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Abstract: A compact Modular Chemical Descriptor Language (MCDL) chemical structure 
editor (Java applet) is described. The small size (approximately 200 KB) of the applet 
allows its use to display and edit chemical structures in various Internet applications. The 
editor supports the MCDL format, in which structures are presented in compact canonical 
form and is capable of restoring bond orders as well as of managing atom and bond drawing 
overlap. A small database of cage and large cyclic fragment is used for optimal 
representation of difficult-to-draw molecules. The improved algorithm of the structure 
diagram generation can be used for other chemical notations that lack atomic coordinates 
(SMILES, InChI). 
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Introduction 

Linear molecular descriptors are frequently used for storing, retrieval, and presentation of chemical 
information. Their role has increased significantly with the advent of the Internet. Although chemical 
structures on the Web can be presented as bitmap objects (in GIF, JPEG, or PNG formats), this method 
of representation is not optimal. An alternative method entails use of special chemical applets or plug-
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ins capable of rendering chemical structure information encoded in chemical descriptors. This method 
of coding reduces net traffic, allows work with a chemical structure as an object, for example, to rotate 
three-dimensional (3D) structure in space [1,2], and allows the structures to be edited in Web 
interfaces of chemical databases. Two approaches exist for representation of molecular structures as 
linear descriptors—chemical names or computer-readable codes. 

CAS [3] and IUPAC [4] nomenclature are examples of the chemical name approach. IUPAC and 
CAS names are the most understandable notation for a chemist, but their use in databases or as Internet 
descriptors is a complicated task. Chemical names are relatively long and have sophisticated formats, 
thus impeding computer structure recognition. In many cases the existing name-generating programs 
[5,6] cannot process some classes of compounds, such as cage structures or molecules with abnormal 
valence elements. In addition, chemical names generated by various computer programs are often not 
unique. Ambiguity in IUPAC naming complicates searching and chemical identity comparison. The 
reverse task—chemical structure graph generation from the chemical name—has it set of problems too. 
As with naming, drawing of polycyclic and abnormal valence element molecules is the most difficult 
task, even for the latest versions of the software [7]. NameExpertTM, a product of ChemInnovation [8], 
converts IUPAC names to chemical structures, but the program cannot handle the names of certain 
specific classes of molecules, such as names of element-organic compounds. The list of rules 
restricting the names of compounds that are supported by this program is published on the home page 
of the software vendor. 

Other types of linear molecular descriptors include computer-readable formats, such as Wiswesser 
Line Notation (WLN) [9], SYBYL® [10], SMILES [11] (Daylight Chemical Information Systems), 
and InChI [12] codes. The SMILES code is the de facto standard for computer-readable linear notation, 
although it has some disadvantages. First of all, canonical numbering requires use of a proprietary 
SMILES2 algorithm [13,14]. The second disadvantage of SMILES is lack of adequate representation 
of fragment-specific information, a useful search feature when a chemical structure descriptor is 
embedded in an HTML document. The information is also of value for computation of certain 
physical-chemical properties that can be attributed to a particular structure fragment, for example, 
NMR chemical shifts [15].  InChI was recommended by IUPAC as the standard for computer-readable 
chemical structure notations [16,17]. It is now widely used in NIST and NIH public databases. 
Extending InChI to accommodate 3D chemical structures was described in [18].  However, the 
absence of descriptors for fragment-centered properties can be considered as disadvantage. 

These shortcomings were taken into consideration during the development of the Modular 
Chemical Descriptor Language (MCDL), which is designed for linear representation of chemical 
structures and compound properties [19]. Composition and connectivity modules of the MCDL string 
are coded in canonical form and therefore can be used directly for structure comparison. 
Supplementary modules are designed to store various compound properties (e.g., chemical names, 
elemental analysis data, MS-spectra, common physical-chemical properties, etc.). These features make 
MCDL coding convenient and attractive for presenting chemical structures in chemical databases and 
HTML documents. The MCDL and InChI formats are structurally similar. For example, both use 
separate modules to describe composition, connectivity table and charges. MCDL provides direct 
placement of hydrogen atoms, whereas InChI uses a separate block. 
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Special chemical browser plug-ins, Java applets, or Microsoft.NET technology can be used to draw 
chemical structures embedded as text codes in HTML documents. Plug-ins are specific to a particular 
Internet browser and operating system. The new Microsoft.NET method is not distributed widely 
because of its incompatibility with the popular Java technology. Java applets are widely used to 
process chemical structures [20-25]. Peter Ertl’s popular JME applet [22] can be used to create and to 
edit chemical structures, as well as to embed chemical structure information into HTML documents. It 
can also generate structure codes in SMILES and in JME (similar to MDL molfile [26]) formats.  
However, only the JME format, which stores Cartesian coordinates, is suitable for chemical structure 
rendering using the JME applet. 

