

Short Communication

$[Hydroxy(tosyloxy)iodo] benzene \ Mediated \ \alpha-Azidation \ of \\ Ketones$

Om Prakash *, Kamaljeet Pannu, Richa Prakash and Anita Batra

Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India

Author to whom correspondence should be addressed; Fax: (+91) 1744 238277; e-mail: dromprakash50@rediffmail.com

Received: 20 August 2005; in revised form: 10 March 2006 / Accepted: 12 March 2006 / Published: 14 July 2006

Abstract: Reaction of various ketones with [hydroxy(tosyloxy)iodo]benzene (HTIB) followed by treatment of the α -tosyloxy ketones thus generated *in situ* with NaN₃ offers a one-pot procedure for the synthesis of α -azido ketones. The HTIB used in this conversion may also be generated *in situ* by using iodosobenzene in combination with *p*-toluene-sulphonic acid.

Keywords: Hypervalent iodine, α -azido ketones, [hydroxy(tosyloxy)iodo]benzene, iodosobenzene.

Introduction

The application of organohypervalent iodine reagents is a fertile and attractive field in organic synthesis [1]. Of the various hypervalent iodine reagents, iodobenzene diacetate (IBD) [2] and [hydroxy(tosyloxy)iodo]benzene (HTIB) (Koser's reagent) [3] have been found to be more versatile than other reagents such as iodosobenzene (IOB), etc. The relatively lesser utility of IOB is due to its polymeric nature [4], which makes it insoluble in common solvents. To overcome such difficulties, combination reagents were developed. For example, the utility of IOB is greatly enhanced when it is combined with acids [5], bases [6] or salts [7]. These reactions are thought to proceed via generation *in situ* of the I(III) species **4** (Scheme 1). Continuing our investigations on the use of I(III) reagents, we

now report a one pot α -azidation of ketones using HTIB or the combination reagent [(PhIO)_n + p-TsOH] [8] and NaN₃.

Results and Discussion

Based on previous reports on the use of [hydroxy(tosyloxy)iodo]benzene (HTIB) [9] in one-pot syntheses of α -functionalized ketones, we first attempted the azidation of **1a** using HTIB. Accordingly, acetophenone (**1a**) was oxidized with one equivalent of HTIB in acetonitrile and subsequently the α -tosyloxy ketone **2a** generated *in situ* was treated with sodium azide. The reaction resulted in the formation of the corresponding α -azido acetophenone **3a** in 80% yield (Method A, Scheme 2). In order to study the scope of this approach, various ketones **1b-1g** were subjected to α -azidation using one equivalent of HTIB and NaN₃ to afford the corresponding α -azido ketones **3b-3g** in yields ranging from 69% to 81% (Table 1).

In another important development, we established that it is possible to use a combination of iodosobenzene and *p*-toluenesulphonic acid [(PhIO)n + *p*-TsOH] in place of HTIB. This combination reagent generates HTIB *in situ*, which then reacts with ketones **1** to give the intermediary α -tosyloxy ketones **2** (Method B).

It is evident from the results summarized in Table 1 that Method A and Method B work equally well, although Method B is more convenient than Method A as the former avoids the preparation of HTIB. It is to be mentioned that the reported preparation of HTIB consists of two steps starting from iodosobenzene [10,11] (Scheme 3).

Scheme 3 $(PhIO)_n \longrightarrow PhI(OAc)_2 \longrightarrow PhI(OH)OTs$ $IOB \qquad IBD \qquad HTIB$

Table 1. α-Azido ketones 2 prepared according to Scheme 2

Compound	R ¹	\mathbf{R}^2	Yield (%) ^a	
			Method A	Method B
2a	Н	Н	80	76
2b	$4-CH_3C_6H_4$	Н	69	74
2c	$4-CH_3OC_6H_4$	Н	72	70
2d	$4-BrC_6H_4$	Н	78	71
2e	$4-ClC_6H_4$	Н	70	69
2f	Н	CH ₃	81	71
2g	-(CH ₂) ₄ -		81	83

^aYields of isolated pure product based on the amount of ketones 1 used.

