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Abstract: The synthesis of bicyclo-[2.2.1]-heptane and bicyclo-[7.2.0]-undec-4-ene derivatives under cold
plasma conditions are reported. The reaction systems involve gaseous mixtures at an interface with ice
surfaces. The reactions are sensitive to the feed mixture and the ice trapped compounds.
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Introduction

During the last decade plasmas have been intensively
investigated due to the possible application in technology,
chemistry, and spectroscopy [1]. The progress of low-
temperature plasma applications depends obviously on the
development of devices that generate such a plasma, e.g.,
RF (Radio Frequency) or DC (Direct Current) generators,
microwave plasmatrons.

One of the fields in which cold plasma systems have
been extensively used concerns chemical evolution
simulations. After Miller's successful experiment [2], many
more followed in which the synthesis of some significant
prebiotic compounds, such as amino acids, nucleic acids
bases, sugars, lipids, etc., was reported [3]. The
experiments carried out in order to simulate the prebiotic
evolution starting from a reduced atmosphere have
highlighted the role of formaldehyde [4] and hydrogen
cyanide [5] as precursors in the synthesis of the essential
biomolecules. Even if the redox character of such an
atmosphere [6] is still a matter of debate, it is known that a

high level of oxygen results in decomposition of organic
compounds.

The study of natural products from contemporary
sophisticated superstructures shows the role of lipid
compounds (terpenes [7-8] particularly) for living
membranes, in reinforcing them against shear stresses.
Primitive membranes could initially have been formed by
simple terpenoids, and vesicles formed from these
membranes may have evolved into progressively more
complex units, more and more similar to protocells [9].

Results and Discussion

Our paper reports the cold plasma synthesis of some
bicycle terpenoid compounds. The reactants have very
simple structures (water, ammonia, and carbon dioxide).
The complexity of the raw reaction product is generated by
the synthesis pathway [10].

In order to establish the composition and peculiar
structures of the organic components of the final reaction
products, a chloroform extraction was performed and the
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three resulting fractions (aqueous phase, interface and
chloroform phase) were analyzed by GC/MS (Figure 1 -
chloroform phase). The formation of lipid-like structures
(non-polar hydrocarbon and polar polyacrylamide blocks)
have been reported earlier [11].

The chloroform phase shows the presence of bicyclo-
[2.2.1]-heptane and bicyclo-[7.2.0]-undec-4-ene deriva-
tives (Table 1, no. 1, 2, 3, 4, and, 5, 6, respectively).
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Figure 1. TIC chromatograms (total abundance of ions recorded) of the chloroform
extract from raw reaction products plotted versus retention time.
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Scheme 1. Scheme of the synthesis of terpenoids from isobutene and formaldehyde.
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Table 1. The bicyclic compounds identified  in cold plasma synthesis.

No Quantity
(%)

Name Structure #NIST #CAS Quality

Invers

Match

PBM

1. 7.14 Bicyclo[2.2.1]heptan-2-
one, 1,7,7- trimethyl-

O

66978 000076-22-2 963 97

2. 0.06 Bicyclo[2.2.1]hept-2-yl
acetate, 1,7,7-

trimethyl-

O
O

69502 000076-49-3 821 83

3. 4.30 Bicyclo[2.2.1]heptane,
1,7,7- trimethyl-1,7-

oxo-
O

67089 000470-82-6 942 95

4. 1.18 Bicyclo[3.1.1]heptan-3-
one, 6,6-dimethyl-2-

methylene-
O

9819 016812-40-1 865 91

5. 0.32 Bicyclo[7.2.0]undec-4-
ene, 4,11,11-trimethyl-

8-methylene-

69932 000087-44-5 890 86

6. 1.29 Bicyclo[7.2.0]undecane,
4,11,11-trimethyl-8-
methylene-4,5-oxo-

O
27701 001139-30-6 908 76

7. 0.55 Naphthalene,
decahydro-4a-methyl-

1-methylene-7-(1-
methylethenyl)-

69938 017066-67-0 765 97

8. 0.46 Tricyclo[4.4.0.02,7]dec-
3-ene, 1,3-dimethyl-8-

(1-methylethyl)-

23969 014912-44-8 975 95

9. 2.08 1,6-Octadien-3-ol, 3,7-
dimethyl-

OH 10941 000078-70-6 818 90

There are many ways in which terpenoid compounds
can be obtained [7, 8, 12-13], including Prins reaction of
formaldehyde and isobutene with the formation of
isopentanol, followed by a sequential elongation to
polyprenols.

Eventually these can undergo cyclization which result
in the synthesys of polycyclic derivatives [14]. It is worth
noting that formaldehyde was identified among the
reaction products of many chemical evolution experiments,
irrespective of the redox character of the starting gaseous
mixture or of the energy source used. However, the
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complexity of the plasma systems makes it difficult to
trace a precise reaction pathways for all of the compounds
synthesized. Such systems can favor many side-reaction
including cyclization, group transfer, etc., that would
justify the presence of  decahydro-4a-methyl-1-methylene-
7-(1-methylethenyl)-naphthalene (no. 7 in Table 1) as a
derivative of a terpenoid.

