alpha]_{\mathrm{D}}^{20}=-53\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; m.p. $=$ $77-78{ }^{\circ} \mathrm{C}$ (Et $2 \mathrm{O} /$ pentane); ${ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}): \delta=7.33-6.75(19 \mathrm{H}, \mathrm{H}$ arom.), $4.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.3 \mathrm{~Hz}$, -CHPh), $4.54(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz},-\mathrm{CHPh}), 4.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.3 \mathrm{~Hz},-\mathrm{CHPh}), 4.64$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=11.5 \mathrm{~Hz},-\mathrm{CHPh}), 4.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 4.42\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1,2}=9.7 \mathrm{~Hz}, \mathrm{H}-1\right), 4.31(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.5$ $\mathrm{Hz},-\mathrm{CHPh}), 4.00\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{4,3}=7.4 \mathrm{~Hz}, \mathrm{H}-4\right), 3.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.5 \mathrm{~Hz},-\mathrm{CHPh}), 3.76$ (s, 3H, OMe), 3.71 (t, 1H, J $\mathrm{J}_{2,3}=7.7 \mathrm{~Hz}, \mathrm{H}-3$), 3.53 (dd, $1 \mathrm{H}, \mathrm{H}-2$); ${ }^{13} \mathrm{C}-\mathrm{NMR}(63 \mathrm{MHz}): \delta=156.7$ (C-5), 159.9, 138.5, 138.0, 137.7 (4 C arom. quat.), 130.9-113.9 (20 C arom.), 95.2 (C-6), 84.7 (C-3), 83.8 (C-2), 81.1 (C-1), 79.4 (C-4), 74.8, 74.6, 73.0 (3 CHPh), 55.5 (OMe); MS: m/z $540\left(\mathrm{M}^{2}+\mathrm{NH}_{4}\right)^{+}$; Anal. calc. C, 77.62; H, 6.71; found. C, 77.61 ; H, 6.67.

1R,2S,3S,4R,5S)-2,3,4-Tri-O-benzyl-2,3,4,5-tetrahydroxycyclohexyl) anisole (14), (1R,2S,3S,4R,5R)-2,3,4-tri-O-benzyl-2,3,4,5-tetrahydroxycyclohexyl) anisole (15) and 2,3,4-tri-O-benzyl-5,6-dehydro-1-C(S)-anisyl-D-glucitol (16)

A solution of TIBAL ($1 \mathrm{~mL}, 1 \mathrm{mmol}, 1 \mathrm{M}$ in toluene) is added to a solution of $\mathbf{1 3}(85 \mathrm{mg}, 0.16$ $\mathrm{mmol})$ in dry toluene (1 mL) at R.T. under argon. The mixture is stirred at $50^{\circ} \mathrm{C}$ for 1 hour, until the end of the reaction is detected by TLC (7:3 cyclohexane/AcOEt). The mixture is cooled to R.T. and water (2 mL) is slowly added, and stirred for 15 min . After extraction with $\operatorname{AcOEt}(3 \times 10 \mathrm{~mL})$ and washing with water $(10 \mathrm{~mL})$ the organic layer is dried (MgSO 4$)$, filtered and the solvent is evaporated. The residue purified by silica gel flash column chromatography ($1 / 9 \mathrm{AcOEt} /$ cyclohexane) to afford three major products $\mathbf{1 4}(58 \mathrm{mg}, 68 \%)$ as a white solid, $\mathbf{1 5}(58 \mathrm{mg}, 68 \%)$ as a white solid and $\mathbf{1 6}(9 \mathrm{mg}$, 10%) as an oil.
(1R,2S,3S,4R,5R)-2,3,4-Tri-O-benzyl-2,3,4,5-tetrahydroxycyclohexyl) anisole (14)

