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Abstract: Aromatic and aliphatic oximes have been deoximated in chloroform-water to the 
corresponding aldehydes with dilute hydrogen peroxide and triscetylpyridinium tetrakis 
(oxodiperoxotungsto) phosphate as catalyst. The presence of dipolarophiles in the reaction 
mixtures allows a competitive reaction that converts oximes into isoxazole and isoxazoline 
derivatives via the intermediate formation of nitrile oxide species. 
 
Keywords: Oxidation of oximes; oxodiperoxotungsto complex; 1,3-dipolar cycloaddition; 
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Introduction 

Oximes are frequently used as carbonyl protector groups [1] from which the parent carbonyl 
compounds must be regenerated. Regeneration of the carbonyl compound requires the use of soft 
reagents that will cleave the oxime bond without modification under mild reaction conditions. 
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Furthermore, since oximes can also be prepared from non-carbonyl compounds, the generation of 
carbonyl compounds from them provides an alternative method for the preparation of aldehydes and 
ketones [2–5]. The traditional hydrolytic method for deprotection of oximes requires the use of strong 
acids and often results in low yields due to the formation of polymeric by-products, so a number of 
alternative methods have been developed. Some previously reported carbonyl compound deoximation 
methods involve oxidative or reductive protocols using, for example, pyridinium dichromate, t-butyl-
hydroperoxide, and so on. [6,7]. Some of these reactions have different disadvantages such as long 
reaction times, difficulties in isolation of products and the possibility of explosions due to the presence 
of unstable compounds produced by strong oxidative reagents. Many oxidative deoximation methods of 
aldoximes cited in the literature give low yields of aldehydes due to their over-oxidation to acids. 

Mo(VI) and W(VI) peroxopolyoxo complexes, whose general formula is Q3
+{PO4[MO(O2)2]4}3–, 

are one of the most promising group of catalysts for the selective transfer oxygen to organic substrates 
[8–9]. They can be stoichiometrically used as oxidant agents or as catalysts in the oxidation processes 
employing dilute hydrogen peroxide. Lacunary polyoxotungstates have been also recently been 
screened as catalysts for H2O2 oxidations under microwave irradiation [10]. Hydrogen peroxide as 
oxidant has the great advantage to generate only water as by-product. It has a high content of active 
oxygen and it is less expensive than organic peroxides and peracids. Another advantage of using these 
salts as oxidants comes from the possibility that the counteraction Q+ itself acts as a phase transfer 
agent when Q+ represents a suitable ammonium salt. In this paper we wish to report the oxidative 
deprotection reaction of oximes with hydrogen peroxide mediated by triscetylpyridinium 
tetrakis(oxodiperoxotungsto) phosphate as catalyst to yield the corresponding carbonyl compounds 
under mild conditions and high yields. 

Results and Discussion 

Aromatic and aliphatic oximes 1 treated in water-chloroform at 30 °C with dilute hydrogen peroxide 
(35%, v/v) and 1 mol% of [C5H5N+(CH2)14CH3]3{PO4[WO(O2)2]4}3– (PCWP), used as catalyst, have 
been transformed to carbonyl compounds 2 (Table 1). 

Table 1. Deoximation of aldoximes 1 by oxidation with diluted hydrogen peroxide and PCWP a 

N
OH

R2

R1 O

R1 R2

21

H2O2, PCWP
H2O/CHCl3, 30 °C

 

Oxime R1 R2 Time (min.) Conversion (%) Yield (%)b,c 
1a C6H5 H 80 90 100 
1b p-Cl-C6H4 H 70 95 100 
1c C6H5 CH3 90 80 95 
1d CH(Me)(Et) H 60 95 70 
1e n-C7H15 H 60 95 70 
1f –(C5H10)– 90 85 93 

a All the reactions have been performed in CHCl3/H2O at 30 °C employing [Oximes] = 2.5 mmol; [H2O2] = 20 
mmol and [PCWP] = 0.025 mmol. b Isolated yields. c Identities of compounds have been confirmed by 
comparison of their MS and 1H-NMR spectra with those of authentic samples. 
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The results listed in Table 1 indicate that the reaction is successful for a variety of aliphatic and 
aromatic oximes. Moreover, the obtained results suggest that aldoximes are deprotected relatively 
faster than ketoximes. 