An open source JChemPaint Java applet, integrated into the Chemistry Development Kit (CDK) 
[23,24] allows generation of structural diagrams from coordinateless structure formats. This is 
considered to be one of the most important features of the CDK software package. As a result, this 
applet allows rendering of chemical structures encoded in SMILES format. In addition, the CDK 
software suite contains various supplementary software libraries: NMR spectra prediction, 3D 
structure visualization, and calculation of some topological indexes. JChemPaint supports various 
chemical structure formats (MOL, PDB, CML, XYZ, XML, SMILES) using a structure generator, 
verification of graph connectivity, and HOSE code [27] (to predict atom-centered properties). All these 
features make the applet relatively “heavy”—the size of the current DEMO version of JChemPaint 
*.jar file is above 1.5 MB [28]. A simple Java applet that creates/draws/edits chemical structure as 
MCDL strings was created and is described in the present paper. Software development was performed 
with particular attention to MCDL-specific problems, such as bond order reconstruction, as well as 
more general ones, such as optimal rendering and polycyclic compounds, and visual fragment 
overlapping. 

. 
Results and Discussion 

Java 1.1 was used to create the applet (since the main function of the applet is to view structures 
within an Internet browser). This avoids the “heavy” Java Run-Time Environment plug-in [29], which 
is necessary to execute Java 1.3 applications in Microsoft Internet Explorer (currently the most popular 
Web browser). The applet architecture is relatively simple. There is a class SimpleMolecule, in which 
vectors atoms and bonds are defined. Vector atoms contains the group of Atom class, vector bonds —
the group of Bond class. Atom class consists of nA—periodic table position, nC—charge, nV—valence 
(nonzero if not standard), rL—radical sign, nB—the number of attached atoms, array aC[]—the 
numbers of attached atoms in atoms collection. The nB and aC[] fields are calculated from a 
connectivity matrix, which is stored in class Bonds in compact form. The Bond class contains 
following fields: aT1, aT2—numbers of atoms in atoms collection, tB—bond type (single, double, or 
triple), dB—cyclic structure indicator. The DrawMolecule class is the assessor of the SimpleMolecule 
class and can draw two-dimensional (2-D) chemical structures. Finally, EditedMolecule class contains 
methods required for chemical structure modifications: to append or to remove a bond or a fragment.  
The class also contains methods employed to search for a structure fragment (subgraph isomorphism). 

All these classes are stored in the Molecule package. The package contains four other classes—
MCDL, BondAlternate, TemplateRedraw, and ChainRotate. The MCDL class keeps the collection of 
methods for generation of MCDL code from connectivity matrix and reverse procedure—for 
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generation of connectivity matrix from the MCDL string. The algorithms of the direct transformation 
were described previously [19]. The BondAlternate class is used to reconstruct bond order from the 
number of hydrogen atoms, attached to forming bond atoms. The algorithm of bond reconstruction is 
described below. 

The TemplateRedraw class contains the database of fragments (primary polycyclic) with 
coordinates of atoms for the structure-rendering purposes. The database can be easily appended by 
addition of a string with atomic coordinates of a fragment. This string contains the number of atoms 
and bonds in a fragment. The X and Y coordinates for each atom are defined as 2-byte variables and a 
1-byte flag (whether the new bonds can be appended or not). Each bond descriptor contains the 
numbers of bonded atoms. All atoms and bonds in a fragment can be compared with any atoms and 
bonds in a rendered structure. Other attributes (e.g., charge, atomic number, valence, bond order) are 
not stored, so the fragments database is very compact. For example, cubane (C8H8) is coded by a 50 
bytes-long string, which is important for fast applet loading on a client computer. The same class is 
used to generate structure diagrams of predefined fragments in a chemical structure. 