$[\alpha]_{\mathrm{D}}^{20}=-34\left(\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right) ; \mathrm{m} . \mathrm{p} .=110-111^{\circ} \mathrm{C}(\mathrm{AcOEt} /$ cyclohexane $) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): \delta=7.31-$ $6.69(19 H$, arom. H), $4.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz},-\mathrm{CHPh}), 4.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz},-\mathrm{CHPh}), 4.83$ (d, 1H, J $=11.5 \mathrm{~Hz},-\mathrm{CHPh}), 4.79(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz},-\mathrm{CHPh}), 4.55(\mathrm{~d}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz},-\mathrm{CHPh}), 4.27-4.21(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-5), 4.00\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3}=10.3 \mathrm{~Hz}, J_{3,4}=10.3 \mathrm{~Hz}, \mathrm{H}-3\right), 3.98(\mathrm{~d}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz},-\mathrm{CHPh}), 3.96(\mathrm{~s}, 3 \mathrm{H}$, OMe), $3.64\left(\mathrm{dd}, 1 \mathrm{H}, J_{4,5}=3.1 \mathrm{~Hz}, \mathrm{H}-4\right), 3.54\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=9.1 \mathrm{~Hz}, \mathrm{H}-2\right), 3.27\left(\mathrm{ddd}, 1 \mathrm{H}, J_{1,6 \mathrm{a}}=11.0 \mathrm{~Hz}\right.$, $\left.J_{1,6 \mathrm{e}}=3.7 \mathrm{~Hz}, \mathrm{H}-1\right), 2.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{OH}), 2.13\left(\mathrm{dt}, 1 \mathrm{H}, J_{6 \mathrm{e}, 6 \mathrm{a}}=14.5 \mathrm{~Hz}, J_{6 \mathrm{e}, 5}=3.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{e}\right), 1.73(\mathrm{brt}$, $1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}): \delta=158.3,138.9,138.2,138.0,134.3$ (5 C arom. quat.), 128.9-113.7 (19 C arom.), 86.0 (C-2), 83.6 (C-3), 83.2 (C-4), 75.9, 75.3, 72.6 (3 CHPh), 66.6 (C-5), 55.2 (OMe), 41.8 (C-1), 34.3 (C-6); MS: m/z $542\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$; Anal. calc. C, 77.31; H, 7.08; found. C, 77.26; H, 7.16.

$[\alpha]_{\mathrm{D}}^{20}=-6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;$ m.p. $=122{ }^{\circ} \mathrm{C}(\mathrm{AcOEt} /$ cyclohexane $) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): \delta=7.41-6.88$ (19H, arom. H), 5.09 (d, 1H, $J=11.3 \mathrm{~Hz},-\mathrm{CHPh}), 5.00(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz},-\mathrm{CHPh}), 4.92(\mathrm{~d}, 1 \mathrm{H}, J=$ $10.8 \mathrm{~Hz},-\mathrm{CHPh}), 4.77(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.3 \mathrm{~Hz},-\mathrm{CHPh}), 4.50(\mathrm{~d}, 1 \mathrm{H}, J=10.1 \mathrm{~Hz},-\mathrm{CHPh}), 3.91(\mathrm{~d}, 1 \mathrm{H}, J=$ $10.1 \mathrm{~Hz},-\mathrm{CHPh}), 3.86(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.71$ (dddd, $1 \mathrm{H}, J_{5, \mathrm{OH}}=1.7 \mathrm{~Hz}, J_{5,4}=9.1 \mathrm{~Hz}, J_{5,6 \mathrm{e}}=4.6 \mathrm{~Hz}, J_{5,6 \mathrm{a}}=$ $13.4 \mathrm{~Hz}, \mathrm{H}-5), 3.67\left(\mathrm{t}, 1 \mathrm{H}, J_{3,2}=9.1 \mathrm{~Hz}, J_{3,4}=9.1 \mathrm{~Hz}, \mathrm{H}-3\right), 3.58\left(\mathrm{dd}, 1 \mathrm{H}, J_{2,1}=10.2 \mathrm{~Hz}, \mathrm{H}-2\right), 3.48(\mathrm{t}$, $1 \mathrm{H}, \mathrm{H}-4), 2.75$ (ddd, $\left.1 \mathrm{H}, J_{1,6 \mathrm{a}}=13.0 \mathrm{~Hz}, J_{1,6 \mathrm{e}}=3.6 \mathrm{~Hz}, \mathrm{H}-1\right), 2.40(\mathrm{~d}, 1 \mathrm{H},-\mathrm{OH}), 2.11\left(\mathrm{dt}, 1 \mathrm{H}, J_{6 \mathrm{e}, 6 \mathrm{a}}=\right.$ $13.2 \mathrm{~Hz}, J_{6 \mathrm{e}, 5}=4.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{e}$), 1.77 (td, $\left.1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}): \delta=158.5,138.6,137.9$, 138.0, 133.7 (5 C arom. quat.), 128.7-113.9 (19 C arom.), 86.4 (C-2), 86.3 (C-4), 86.0 (C-3), 75.7, 75.5, 75.4 (3 CHPh), $71.2(\mathrm{C}-5), 55.3(\mathrm{OMe}), 44.6(\mathrm{C}-1), 35.6(\mathrm{C}-6)$; MS: m/z $542\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$; Anal. calc. C, 77.31; H, 7.08; found. C, 77.19 ; H, 7.34 .