We also explored the possibility of generating nitrile oxides intermediates for the preparation of 
isoxazole and isoxazoline derivatives via 1,3-dipolar cycloaddition [11,12], to further expand the 
synthetic utility of the PCWP oxidation of aldoximes. N,O-Heterocycles are considered privileged 
structures in medicinal chemistry, as they show a wide spectrum of biological activities and have been 
used as antimitotic agents, antiviral compounds, antimicotics and so on [13–14]. Moreover, these 
compounds have several synthetically useful functionalities, masked in the rings. These functionalities 
can be released through ring cleavage giving easy access to a variety of open chain derivatives which 
are differently functionalized [15]. Thus, the reaction in chloroform-water of aldoximes 1a,d, used as 
model compounds, and treated with dilute hydrogen peroxide (35%, v/v) and 1 mol% of 
[C5H5N+(CH2)14CH3]3{PO4[WO(O2)2]4}3– (PCWP), used as catalyst, at 40 °C in the presence of 
alkenes 3 (1 equiv.) or alkynes 4 (2.5 equiv.), produced isoxazolines 5 or isoxazoles 6 and 7, 
respectively, along with variable amounts of aldehydes 2a,d (Scheme 1, Table 2). 

Scheme 1. 
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Table 2. Preparation of isoxazole and isoxazoline derivatives by aldoximes oxidation in 
the presence of alkenes or alkynes a. 

Entry R1 R2 R3 R4 
Time 
(h) 

Conv. 
(%) 

Yields, (%)b,c 
2 5 6 7 

1 C6H5 H CH3(CH2)5  9 84 62 17   
2 CH(Me)(Et) H CH3(CH2)5  5 89 56 6   
3 C6H5

d CO2Me CO2Me  9 81 43 46   
4 CH(Me)(Et)e CO2Me CO2Me  6 100 30 30   
5 C6H5   C6H5 16 71 67  28  
6 CH(Me)(Et)   C6H5 6.5 90 49  9  
7 C6H5   CH3(CH2)5 6.5 83 49  32  
8 CH(Me)(Et)   CH3(CH2)5 3 88 33  5  
9 C6H5   CO2Me 8 86 30  42 13 

10 CH(Me)(Et)   CO2Me 3 100 43  25 8 
aAll the reactions have been performed in CHCl3/H2O at 40 °C employing [Oximes] = 2.5 mmol; [H2O2] = 20 
mmol and [PCWP] = 0.025 mmol. b Isolated yields. c Identities of the compounds have been obtained comparing 
their MS and 1H-NMR spectra with those of authentic samples. dThe reaction is stereospecific; fumarate gave E-
adduct whereas maleate gave Z-adduct. eThe reaction has been performed with fumarate. 
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The results indicate that the aldehydes are the main products of the reaction, except for entries 3 and 
4 (cycloadduct-aldehyde ratio 1:1) and entry 9 (cycloadduct-aldehyde ratio 1.8:1). The stereochemistry 
of the cycloadducts depends on the stereochemistry of the dipolarophiles (entry 3) – the E-adduct was 
obtained using fumarate and the Z-ones has been obtained with maleate. Moreover, all the experiments 
show that aromatic oximes lead to a higher yield of cycloadduct than aliphatic ones, and the presence 
of electron-withdrawing groups on the dipolarophile moiety increases the yield of cycloadduct (entries 
3, 4, 9 and 10). The formation of isoxazole derivatives 5–7 supports the intermediate formation of the 
corresponding nitrile oxide [16]. In fact, the reaction of C6H5CH=NOH (2.5 mmol) with H2O2 (20 
mmol) and PCWP (0.025 mmol) in CHCl3 at 40 °C, in the absence of dipolarophiles gives as main 
product benzaldehyde, along with a small amount of diphenylfuroxan. The same reaction followed by 
IR shows two significative bands: at 2250 cm–1 corresponding to benzonitrile oxide [17], and at 1700 
cm-1 associated to benzaldehyde. Furthermore, the data point out that the regioselectivity of the 
cycloaddition process is in accordance with both steric and frontier molecular orbital interactions of the 
reagents [16]. 

At this stage it is hard to suggest a mechanistic pathway for this reaction. It is known that 
peroxopolyoxocomplexes such as PCWP behave as electrophilic oxidants [18,19] and therefore the 
oxidation reaction might be triggered by a nucleophilic [18, 20] attack of the oxime nitrogen-atom to 
the peroxide oxygen followed by catalytic hydrogen peroxide regeneration of the oxidant and by 
subsequent steps for the products formation (Scheme 2). However, it is also known that PCWP is also a 
good electron acceptor [21,22] and therefore the involvement of electron transfer events cannot be 
excluded a priori. 