Conclusions

In summary, the present study offers a better alternative to the existing methods for the synthesis of α -azido ketones, which are valuable intermediates for various transformations [12] and are generally prepared by the reaction of α -halo ketones [12] or α -nosyloxy ketones [13] with sodium azide.

Acknowledgements

We are thankful to Kurukshetra University, Kurukshetra for the award of University Research Fellowship to Kamaljeet Pannu and DRDO (ERIP/ER/0303447/M/01), New Delhi for the award of Junior Research Fellowship to Richa Prakash to carry out this work.

Experimental

General

All reagents were purchased from commercial sources and were used without further purification. Iodosobenzene and HTIB were prepared according to literature procedures [9, 10] starting from iodobenzene. Melting points were taken in open capillaries and are uncorrected. ¹H-NMR spectra were recorded on a Bruker 300 MHz instrument using TMS as an internal standard. IR spectra were recorded on a Buck Scientific IR M-500 spectrophotometer.

Representative one-pot procedure for the preparation of α -azido ketones: α -azidoacetophenone (2azido-1-phenylethanone)(**3a**):

Method A. Using HTIB/ NaN₃:

To a solution of acetophenone (**1a**, 1.20 g, 10 mmol) in acetonitrile (20 mL) was added HTIB (4.13 g, 11 mmol) and the resulting solution was refluxed for 2 h. After cooling to room temperature sodium azide (1.30 g, 2.0 mmol) was added and reaction mixture was stirred for 2 h. Most of the solvent was distilled off and the residual mixture was dissolved in CH₂Cl₂, washed with cold water and dried over Na₂SO₄. α -*Azidoacetophenone* (**3a**) separated out from organic layer after trituration with pet. ether as a pale yellow oil (1.28 g). IR (Nujol): 2196, 2100, 1697, 1286 cm⁻¹; ¹H-NMR (CDCl₃): δ 7.36-7.87 (m, 5H, aromatic protons), 4.41 (s, 2H, CH₂) [12a].

Similarly, other α -azido ketones **3b-3g** were prepared from the corresponding ketones **1b-1g** in good yields (Table 1). The identities of the products were confirmed by comparison of their melting points and spectral data with those reported in literature.

2-Azido-1-(4-methylphenyl)ethanone (**3b**): Mp 56-57 °C (Lit. [12b] mp 58-60 °C).

2-*Azido-1-(4-methoxyphenyl)ethanone* (**3c**): Mp 67-68[°]C (Lit. [12b] mp 68-71[°]C).

2-Azido-1-(4-bromophenyl)ethanone (**3d**): Mp 85-86°C (Lit. [12b] mp 86-87°C).

2-Azido-1-(4-chlorophenyl)ethanone (**3e**): Mp 65-67°C; IR (KBr): 2918, 2105, 1692, 1591 cm⁻¹; ¹H-NMR (CDCl₃): δ 7.80 (d, J = 7.2 Hz, 2H, aromatic protons), 7.6 (d, J = 7.2 Hz, 2H, aromatic protons), 4.51 (s, 2H, CH₂).

2-*Azido-1-phenyl-1-propanone* (**3f**) [12a]: Pale yellow oil; IR (Nujol): 2897, 2115, 2009, 1696 cm⁻¹; ¹H-NMR (CDCl₃): δ 7.2-7.8 (m, 5H, aromatic protons), 4.6 (q, *J* = 5.7 Hz, 1H, CH), 1.5 (d, *J* = 6.2 Hz, 3H, CH₃).

2-*Azidocyclohexanone* (**3g**) [12d]: Pale yellow oil; IR (Nujol): 2932, 2863, 2105, 1721, 1451 cm⁻¹; ¹H-NMR (CDCl₃): δ 3.7 (dd, *J* = 9.7 Hz, 2.8 Hz, 1H, -CH-), 1.5-2.4 (m, 8H, -(CH₂)₄-).