2,3,4-Tri-O-benzyl-5,6-dehydro-1-C(S)-anisyl-D-glucitol (16)

$[\alpha]_{\mathrm{D}}^{20}=-10\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): \delta=7.39-6.88(19 \mathrm{H}, \operatorname{arom} . \mathrm{H}), 5.78\left(\mathrm{ddd}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=\right.$ $\left.10.3 \mathrm{~Hz}, J_{5,6 \mathrm{~b}}=17.4 \mathrm{~Hz}, J_{5,4}=7.8 \mathrm{~Hz}, \mathrm{H}-5\right), 5.31\left(\mathrm{dd}, 1 \mathrm{H}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=1.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 5.24$ (dd, $\left.1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}\right)$, $4.91\left(\mathrm{bt}, 1 \mathrm{H}, J_{1,2}=5.1 \mathrm{~Hz}, J_{1, \text { OH }}=5.1 \mathrm{~Hz}, \mathrm{H}-1\right), 4.86(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz},-\mathrm{CHPh}), 4.66(\mathrm{~d}, 1 \mathrm{H}, J=11.4$ $\mathrm{Hz},-\mathrm{CHPh}), 4.63(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz},-\mathrm{CHPh}), 4.40(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz},-\mathrm{CHPh}), 4.34(\mathrm{~d}, 1 \mathrm{H}, J=11.5$ $\mathrm{Hz},-\mathrm{CHPh}), 4.29(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz},-\mathrm{CHPh}), 4.19(\mathrm{dd}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}, \mathrm{H}-4), 3.85$ (s, 3 H , OMe), 3.69-3.62 (m, 2H, H-3 H-2), 3.38 (d, $1 \mathrm{H},-\mathrm{OH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}): \delta=158.9,138.2,138.1$, 138.0, 133.9 (5 C arom. quat.), 135.3 (C-5), 128.5-113.6 (19 C arom.), 127.6 (C-6), 81.3 (C-4), 81.0, 80.7 (C-2 C-3), $72.6(\mathrm{C}-1), 74.3,72.6,70.6(3 \mathrm{CHPh})$; HRMS: m/z calc. $542.2906\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$; found. $542.2905\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$.