Scheme 2. 

O
O

WLn+Nuc Nuc-O + Ln W O1)

2)

3)

Ln W O + H2O2
O
O

WLn + H2O

Nuc-O Products  

Conclusions 

In summary, aromatic and aliphatic oximes 1 can be easily deoximated in water-chloroform to the 
corresponding aldehydes 2 with dilute hydrogen peroxide (35%, v/v) mediated by 1 mol% of 
[C5H5N+(CH2)14CH3]3{PO4[WO(O2)2]4}3– (PCWP). The presence in the reaction mixtures of alkenes 
and alkynes as dipolarophiles allows a competitive reaction path which converts the oximes into 
isoxazole and isoxazoline derivatives through the intermediate formation of nitrile oxide species. 
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Experimental  
 
General 

 
Aldoximes, alkynes and alkenes (Aldrich) were distilled or crystallized before use. Chloroform 

(Carlo Erba, RPE) was distilled over P4O10, whereas H2O2 (35%, v/v) (Carlo Erba, RPE) was used 
without further purification. 1H- and 13C-NMR were obtained on a Varian Unity Inova 200 MHz 
spectrometer operating at 200 and 50 MHz, respectively, using CDCl3 as solvent and TMS as internal 
standard. GLC analyses were carried out on a programmable Perkin-Elmer 8420 gas chromatograph 
equipped with a flame ionization detector and a 25 m DB-1 capillary column. GC/MS analyses were 
performed on a Hewlett-Packard model 5890 gas chromatograph, using an HP-1 dimethylpolysiloxane 
25 m capillary column, equipped with a Hewlett-Packard MS computerized system Model 5971A, 
ionization voltage 70 eV, electron multiplier 1700 V, ion source temperature 280 °C. IR spectra were 
recorded on a Perkin-Elmer Paragon 500 FT-IR Spectrometer using potassium bromide discs. 
 
Preparation of triscetylpyridinium tetrakis(diperoxotungsto)phosphate (PCWP) 

 
To a solution of cetylpyridinium chloride (3.1 mmol) in 35% H2O2 (40 mL) has been added 

H3PW12O40·nH2O (3 g) in 35% H2O2 (10 mL), and the mixture has been stirred at 40 °C for 4–5 h. The 
white precipitate, after filtration, has been washed with water until all the H2O2 was removed and then 
dried in vacuo over P4O10. The IR spectrum (KBr) corresponded to the one reported in the literature 
[23]. 

 
Oxidation and cycloaddition reactions: general procedure for oxidation 

 
To a warm (30 °C) solution containing PCWP (0.025 mmol) in chloroform (5 mL) has been added a 

solution of aldoxime (2.5 mmol) and H2O2 (35%, 1.8 mL, 20 mmol). After the addition has been 
completed, the mixture has been stirred at 30 °C for an appropriate time, then the organic layer has 
been separated, washed with a 10% of aqueous solution of sodium bisulphite and dried over anhydrous 
sodium sulphate. The solvent has been removed under reduced pressure to leave a thick oil, which has 
been subjected to silica gel chromatography using a 30% ethyl acetate/cyclohexane mixture as eluent. 
The 1H-NMR spectra of aldehydes 2a–f corresponded to the ones reported in the literature. 
 
General procedure for oxidation-cycloaddition 

 
A solution of aldoxime (2.5 mmol), alkene (2.5 mmol) or alkyne (7.5 mmol) in chloroform (5 mL) 

and H2O2 (35%, 1.8 mL, 20 mmol) were added to a warm (40 °C) solution of PCWP (0.025 mmol) in 
chloroform (5 mL). After the addition was completd, the mixture was stirred at 40 °C for an appropriate 
time, after which the organic layer was separated, washed with a 10% aqueous solution of sodium 
bisulphite and finally dried over anhydrous sodium sulphate. The solvent has been removed under 
reduced pressure to leave a thick oil, which was subjected to silica gel chromatography using a 30% 
ethyl acetate/cyclohexane mixture as eluent. The 1H-NMR and MS spectra, for the compounds obtained 
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in entries 1 [24], 3 [25, 26], 5 [27], 7 [28], and 9 [29, 30], corresponded to the ones reported in the 
literature. 
 