The static class ChainRotate contains the CorrectOverlapped method. It determines whether or not 
atoms (bonds) are visually overlapped and tries to resolve overlapping by fragment rotation around 
acyclic bonds. 

 A simple architecture allows for a small-sized applet – about only 200K. The small applet can be 
loaded quickly and does not require special download optimization methods, such as Obfuscation [30] 
(removal of unused classes or methods), or Extension Mechanism [31] (download packages “on 
demand”). 

 
Reconstruction of bond order from MCDL string 

Bond order (single, double, or triple) is important chemical structure information, but it is a 
supplementary module (which may or may not be presented) in a MCDL string. In many cases, bond 
order can be unambiguously restored from the number of protons attached to each atom. To recalculate 
bond order, all bonds are assigned to be single, and an array nHCalc[nAtoms] is formed. 
nHCalc[nAtoms] is the number of calculated hydrogens (assuming that the valences of all elements are 
standard). When an MCDL string is analyzed, the nH[nAtoms] array is formed, where nH[nAtoms] is 
real (the number of hydrogens attached to a particular atom). If all bonds are single, then the following 
Eq. (1) is true for each atom: 

nHCalc[i] >= nH[i]  . (1) 

Then the bond order is being increased (using double or triple bonds instead of single bonds) until 
the Eq. (2) is true: 

nHCalc[i] = nH[i]  . (2) 

The process starts with identification of bonds with orders that can be determined unambiguously. 
If any atom i has n attached atoms, and Eq. (2) is correct for all of them except for a single j neighbor, 
then the bond order between i and j atoms can be calculated according to Eq. (3): 

Border = 1 + (nHCalc[i] - nH[i])  . (3) 
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One bond is added in Eq. (3) to reflect the presence of at least a single bond between this pair of 
atoms. Accordingly, the values of nHCalc for i and j atoms are changed. If any bond order was 
changed as described above, then all atoms are rechecked again. Changes in nHCalc allow for possible 
determination of other bond orders. The iteration process is terminated when no more bond orders can 
be defined unambiguously. This iteration procedure is capable of restoring bond order in cumulenes 
and enynes. Bond order in these compounds can only be determined by taking into consideration the 
nature of terminal atoms. Absence of this information could lead to ambiguity of bond order 
identification and mismatching of these two classes of compounds. 

The algorithm described above does not work for cyclic compounds with alternating bonds (e.g., 
for aromatic compounds). Unambiguous identification of bond orders in cyclic fragments is not 
possible for these molecules; therefore, Eq. (3) cannot be used. A similar situation exists for 
antiaromatic compounds, such as cyclooctatetraene (C8H8). Aromatic bonds can be used to 
demonstrate cyclic aromatic fragments, but Kekule structures are generally more appealing for 
chemists. In addition, Kekule structures can be incorporated into any chemical database without any 
restrictions. Because a similar situation exists for importing the results of quantum mechanical 
calculations or X-ray structure analysis into a database supporting 2D structures, the problem can be 
solved using any previously developed algorithm [32-35] for generation of Kekule structures for 
aromatic compounds. 

Unfortunately, fast algorithms for generation of Kekule structures can be used only for even-
numbered rings. The following steps need to be taken for odd five-member rings: 

1. Two cyclic bonds attached to a chalcogen (oxygen, sulphur) or a three-coordinated nitrogen of 
unknown order are replaced by single bonds. The same procedure is executed for a nitrogen 
atom linked with neighboring atoms with three aromatic bonds—junction of fused aromatic 
rings. 

2. The valences of positively charged heteroatoms are incremented by 1 relative to standard 
values: N+: 4; O+: 3. 

3. The order of an arbitrary selected bond is assigned to 1. The order of an adjacent bond is 
considered to be 2, next—1 and so on. For fusion atoms (any atom of a fused-ring system 
which is common to two or more rings), one bond is temporarily assigned as a double and the 
other two as a single. This temporary assignment is stored to allow future modification in case 
of an incorrect assignment. 

4. If the calculated number of hydrogens does not correspond to the MCDL string number, then 
the reconstruction process is considered to be unsuccessful. In this case, the algorithm returns 
to the last fused atom assignment (point 3) to reassign single and double bonds. 

5. If after all attempts, there is no acceptable bond assignment, the program returns to point 1, and 
the order of the first arbitrary selected bond is set to be 2. 