1,3,5-Trimethoxy-2-(2,3,4-tri-O-acetyl-6-desoxy-6-iodo- β-D-glucopyranosyl) benzene (18)

A catalytic amount of sodium is added to a solution $17(4.5 \mathrm{~g}, 9.0 \mathrm{mmol})$ in methanol $(50 \mathrm{~mL})$, and the solution is stirred for 5 hours. It is then neutralised using IR $120\left(\mathrm{H}^{+}\right)$resin, filtered and evaporated in vacuo. The residue is dissolved in anhydrous DMF (20 mL), then $\mathrm{PPh}_{3}(4.7 \mathrm{~g}, 18 \mathrm{mmol})$ is added, and the solution is cooled to $0^{\circ} \mathrm{C}$ under argon. A solution of diiodine ($4.6 \mathrm{~g}, 18 \mathrm{mmol}$) in anhydrous

DMF (20 mL) is then added dropwise and the solution stirred for 45 min at R.T., until the end of the reaction is detected by TLC ($9: 1$ dichloromethane $/ \mathrm{MeOH}$). Solvent is evaporated. The residue is next dissolved in pyridine (20 mL) and acetic anhydride (10 mL). The reaction is monitored by TLC ($1: 1$ cyclohexane/AcOEt) for 3 hours at R.T. The solvent is then removed in vacuo and the residue purified by silica gel flash column chromatography (1:4 AcOEt/cyclohexane) to give compound 18 ($3.32 \mathrm{~g}, 65$ $\%)$ as a white solid. $[\alpha]_{\mathrm{D}}^{20}=-9\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right) ;$ m.p. $=157{ }^{\circ} \mathrm{C}(\mathrm{iPrOH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}): \delta=6.05-$ $5.96\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}\right.$ arom.), $5.84\left(\mathrm{t}, 1 \mathrm{H}, J_{1,2}=9.7 \mathrm{~Hz}, J_{2,3}=9.7 \mathrm{~Hz}, \mathrm{H}-2\right), 5.30\left(\mathrm{t}, 1 \mathrm{H}, J_{3,4}=9.4 \mathrm{~Hz}, \mathrm{H}-3\right)$, $5.04\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{4,5}=9.4 \mathrm{~Hz}, \mathrm{H}-4\right), 4.98$ (d, 1H, H-1), 3.79 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.72 (s, 6H, $2 \times \mathrm{OMe}$), 3.39-3.31 $(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5), 3.28\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=3.2, J_{6 \mathrm{~b}, 6 \mathrm{a}}=10.8 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 3.13\left(\mathrm{dd}, J_{6 \mathrm{~b}, 5}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}\right), 2.02$, 1.94, 1.67 ($3 \mathrm{x} \mathrm{s}, 3 \times 3 \mathrm{H}, 3 \times \mathrm{Ac}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}(63 \mathrm{MHz}$): $\delta=170.4,169.4,169.1(3 \mathrm{x} \mathrm{Ac}), 161.8,161.1$, 160.1 (4 x C arom. quat.), 91.4, 90.6 (2 C arom.), 76.1 (C-5), 74.8 (C-3), 73.0 (C-4), 71.6 (C-1), 69.8 (C-2), 56.2, $55.3(3 \times \mathrm{OMe}), 20.9,20.8,20.6(3 \mathrm{x} \mathrm{Ac}), 5.0(\mathrm{C}-6)$; MS: m/z $584\left(\mathrm{M}^{2}+\mathrm{NH}_{4}\right)^{+}$; Anal. calc. C, 44.53; H, 4.80; found. C, 44.44; H, 4.76

1,3,5-Trimethoxy-2-(2,3,4-tri-O-acetyl-6-desoxy- β-D-xylo-hex-5-enopyranosyl) benzene (19)