Data for new compounds in Table 2: 
 
(5RS)-3-sec-Butyl-5-hexyl-4,5-dihydroisoxazole (entry 2): Light yellow oil; 1H-NMR: 0.84–0.89 (m, 
6H), 1.23 (d, 3H, J = 6.1 Hz), 1.24–1.43 (m, 12H), 2.28 (m, 1H), 2.63 (dd, 1H, J = 8.4 and 16.5 Hz), 
3.01 (dd, 1H, J = 10.2 and 16.5 Hz), 4.49 (m, 1H); 13C-NMR: 11.8, 14.1, 18.6, 22.7, 26.0, 26.6, 29.0, 
31.7, 35.4, 35.6, 38.4, 80.6, 165.8; Anal. calcd. for C12H25NO: C, 73.88; H, 11.92; N, 6.63%. Found: C, 
73.67; H, 11.94; N, 6.62%. 
 
Dimethyl (4RS,5RS)-3-sec-butyl-4,5-dihydroisoxazole-4,5-dicarboxylate (entry 4): Light yellow oil; 
1H- NMR: 0.87 (t, 3H, J = 7.1 Hz), 1.15 (d, 3H, J = 6.1 Hz), 1.18–1.40 (m, 2H), 2.58 (m, 1H), 3.72 (s, 
3H), 3.81 (s, 3H), 4.63 (d, 1H, J = 5.0 Hz), 5.40 (d, 1H, J = 5.0 Hz); 13C-NMR: 11.8, 18.2, 25.9, 34.8, 
51.6, 52.5, 60.1, 80.8, 165.9, 167.6, 168.2; Anal. calcd. for C11H17NO5: C, 54.31; H, 7.04; N, 5.76%. 
Found: C, 54.48; H, 7.05; N, 5.75%. 
 
3-sec-Butyl-5-phenylisoxazole (entry 6): Light yellow foam; 1H-NMR: 0.81 (t, 3H, J = 7.1 Hz), 1.28 (d, 
3H, J = 6.8 Hz), 1.38–1.69 (m, 2H), 2.87 (m, 1H), 6.31 (s, 1H), 7.30–7.78 (m, 5H); 13C-NMR: 12.4, 
20.1, 29.3, 35.6, 102.7, 125.3, 127.8, 131.9, 132.2, 165.4, 167.3; Anal. calcd. for C13H15NO: C, 77.58; 
H, 7.51; N, 6.96%. Found: C, 77.35; H, 7.53; N, 6.97%. 
 
3-sec-Butyl-5-hexylisoxazole (entry 8): Light yellow oil; 1H-NMR: 0.88 (t, 3H, J = 7.1 Hz), 1.23 (d, 
3H, J = 6.1 Hz), 1.24–1.43 (m, 10H), 1.62 (m, 2H), 2.69 (t, 2H, J = 6.6 Hz), 2.81 (m, 1H), 5.80 (s, 1H); 
13C-NMR: 11.6, 14.0, 19.5, 22.4, 26.7, 27.4, 28.7, 29.2, 31.4, 33.1, 98.4, 168.3, 173.2; Anal. calcd. for 
C13H23NO: C, 74.59; H, 11.07; N, 6.69%. Found: C, 75.76; H, 11.04; N, 6.68%. 
 
Methyl 3-sec-butylisoxazole-5-carboxylate (entry 10): Light yellow oil; 1H-NMR: 0.91 (t, 3H, J = 7.3 
Hz), 1.31 (d, 3H, J = 7.1 Hz), 1.44–1.78 (m, 2H), 2.95 (m, 1H), 3.96 (s, 3H), 7.03 (s, 1H); 13C-NMR: 
12.3, 20.4, 30.1, 31.2, 53.1, 112.8, 157.6, 159.4, 171.7; Anal. calcd. for C9H13NO3: C, 59.00; H, 7.15; 
N, 7.65%. Found: C, 58.84; H, 7.18; N, 7.63%. 
 
Methyl 3-sec-butylisoxazole-4-carboxylate. Light yellow oil; 1H-NMR: 0.93 (t, 3H, J = 7.3 Hz), 1.34 
(d, 3H, J = 7.1 Hz), 1.47–1.81 (m, 2H), 2.97 (m, 1H), 3.86 (s, 3H), 9.02 (s, 1H); 13C-NMR: 12.8, 20.6, 
29.4, 30.6, 51.1, 112.5, 154.2, 167.5, 172.1; Anal. Calcd. for C9H13NO3: C, 59.00; H, 7.15; N, 7.65%. 
Found: C, 59.11; H, 7.13; N, 7.66%. 
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