Method B. Using $(PhIO)_n + p$ -TsOH/NaN₃:

To iodosobenzene (2.20 g, 10 mmol) in acetonitrile (20 mL) was added *p*-toluenesulphonic acid (1.72 g, 10 mmol), the mixture was stirred at room temperature for 5 min. To the resulting suspension, acetophenone (**1a**, 1.20 g, 10 mmol) was added and the mixture was refluxed for 2 h. After cooling to room temperature sodium azide (1.30 g, 2.0 mmol) was added and stirred for 2 h. Usual work up (as given in *Method A*) gave 1.24 g of **3a**. Compounds **3b-3g** were similarly prepared in good yields from the corresponding ketones **1b-1g** (Table 1).

References

- 1. (a) Zhdankin, V. V.; Stang, P. J. *Chem. Rev.* **2002**, *102*, 2523-2584; (b) Varvoglis, A. *Hypervalent iodine in organic synthesis*; Academic Press: New York, **1997**.
- (a) Moriarty, R. M.; Chany II, C. J.; Kosmeder II, J. W. In *Encyclopedia of Reagents in Organic Synthesis*. Paquette, L. A., Ed John Wiley & Sons Ltd.: Chichester, **1995**; Vol 2, pp. 1479-1484; (b) Prakash, O.; Singh, S. P. *Aldrichim. Acta* **1994**, *27*, 15-22; (c) Varvoglis, A. *Chem. Soc. Rev.* **1981**, *10*, 377-407.
- (a) Koser, G. F. Aldrichim. Acta 2001, 34, 89-101; (b) Moriarity, R. M.; Vaid, R. K.; Koser, G. F. Synlett 1990, 365-383.
- 4. Schardt, B. C.; Hill, C. L. Inorg. Chem. 1983, 22, 1563-1567.
- 5. Ochiai, M.; Ukita, S; Lawki, S; Nagao, Y. and Fujita, E. J. Org. Chem. 1989, 54, 4832-4840.
- 6. Moriarty, R. M.; Hu, H.; Gupta, S. C. Tetrahedron lett. 1981, 22, 1283-1286.
- 7. Tohma, H.; Takizawa, S.; Maegawa, T.; Kita, Y. Angew Chem. Int. Edit. 2000, 39, 1306-1308.
- 8. Yang, R. -Y.; Dai, L. -X. Synth. Comm. 1994, 24, 2229-2234.
- 9. (a) Prakash, O.; Rani, N.; Sharma, P. K. Synlett 1994, 221-226; (b) Prakash, O. Aldrichim. Acta 1995, 28, 63-71; (c) Prakash, O.; Saini, N.; Sharma, P. K. Heterocycles 1994, 38, 409-431; (d) Mohan, J.; Singh, V.; Kumar, V.; Kataria, S. Indian J. Chem. 1994, 33B, 686-689; (e) Singh, S. P.; Batra, H.; Sharma, P. K. J. Chem. Res. (S) 1997, 468-471.
- Furniss, B. S.; Hannaford, A. J. Vogel's Textbook of Practical Organic Chemistry, 5th Edition; Longman: New York, **1989**; pp. 869-870.
- 11. Koser, G. F.; Wettach, R. H. J. Org. Chem. 1977, 42, 1476-1483.
- 12. (a) Boyer, J. H.; Straw, D. J. J. Am. Chem. Soc. 1952, 74, 4506-4508; (b) Behringer, H.; Tuerck, U. Chem. Ber. 1966, 99, 1815-1821; (c) Edwards, O. E.; Purushothaman, K. K. Can. J. Chem. 1964, 42, 712-716; (d) Patonay, T.; Hoffman, R. V. J. Org. Chem. 1995, 60, 2368-2377.
- 13. Lee, J. C.; Kim, S.; Shin, W. C. Synth. Comm. 2000, 30, 4271-4274.

Sample availability: Contact the authors.

© 2006 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.