6. Finally, Kekule structure representation is considered to be impossible if no bond order 
assignment that corresponds to an MCDL string can be found. 

This algorithm might look ineffective because of an exhaustive check of all possible assignments 
of single and double bonds in cycles. In practice, however, it is relatively fast due to elimination of 
impossible combinations (the order of a subsequent bond is defined by the order of a preceding one). A 
Kekule structure is generated from the first attempt if only six-member cycles are present in a 
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compound. To speed up the process, the above procedure is performed separately for each non-fused 
cyclic fragment. It should be noted that in some rare cases the restoration of bond orders using only the 
MCDL connectivity module and the number of attached protons is not possible. These cases were 
examined in [19]. 

 
Structure diagram generation of polycyclic compounds 

The coordinates of atoms in an MCDL string can be stored in a Cartesian coordinates 
supplementary module, but this module is not obligatory. Therefore, in general it is necessary to 
generate 2D Cartesian coordinates to draw an adequate structure diagram from the connectivity 
module. Although this task has an unlimited number of solutions, only a few of them can be 
considered as attractive (publication quality). The 2D chemical structures look neat when all bond 
lengths are equivalent, and all angles between the bonds are close to 2π/3. This perfect arrangement is 
not always possible, but it represents the highest reference point for the task. 

Several structure diagrams–generation algorithms were developed in the past [36,37]. The majority 
of chemical structure editors have a “Clean Structure” command [7,38,39]. When executed, this 
command generated a structure diagram in which all bonds are equal, and the angles are as optimal as 
possible. Presentation of polycyclic compounds is the most difficult task for commercial chemical 
structure drawing programs—ISIS/Draw [38], ChemDraw [39], ChemSketch [7] as well as open 
source JChemPaint [24]. The cubane (C8H8) diagram, in which 2D coordinates are defined randomly, 
is shown in Figure 1. These structure drawings were generated from the distorted diagram by 
execution of “Clean structure” command. ChemSketch [7] (ACD Labs) and partially JChemPaint [23] 
generate an adequate, publication-quality 2D picture.   

Figure 1.  The result of Clean Structure command execution in popular structure editors: 
ChemSketch 8.17, ISIS/DRAW 2.5, ChemDraw Ultra 8.0, and JChemPaint 
2.1.4. 

Distorted

ISIS/Draw 2.5 ChemDraw Ultra 8.0

ChemSketch 8.17

JChemPaint 2.1.4  
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ChemSketch uses a proprietary, undisclosed algorithm.  It is likely that templates with pre-defined 
atomic coordinates are being used to generate of 2D atomic coordinates in polycyclic compounds.  If a 
molecule contains several polycyclic groups (polycyclic fragments separated from other fragments by 
acyclic bonds), ChemSketch uses atomic coordinates from templates for each fragment. Exact 
matching between a group and a fragment template is required for this method. If fused rings are added 
to a group, a poor structure diagram is generated (tripticene-C20H14, 1,2-trimethylenecubane- C11H12).  

A simplified template algorithm is used in JChemPaint. Atomic coordinates are taken from a 
template for a single fragment in a chemical structure [40]. If a chemical structure contains several 
polycyclic fragments, a poor structure diagram is generated (1,1’-biscubane, C16H14). 

There is another “cleaning” mechanism that can display polycyclic compounds as images of 
reasonable quality. It generates 3D chemical structures and then projects these 3D objects in 2D mode 
[25,39]. The drawback of this method is the absence of a universal algorithm generating fine 2D 
structure diagrams from 3D atomic coordinates. Sometimes these 2D projection images have distorted 
(non-optimal) bond lengths and angles of structural fragments that could otherwise be drawn without 
overlap using optimal angles and identical bond lengths. ChemDraw Ultra offers an optional 
interactive user interface to improve 2D structure diagram generation [39], but this interactive 
interface is not suitable for automatic batch conversion of large sets of chemical structures. 