Compound $\mathbf{1 8}(1.5 \mathrm{~g}, 2.6 \mathrm{mmol})$ is dissolved in dry THF (15 mL) and DBU $(2.5 \mathrm{~mL}, 16 \mathrm{mmol})$ is added. The mixture is heated at $70^{\circ} \mathrm{C}$ until the end of the reaction is detected after 2 hours by TLC ($7: 3$ cyclohexane/AcOEt). The solvent is then removed in vacuo and the residue purified by silica gel flash column chromatography ($1: 5 \mathrm{AcOEt} / \mathrm{cyclohexane}$) to compound 19 ($826 \mathrm{mg}, 71 \%$) as a white solid. $[\alpha]_{\mathrm{D}}^{20}=-43\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right) ; \mathrm{m} . \mathrm{p} .=142^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ pentane $) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}): \delta=6.03(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{H}$ arom.), $5.98\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=10.2 \mathrm{~Hz}, J_{2,3}=9.6 \mathrm{~Hz}, \mathrm{H}-2\right), 5.54\left(\mathrm{dl}, 1 \mathrm{H}, J_{4,3}=9.6 \mathrm{~Hz}, \mathrm{H}-4\right), 5.17(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-$ 3), 5.02 (d, 1H, H-1), 4.72 (sl, 1H, H-6a), 4.45 (sl, 1H, H-6b), 3.75, 3.73 ($2 \mathrm{x} \mathrm{s}, 9 \mathrm{H}, 3 \times \mathrm{OMe}$), 2.08, 1.97, 1.68 ($3 \mathrm{x} \mathrm{s}, 3 \times 3 \mathrm{H}, 3 \times \mathrm{Ac}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}(63 \mathrm{MHz}$): $\delta=169.9,169.2,167.0(3 \mathrm{x} \mathrm{Ac}), 161.9,160.3$, 154.1, 103.4, 90.7 (6 C arom. C-5), 95.0 (C-6), 73.9 (C-3), 72.7 (C-1), 69.5 (C-4), 69.3 (C-2), 55.8, 55.0 (3 x OMe), 20.6, $20.2(3 \mathrm{x} \mathrm{Ac})$; MS: m/z $456\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} ; 439(\mathrm{M}+\mathrm{H})^{+}$; Anal. calc. C, 57.53; H, 5.98; found. C, 57.55; H, 6.01.

1,3,5-Trimethoxy-2-(2,3,4-tri-O-benzyl-6-desoxy- β-D-xylo-hex-5-enopyranosyl) benzene (20)

A catalytic amount of sodium is added to a solution 19 ($300 \mathrm{mg}, 0.68 \mathrm{mmol}$) in methanol (3 mL), and the solution is stirred for 12 hours. The solvent is evaporated without neutralisation and the residue dissolved in dry DMF (30 mL) to which benzyl bromide ($0.8 \mathrm{~mL}, 6.8 \mathrm{mmol}$) and $\mathrm{NaH}(165 \mathrm{mg}, 60 \%$ in suspension in oil, 4.1 mmol) are added. The mixture is stirred at R.T. until the end of the reaction is
detected after 2 hours by TLC ($9: 1$ cyclohexane/AcOEt). Excess NaH is quenched with methanol, and the mixture is extracted with ether and washed with water. Organic layer is dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue purified by silica gel flash column chromatography (1:99 AcOEt/cyclohexane) compound $20(350 \mathrm{mg}, 88 \%)$ as an oil. $[\alpha]_{\mathrm{D}}^{20}=-28\left(\mathrm{c}=1.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $(250 \mathrm{MHz}): \delta=7.42-6.04(17 \mathrm{H}, \mathrm{H}$ arom. $), 5.05\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=10.0 \mathrm{~Hz}, \mathrm{H}-1\right), 4.86(\mathrm{~d}, 1 \mathrm{H}, J=10.7 \mathrm{~Hz},-$ CHPh), 4.77 (d, $1 \mathrm{H}, J=10.3 \mathrm{~Hz},-\mathrm{CHPh}), 4.73(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}, \mathrm{CHPh}), 4.70(\mathrm{sl}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}), 4.68$ (sl, 1H, H-6b), 4.67 (d, 1H, $J=11.4 \mathrm{~Hz},-\mathrm{CHPh}), 4.45(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz},-\mathrm{CHPh}), 4.39\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{2,3}=\right.$ $9.9 \mathrm{~Hz}, \mathrm{H}-2), 4.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.7 \mathrm{~Hz},-\mathrm{CHPh}), 4.02\left(\mathrm{dl}, 1 \mathrm{H}, J_{4,3}=8.7 \mathrm{~Hz}, \mathrm{H}-4\right), 3.76,3.70(2 \mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{x}$ OMe), 3.64 (t, $1 \mathrm{H}, \mathrm{H}-3$); ${ }^{13} \mathrm{C}-\mathrm{NMR}(63 \mathrm{MHz}): \delta=161.6,160.4,157.5,138.6,138.3,138.2,128.3-$ 127.3, 106.4, 91.0 (25 C arom. C-5), 94.2 (C-6), 85.6 (C-3), 79.8 (C-4), 79.2 (C-2), 73.5 (C-1), 75.2, 74.2, 73.4 (3 CHPh), 55.8, 55.2 (3 x OMe); MS: m/z $600\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$, $583(\mathrm{M}+\mathrm{H})^{+}$; Anal. calc. C, 74.20; H, 6.57; found. C, 74.56 ; H, 6.86 .