Conclusion

It can be supposed that one of the most important
factors which determined the appearance of an ordered
system from a random chemical mixture in the primeval
environment was probably the appearance of functional
protomembranes [14-16]. The importance of membranes
and surfactants (lipid-like compounds, terpenes, etc.) for

chemical evolution is unanimously recognized. Further
details of these observations are under investigation.

Experimental Section

Synthesis of the compounds

Starting from an open system (CO2 / NH3 / H2O), our
simulative experiments were carried out in a plasma
installation (Figure 2) joining a spherical RF plasma
reactor (10) and a cylindrical cooling part (13) for species
recombination in the afterglow zone. Experiments were
developed with ice deposited on the inner surface of the
cylindrical part (13). The ultracryostat (14) maintains the
temperature of the cylindrical flask at -60°C.
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Figure 2. The installation for cold plasma synthesis. 1,2,3,4 - gas cylinders; 5,6,7,8 -
valves; 9 - mixing vessel; 10 - plasma reactor; 11 - capacitive electrodes; 12 - RF
plasma generator; 13 - cylindrical reactor; 14 - ultracryostat; 15 - liquid N2 cooled
trap; 16 - cryostat; 17 - vacuum pump.

The parameters of the plasma syntheses were: pressure
during the synthesis, 460 - 660 Pa; temperature of cooling
zone, 113 K; time, 4 hours, and dissipated power, 4.8 kW.
Water was introduced in different ways: 500 ml initially
(ice from artificial “sea water” on the cylindrical surface of
the reactor) and during the synthesis 5 mg/s water vapor in

the atmosphere for RF plasma discharge. The feed
mixtures were: initial CO2 partial pressure,  200 Pa;  initial
NH3 partial pressure,  66 Pa; initial water partial pressure,
66 Pa. Artificial "sea water" was prepared from salts (p.a.
purity grade) in order to achieve the main marine ionic
composition: NaCl 25.082 g/l, CaCl2 1.360 g/l,
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MgSO47H2O 7.093 g/l, Na2HPO412H2O 1.081 g/l, KCl
1.070 g/l and MgCl2 2.078 g/l.

Before the reaction, the installation was cleaned with
air (direct valve injection) and H2 (from cylinder (4)
through a needle valve (8)) plasma. Known amounts of
carbon dioxide, ammonia and water were introduced into
the mixing chamber (9) through needle valves (5-7). The
mixture obtained was continuously admitted into the
spherical part (10) of the apparatus, where an electric
discharge was provided by (12) a high-frequency generator
(5 kW and 13.6 MHz) by means of two external silver-
plated electrodes (11). The vacuum (460 - 660 Pa) and
open system conditions was ensured by a pump (17)
protected by a N2 cooled trap (15). The volatile
compounds from a reactive plasma synthesis are captured
in trap (15) cooled with the cryostat (16).

The active species formed in the cold plasma were
adsorbed on the ice deposited previously (from "sea water"

[10]) on the wall and at the bottom of the cylindrical flask
(13), cooled to -60ºC with ethanol and recirculated locally
through a cooling system (17).

Analysis of the raw reaction products

Chloroform extraction of the raw reaction products was
performed and the three resulting fractions (aqueous phase,
interface and chloroform phase) were analyzed.

GC / MS analyses were performed on a Hewlett-
Packard GC 5890 series II Plus / MSD 5972A instrument
with a 30 m 0.25 mm ID 0.33 m film thickness type
HP5MS capillary GC column in order to obtain data on
small organic molecules from chloroform phase (Figure 1).
GC conditions were as following: initial temperature 40ºC
at 2 min.; then to 90ºC at 5ºC/min. rate, to 120ºC at
10ºC/min. and to 250ºC at 15ºC/min.; final time 5 min.;
carrier gas helium.
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Figure 3. The comparison of mass spectra obtained experimentally in a GC/MS analysis (black, side up each frame)
and NIST library spectra (green, down). The identification was made using PBM search from HP MSD ChemStation.
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Figure 3. (Continued)

The mass spectra of chromatographic peaks were
identified (standard spectra autotune) using NIST / EPA /
NIH Mass Spectral Data Base with NIST MS Search
Program 1.1a (similarity value presuming an impure
searched spectrum [15] - 01000 scale) and HP Chemstation
Software (PBM search - 1100% - Figure 3). The graphic
comparison is given in Figure 3 and numerical values are

presented in Table 1. The compounds 1-3 and 5-6 (Table I)
are validated by GC/MS analysis (separate injections) of
pure (Merk and Fluka, p.a. grade) supposed derivatives
under the same analytical conditions.
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