To resolve the problems of optimal presentation of common polycyclic and large cycle structures, 
modifications of the existing template algorithm are required. The content of the database is searched 
to find a matching fragment, and, if successful, the coordinates of atoms and the scaling factor are used 
together with appropriate shifting and rotating subroutines to achieve optimal drawing. The search is 
repeated until no more fragments from the template database are found. To avoid bond overlapping, 
these fragments must contain only database-defined chemical bonds. This restriction allows for 
accuracy in drawing polycyclic compounds (example: 1,2-tetramethylenecubane, which contains a 12-
membered ring; provided that this 12-membered ring is recorded in the fragment database). Because 
only coordinates of vertices are being used for drawing, these templates are compatible with any atoms 
(bonds) in a structure.  In addition, it is possible to create a very compact depository of fragments, 
which is critical for development of a compact MCDL applet.  From our experience, the current size of 
the template database (105 fragments) is adequate to draw the preponderance of polycyclic compounds. 

Figure 2.  Several examples of fragments used in the database of poly(cyclic) fragments. 
The atoms that cannot be used for bonding with other atoms are marked as {}.  

{}
{}{}

{}{}
{}

{}
{}

{}
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Several examples of structures from the database are shown in Figure 2. The database contains 
polycyclic structures (adamantane, noradamantane) as well as large cycles (cyclooctadecane). Large 
rings are difficult to draw because the angles between the bonds tend to be small, and the size of the 
ring is difficult to estimate visually. Symmetrical (poly)cyclic fragments might have several 
possibilities for bonding with other molecular fragments in the final structure, and it is possible that a 
randomly selected connection point might not be the optimal one due to atom/bond overlap in visually 
congested areas.  Examples of such poorly generated structure diagrams are shown in Figure 3. To 
solve the problem, some fragment atoms in the database are marked-out as “unavailable for bonding” 
(other fragments of a molecule should not be attached to these places). Examples of the marked-out 
fragments are shown in Figure 2—adamantane with three marked-out atoms and cyclooctadecane with 
six marked-out atoms. The unmarked adamantane structure is also stored in the database to generate 
the structure diagrams of the parent adamantane and its simple derivatives. 

 
Figure 3.   Computer-generated drawings of polycyclic molecules: 2-phenyladamantane 

and dicyclohexyl-18-crown-6 (some atoms are overlapped). 

O

O

O
O

O

O

  

Fragments in the database are arranged according to their size (number of atoms). The search 
begins with the fragment having the maximal number of atoms or maximum number of bonds when 
the number of atoms is the same (otherwise the largest matching fragment may not be found among 
smaller ones). If there are marked fragments and unmarked fragments, the search begins with the 
unmarked ones. 

The next problem is associated with multiple re-use of small subfragments. Without it a large 
database of all possible fragments would be required, and the applet would be too large. For example, 
the complete 1,1’-diadamantane template would be required to display its structure. Alternatively, the 
molecule can be successfully rendered using two smaller adamantane templates. To employ this 
strategy, repeated search of molecular fragments in a molecule should be performed. Consequently, if 
coordinates of some atoms are restored, then they are excluded from the next iteration. The algorithm 
of drawing structure using fragments can be summarized as follows: 

1. The set of the minimum number of cycles in the compound is calculated using an algorithm [41] 
and stored in the LIST. 

2. The search in the fragment database is executed, and coordinates of relevant atoms are assigned 
when a fragment is found. If a fragment is not found, then the maximum size cycle from the 
LIST is drawn. If there is no cycle, then two linked atoms with maximum substitution numbers 
are used as the initial fragment to generate a structure diagram. 
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3. The fragment in the database is searched for atoms with not-yet-determined coordinates. The 
fragment should be linked to an atom with known 2D coordinates.  

4. If the fragment is found, then coordinates of corresponding atoms in the structure are 
considered to be assigned. Then the algorithm returns to point 3, and the next fragment is 
searched. If there are no more qualified fragments, then the algorithm moves to point 5. 

5. All cycles from the list with at least one assigned coordinate atom are added to the structure. If 
coordinates of only one atom are known, then a spiro-cycle is added with standard bond lengths, 
and angles are calculated from the size of the cycle. If coordinates of two bonded atoms are 
known, then a fused cycle is added with the bonds’ length equal to a known bond and with the 
angles calculated as 2π/N, where N is the size of the cycle. If the coordinates of three and more 
atoms are known (polycyclic structure), then the chain is locked. The positions of new atoms 
are assigned using a special subroutine to avoid bond intersection (if possible). If the position 
of at least one more atom is determined here, then the algorithm returns to point 3, otherwise it 
goes to point 6. 

