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Abstract: The nucleophilic addition of 2-furyllithium to esters derived from L-serine is described. The
obtained furyl ketone 5 is stereoselectively reduced (ds≥95%) with sodium borohydride to afford the
corresponding syn aminoalcohol 12 in enantiomerically pure form. Compound 12 was further converted into
valuable α-hydroxy-β-amino acids by means of the furan-to-acid equivalence.
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Due to the synthetic equivalence of a variety of
heterocyclic systems with several functional groups of
interest [1], introduction of heterocyclic nuclei into carbon
frameworks is the key stage in the synthesis of many
biologically active compounds [2]. Among the most
extensively studied heterocyclic systems are furan [3],
benzotriazole [4] and thiazole [5]. In particular the furan
ring is very attractive because it is resistant to acids and
bases but nevertheless is readily cleaved to carboxyl by
means of either ruthenium-mediated oxidation or
ozonolysis [6].
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Reactions of 2-furyllithium 1 with sufficiently active
electrophiles, e.g. organic halides, are convenient methods
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for the formation of a C-C bond [7]. Also, the reaction of
metalated furans with carbonyl compounds constitutes a
useful way of introducing the furan ring; in this context, a
vast number of examples concerning the addition of
metalated furans to aldehydes and ketones can be found in
the literature [8]. By contrast, only a few reports on the
addition of organometallic derivatives of furan to acid
derivatives, such as acid halides, esters or amides have
been described [9]. In this communication we wish to
report our latest efforts at expanding the scope of the
synthetic utility of the furan ring. The nucleophilic addition
of 2-furyllithium 1 to acid derivatives of L-serine and
progress towards α-hydroxy-β-amino acids are discussed.

The starting material of our studies was the O,N-
dimethylhydroxamate 4 (Scheme 1) easily available from
L-Serine 2 in three steps as described [10]. We chose
compound 4 since we saw that O,N-
dimethylhydroxylamates had been described as suitable
electrophiles in nucleophilic additions of organometallic
compounds for the synthesis of ketones [11].

COOH

NH2

HO

L-Serine

NHBoc
HO

O

N
Me

OMe

2
3

O

N
Me

OMe

4

NBoc
O

i, ii

iv

Scheme 1a

aReagents and Conditions: i, Boc2O, NaOH,

r.t. ii, MeNH(OMe)•HCl,WSC, H2O-THF. iii,

DMP, acetone, BF3OEt2, r.t. iv, 2-furyllithium, 
THF, -40 °C.
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The addition of 1.05 equivalents of 2-furyllithium 1 to
hydroxamate 4 in THF as a solvent afforded the expected
furyl ketone 5 in only 20% yield after 12 h at -40 °C, a
substantial amount of starting material (c.a. 50%) being
recovered. Longer reaction times did not improve the
conversion and when the reaction was carried out at higher
temperatures the yield dropped considerably. It is worth
mentioning that Guanti and co-workers reported that
compound 4 showed a poor reactivity upon the addition of
several organometallic reagents such as ethyl- and
vinyllithium [12].

In order to obtain the furyl ketone 5 with an acceptable
chemical yield and purity we decided to explore an
alternative approach using the well-known methyl ester
[13] 6. Two different protecting group arrangements were

tried (Scheme 2). Whereas the addition of 2-furyllithium 1
(2.1 equiv., THF, -40 °C) to ester 7 afforded the
corresponding ketone 9 in 45% yield, the addition of 1
(1.05 equiv., THF, -40 °C) to ester 8 provided the furyl
ketone 5 in 74% yield after 4 h of reaction [14]. In both
cases a small amount of starting material (c.a. 10%) was
recovered.
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Scheme 2a

aReagents and Conditions: i, tBuMe2SiCl, DMF, 

imidazole, r.t. ii, DMP, acetone, BF3OEt2, r.t. iii,

2-furyllithium, THF, -40 °C. iv, Bu4NF, THF, r.t.
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If the reaction is extended in order to achieve a higher
degree of conversion, the frequent drawback associated
with the nucleophilic addition of organometallic reagents
to esters (the addition of two molecules of reagent)
becomes apparent with the formation of substantial
amounts of the tertiary alcohol 11.
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The furyl ketone 9 can be converted into furyl ketone 5
by replacing the protecting groups, i.e. fluoride-mediated
desilylation to afford ketone 10 and subsequent formation
of the oxazolidine ring (Scheme 2)

Mindful of the highly syn-selective reduction of both
α-amino and α-alkoxy ketones with sodium borohydride
[15] we decided to exploit that reagent for preparing the
required syn aminoalcohol 12. The reduction of 4 was
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carried out with an excess of NaBH4 in methanol as
solvent at -60 °C and it occurred with an excellent level of
diastereoselectivity (ds≥95%), only one isomer being
detectable by 1H NMR spectroscopy (300 MHz) [16].

 The almost complete syn selectivity found in the
reduction reaction may be ascribed to the Felkin-Anh-
Houk open-chain model for asymmetric induction [17] and
is also consistent with the earlier observations made
regarding the stereoselectivity of the reduction of α-amino
ketones [15]. Thus the transition state model associated
with the reduction of 5 is presented in Figure 1.
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Figure 1. Proposed model for the reduction of 5
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aReagents and Conditions: i, NaBH4, MeOH,
-60°C. ii, Ac2O, Py, r.t. iii, RuCl3, NaIO4, CCl4,
CH3CN, H2O, r.t. iv, CH2N2, Et2O, 0 °C. v, NaH, 

BnBr, DMF, 0°C. vi, BnBr, DMF, K2CO3, r.t.
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The application of the furan-to-acid conversion to 12,
after protection of the hydroxyl group as an acetate,
afforded the carboxylic acid 13 which was converted in
situ into the α-hydroxy-β-amino ester 14 [18]. The same
protocol was applied to 12 after benzoylation of the
secondary alcohol thus providing (after in situ
benzoylation of the resulting carboxylic acid 15) the
known [19] benzyl ester 16. The physical and
spectroscopic properties of 16 were in good agreement
with those reported for its enantiomer [19]. Since the
antipode of compound 16 has been previously converted
[19] to the enantiomer of the 2-amino-3-hydroxy diamino

acid 17, the reaction sequence described above constitutes
a formal synthesis of 17, a protected form of the (2R,3R)-
β-hydroxy aspartic acid [20].

In conclusion, a new approach to syn α-hydroxy-β-
amino acids via furan chemistry has been achieved. The
scope of this methodology and its application to the
synthesis of various compounds of interest will be reported
in due course.
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