1,3,5-Trimethoxy-2-(1R,2S,3S,4R,5R)-2,3,4-tri-O-benzyl-2,3,4,5-tetrahydroxycyclohexyl) benzene (21) and 1,3,5-trimethoxy-2-(1R,2S,3S,4R,5S)-2,3,4-tri-O-benzyl-2,3,4,5-tetrahydroxycyclohexyl) benzene (22)

A solution of TIBAL ($0.9 \mathrm{~mL}, 0.9 \mathrm{mmol}, 1 \mathrm{M}$ in toluene) is added to a solution of $20(100 \mathrm{mg}, 0.17$ $\mathrm{mmol})$ in dry toluene (1 mL) at R.T. under argon. The mixture is stirred at $50^{\circ} \mathrm{C}$ for 30 min , until the end of the reaction is detected by TLC (7:3 cyclohexane/AcOEt). The mixture is cooled to R.T. and water (2 mL) is slowly added, and stirred for 15 min . After extraction with $\operatorname{AcOEt}(3 \times 10 \mathrm{~mL})$ and washing with water $(10 \mathrm{~mL})$ the organic layer is dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent is evaporated. The residue purified by silica gel flash column chromatography (3:7 AcOEt/cyclohexane) to afford a 2/1 mixture of two major unseparable products 21 and $22(95 \mathrm{mg}, 95 \%)$ as an oil.

1,3,5-Trimethoxy-2-((1R,2S,3S,4R,5R)-2,3,4-tri-O-benzyl-2,3,4,5-tetrahydroxycyclohexyl) benzene (21)

(Extracted from the NMR of the mixture of isomers)
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): \delta=7.45-6.92(15 \mathrm{H}$, arom. H), $6.25(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}$, arom. H), $6.12(\mathrm{~d}, 1 \mathrm{H}, J=$ 2.3 Hz , arom. H), 5.16-4.78 (m, 4H, $4-\mathrm{CHPh}), 4.66(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz},-\mathrm{CHPh}), 4.27\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=\right.$ $\left.10.9 \mathrm{~Hz}, J_{2,3}=9.1 \mathrm{~Hz}, \mathrm{H}-2\right), 4.26-4.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 4.21(\mathrm{~d}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz},-\mathrm{CHPh}), 4.04$ (ddd, 1 H , $\left.J_{1,6 \mathrm{a}}=13.2 \mathrm{~Hz}, J_{1,6 \mathrm{e}}=3.9 \mathrm{~Hz}, \mathrm{H}-1\right), 3.98\left(\mathrm{t}, 1 \mathrm{H}, J_{3,4}=9.2 \mathrm{~Hz}, \mathrm{H}-3\right), 3.87(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.84(\mathrm{~s}, 3 \mathrm{H}$, OMe), 3.77 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $3.65\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{4,5}=3.3 \mathrm{~Hz}, \mathrm{H}-4\right), 2.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{OH}), 2.36-2.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $6 \mathrm{a}), 1.87\left(\mathrm{dt}, 1 \mathrm{H}, J_{6 \mathrm{e}, 6 \mathrm{a}}=14.0 \mathrm{~Hz}, J_{6 \mathrm{e}, 5}=3.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{e}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}): \delta=160.1-90.7(24 \mathrm{C}$ arom.), 86.6 (C-4), 83.8 (C-3), 82.2 (C-2), 76.7-72.5 (3 CHPh), 67.0 (C-5), 56.2-54.9 (3 OMe), 31.7 (C1), $30.7(\mathrm{C}-6)$; MS: $\mathrm{m} / \mathrm{z} 602\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$; Anal. for the mixture of isomers calc. $\mathrm{C}, 73.95 ; \mathrm{H}, 6.89$; found. C, 73.89; H, 6.91 .