6. Coordinates of acyclic atoms (connected to cyclic atoms with known coordinates) are 
calculated using the standard bond length and the optimal bond angle 2π/3. In the case of long 
chains, coordinates of only the first (connection) atom are calculated. If the position of at least 
one more atom is determined here then the algorithm returns to point 3, otherwise it goes to 
point 7. 

7. A determination is made whether coordinates of all atoms are defined. “Yes” means the 
process is finished; “No” means that compound is a disconnected graph with two or more 
substructures. The process is repeated beginning from point 1 for the next fragment until full 
completion. 

Structure diagrams of some polycyclic compounds generated from MCDL strings are shown in 
Figure 4. It is quite possible that there are other polycyclic structures that cannot be presented 
optimally with this algorithm. They can be added to the database in the future versions of the software.  

Figure 4.  Examples of structure diagrams generated from MCDL strings. 

 

  



Molecules 2006, 11 138 
 

 

 

Overlapped fragments 

Atom and bonds in computer-generated drawings of molecules with bulky fragments are often 
overlapped. In some cases, the overlap can be avoided by rotation of aromatic fragments around 
acyclic bonds by 180º, but not always.  For example, atom overlap in 1,5-diisopropyl-1’,5’-
dichlorobiphenyl (Figure 5-A) cannot be fixed by any rotation. In this case, bond lengths or bond 
angles should be changed, which leads to poor visual quality of the structure drawings. In another 
example, atom overlap in the 1,5-diethyl-1’,5’-dichlorobiphenyl (Figure 5-B) structure can be avoided 
using rotation around the C-C bond (Figure 5-C). 

Figure 5. Structures containing overlapped fragments (A and B) and the lack of overlapping (C). 

 

 

 

 

 
 
To solve this problem, a slightly simplified algorithm [37] is employed. The algorithm uses 

rotation around acyclic bonds. Initially, new chain atoms are added in the direction of their “growth,” 
leading to formation of chains with maximum length. In many cases overlap of fragments can be 
avoided by using rotation around acyclic bonds. This can be accomplished by calculating the number 
of nonequivalent substituents for all acyclic bonds followed by identification of “spherical fragment” 
for each atom in the molecule (similar to HOSE [27] code). The radius of this “spherical fragment” is 
equal to the topological lengths of the molecule. After that, atom-centered indexes [15] are calculated. 
If these atom-centered indexes for two acyclic bond-neighboring atoms are equal, then they are 
equivalent. This is an indication that rotation across this bond cannot produce an optimal picture. The 
list of these bonds is stored, and all possible combinations of 180º rotations are performed to find the 
optimal drawing. The total number of these combinations is equal to 2N, where N is the number of 
qualified acyclic bonds. To minimize computation time, the maximal number of these qualified bonds 
is limited to 12. 

 
Conclusions 

The MCDL chemical structure applet editor source codes and executables will be available for 
public domain at the MCDL SourceForge development area [42,43]. The overall look of the applet 
(Figure 6) is made similar to a popular JME editor [22]. The new chemical drawing approaches 
developed for the MCDL applet have wider applications in the area of computer structure generation. 
For example, virtual combinatorial libraries generation [44] and virtual screening [45] are based on 
computer design of new molecule structures and evaluation of their properties. These chemical 
structures should be visualized, and improvement in drawing quality makes the software more 

Cl Cl Cl Cl Cl Cl

A B C
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attractive and easier to use. Even in complicated cases (such as of virtual Diels-Alder cyclization 
reactions), the use of atomic coordinate templates simplifies structure diagram generation. 

Figure 6.  Computer-generated drawing of [60] fullerene molecule in the MCDL applet window. 

 
 
The proposed approach does not solve the structure generation problem entirely, but it does make 

it more efficient. The existing database has only 105 unique fragments, which is not adequate for 
structure generation of uncommon polycyclic and spiro-compounds. Further improvements can be 
achieved by adding more template coordinates in the database, but the growth of the database 
increases applet loading time and performance on the client side. The database resources can be 
searched more effectively using the known coordinates of atoms and atom pairs (bonds). The approach 
is useful for generation of the structures of spiro- and polycyclic compounds and will be included in 
the next version of the software package. 

 
Supplementary materials 

Source codes of MCDL structure editor are available at [43]. 
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