(Extracted from the NMR of the mixture of isomers)
${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): \delta=7.45-6.92(15 \mathrm{H}$, arom. H), $6.25(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}$, arom. H), $6.15(\mathrm{~d}, 1 \mathrm{H}, J=$ 2.3 Hz , arom. H), 5.16-4.78 (m, 4H, $4-\mathrm{CHPh}), 4.65(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz},-\mathrm{CHPh}), 4.36\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=\right.$ $10.8 \mathrm{~Hz}, J_{2,3}=9.0 \mathrm{~Hz}, \mathrm{H}-2$), $4.19(\mathrm{~d}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz},-\mathrm{CHPh}), 3.88$ (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.83 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $3.81(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.71\left(\mathrm{ddd}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=11.6 \mathrm{~Hz}, J_{5,6 \mathrm{e}}=5 \mathrm{~Hz}, J_{5,4}=9.1 \mathrm{~Hz}, \mathrm{H}-5\right), 3.66\left(\mathrm{t}, 1 \mathrm{H}, J_{3,4}=9.2\right.$ $\mathrm{Hz}, \mathrm{H}-3), 3.55$ (ddd, $\left.1 \mathrm{H}, J_{1,6 \mathrm{a}}=13.2 \mathrm{~Hz}, J_{1,6 \mathrm{e}}=3.9 \mathrm{~Hz}, \mathrm{H}-1\right), 3.52(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-4), 2.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{OH})$, 2.36-2.24 (m, 1H, H-6a), 1.87 (dt, 1H, $\left.J_{6 e, 6 \mathrm{a}}=14.0 \mathrm{~Hz}, J_{6 \mathrm{e}, 5}=3.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{e}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}): \delta=$ 160.1-90.7 (24 C arom.), 86.6 (C-4), 83.6 (C-3), 82.4 (C-2), 76.7-72.5 (3 CHPh), 71.6 (C-5), 56.2-54.9 (3 OMe), $34.3(\mathrm{C}-1), 32.2(\mathrm{C}-6)$; MS: m/z $602\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$; Anal. for the mixture of isomers calc. C, 73.95; H, 6.89; found. C, 73.89; H, 6.91.

2,3,4-Tri-O-benzyl-5,6-dehydro-1-C(S)-butyl-D-glucitol (28)[14].

A solution of TIBAL ($1.2 \mathrm{~mL}, 1.2 \mathrm{mmol}, 1 \mathrm{M}$ in toluene) is added to a solution of $27(110 \mathrm{mg}, 0.23$ $\mathrm{mmol})$ in dry toluene (1 mL) at R.T. under argon. The mixture is stirred at $50{ }^{\circ} \mathrm{C}$ for 2 hours 30 min , until the end of the reaction is detected by TLC ($7: 3$ cyclohexane/AcOEt). The mixture is cooled to R.T. and water (2 mL) is slowly added, and stirred for 15 min . After extraction with $\operatorname{AcOEt}(3 \times 10 \mathrm{~mL}$) and washing with water $(10 \mathrm{~mL})$ the organic layer is dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent is evaporated. The residue purified by silica gel flash column chromatography (3:7 AcOEt/cyclohexane) to afford a major product $28(90 \mathrm{mg}, 82 \%)$ as an oil. $[\alpha]_{\mathrm{D}}^{20}=-17\left(\mathrm{c}=1.8, \mathrm{CHCl}_{3}\right)$, lit. $[14][\alpha]_{\mathrm{D}}^{20}=-21(\mathrm{c}=18.7$, $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}): \delta=7.51-7.12\left(15 \mathrm{H}\right.$, arom. H), $5.85\left(\mathrm{ddd}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=11.5 \mathrm{~Hz}, J_{5,6 \mathrm{~b}}=16.4\right.$ $\left.\mathrm{Hz}, J_{5,4}=7.6 \mathrm{~Hz}, \mathrm{H}-5\right), 5.31\left(\mathrm{dd}, 1 \mathrm{H}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=1.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 5.28(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 4.73(\mathrm{~d}, 1 \mathrm{H}, J=11.3$ $\mathrm{Hz},-\mathrm{CHPh}), 4.65(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz},-\mathrm{CHPh}), 4.56(\mathrm{~d}, 2 \mathrm{H}, J=11.6 \mathrm{~Hz}, 2-\mathrm{CHPh}), 4.42(\mathrm{~d}, 1 \mathrm{H}, J=$ $11.4 \mathrm{~Hz},-\mathrm{CHPh}), 4.31(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz},-\mathrm{CHPh}), 4.18\left(\mathrm{dd}, 1 \mathrm{H}, J_{4,3}=5.7 \mathrm{~Hz}, \mathrm{H}-4\right), 3.85-3.75(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-1), 3.74\left(\mathrm{dd}, J_{3,2}=4.0 \mathrm{~Hz}, \mathrm{H}-3\right), 3.47\left(\mathrm{dd}, J_{2,1}=5.4 \mathrm{~Hz}, \mathrm{H}-2\right), 2.86(\mathrm{~d}, 1 \mathrm{H}, J=6.1 \mathrm{~Hz},-\mathrm{OH}), 1.6-0.7$ (m, 9H, butyl); MS :m/z $492\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$

References

1. Danishefsky, S.; Lee, J. L. J. Am. Chem. Soc. 1989, 111, 4829-4837.
2. Ferrier, R. J. J. Chem. Soc. Perkin Trans. 1 1979, 1455-1458.
3. Das, S. K.; Mallet, J.-M.; Sinaÿ, P. Angew. Chem., Int. Ed. Engl. 1997, 36, 493-496; [Angew. Chem. 1997, 109, 513-516].
4. Sollogoub, M.; Mallet, J.-M.; Sinaÿ, P. Angew. Chem. Int. Ed. Engl. 2000, 39, 362-364.
5. Capon, B.; Collins, P. M.; Levy, A. A.; Overend, W. G. J. Chem. Soc. 1964, 4, 3242-3254.
6. Hurd, C. D.; Holysz, R. P. J. Am. Chem. Soc. 1950, 72, 1732-1735.
7. Lecourt, T.; Hérault, A.; Pearce, A.J.; Sollogoub, M.; Sinaÿ, P. Chem. Eur. J. 2004, 12, 2960-2971.
8. Pino, P.; Lorenzi, P. J. Org. Chem. 1966, 31, 329-331.
9. Paquette, L. A.; Friedrich, D.; Rogers, R. D. J. Org. Chem. 1991, 56, 3841-3849.
10. Allevi, P.; Anastasia, M.; Ciuffreda, P.; Fiecchi, A.; Scala, A. J. Chem. Soc., Chem. Commun. 1987, 16, 1245-1246.
11. Eade, R. A.; Pham, H.-P. Aust. J. Chem. 1979, 32, 2483-2493.
12. Rouzaud, D. Thèse de troisième cycle, Université de Paris-Sud Orsay, 1985.
13. Kuzuhara, H.; Fletcher Jr., H. G. J. Org. Chem. 1967, 32, 2531-2534.

Sample availability: Not available.
© 2005 by MDPI (http://www.mdpi.org). Reproduction is permitted for non commercial purposes.

