Evaluation of Effect of Microwave Irradiation on Syntheses and Reactions of Some New 3-Acyl-methylchromones*

Margita Lacova ${ }^{\text {a }}$ **, Hafez M. El-Shaaer ${ }^{\text {b }}$, Dusan Loos ${ }^{\text {a }}$, Maria Matulova ${ }^{\text {c }}$, Jarmila Chovancova ${ }^{\text {a }}$ and Mikulas Furdik ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Mlynska dolina CH-2, SK-842 15
Bratislava, Slovak Republic. Tel. +421 7 60296338, Fax +421765429064 , E-mail: lacova@fns.uniba.sk
${ }^{\mathrm{b}}$ Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt
${ }^{\mathrm{c}}$ Institute of Chemistry Slovak Academic Sciences, 84238 Bratislava, Slovak Republic

Received: 16 January 1998 / Accepted: 17 February 1998 / Published: 10 March 1998

Abstract

The 3-Acyl-2-R-methylchromones $\left(\mathrm{R}=\mathrm{H}, \mathrm{ArO}, \mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CO})_{2} \mathrm{~N}\right)$ were prepared in good yields by different methods from 2-hydroxyaroylacetone derivatives. Some subsequent reactions of these compounds with hydroxylamine and 3-formylchromones are described. The effect of microwave irradation on some condensation reactions was studied.

Keywords: Microwave irradiation, aldol reaction, 4-oxo-4H-[1]-benzopyran derivatives, rearrengement of chromones, 3-formylchromones.

Introduction

This paper is a continuation of our previous works [14] where we reported synthesis, theoretical, spectral and biological studies of chromone derivatives. The present work describes the study and the preparation of some new 3 -acylchromones and their reactions by classic or microwave methods.

The 3-Acyl-2-R-methylchromones with their several functional groups are useful building-blocks in organic synthesis. The chromones are possible precursors in forming new nitrogen heterocycles after nucleophilic opening of the γ-pyrone ring [5,6].

Methyl groups at position 2 and at a carbonyl group of the studied compounds can be active in aldol type reactions. Electron-deficit centres at carbonyl groups and carbon at position 2 of the γ-pyrone ring are very effective in reactions with nucleophilic reagents. The synthesized compounds $\mathbf{2}, \mathbf{5}, \mathbf{8}-\mathbf{1 1}$ are useful for further transformations.

Results and Discussions

The composition of the prepared compounds 2-11 were proved by elemental analysis and their structures were determined by NMR and IR spectra.

[^0]The main goal of this study was the preparation of new 3-acyl-2-R-methylchromones and the comparison of the reaction results obtained by the classical method with microwave irradiation. Structural formulas of prepared compounds are depicted in schemes 1-3.

To prepare compounds $\mathbf{2}$, two known methods can be used. One of them is the Kostanecki-Robinson acetylation of 2-hydroxyacetophenone derivatives with acetic anhydride and sodium acetate [7-9]. This
cyclocondensation reaction is known so far only as a classic modification by heating the reacting mixture. The use of a rearrangement of 2-acyloxy-1-acetoarones by treating with metallic sodium is another, more general method for the preparation of 3-acyl-2-methylchromones. The rearranged intermediates - 2-hydroxyaroylacetones 1, were formed. Compounds $\mathbf{1}$ rendered 3-acyl-2methylchromones or 2-methylchromones by acid-catalyzed cyclization.

	R	R^{1}	R^{2}	R^{3}
2a	H	H	H	H
2 b	H	CH_{3}	H	H
2 c	H	Cl	H	H
2d	H	Br	H	H
2 e	H	Cl	H	Cl
2 f	H	Cl	CH_{3}	H
2 g	H	CH_{3}	CH_{3}	H
2h	$-(\mathrm{CH}=\mathrm{CH})_{2}{ }^{-}$		H	H
2 i	H	H	-(CH	

Scheme 1.

Scheme 2.

7f

	R^{1}	R^{2}	R^{3}		R^{1}	R^{2}	R^{3}
$\mathbf{7 a}$	$5-\mathrm{CH}_{3}$	$2,4-\mathrm{Cl}_{2}$	H	$\mathbf{8 a}$	$6-\mathrm{CH}_{3}$	$2,4-\mathrm{Cl}_{2}$	H
7b	$5-\mathrm{CH}_{3}$	$2,4,5-\mathrm{Cl}_{2}$	H	$\mathbf{8 b}$	$6-\mathrm{CH}_{3}$	$2,4,5-\mathrm{Cl}_{2}$	H
$7 \mathbf{c}$	$5-\mathrm{Cl}$	$2-\mathrm{CH}_{3}, 4-\mathrm{Cl}$	H	$\mathbf{8 c}$	$6-\mathrm{Cl}^{2}$	$2-\mathrm{CH}_{3}, 4-\mathrm{Cl}$	H
				$\mathbf{8 d}$	$6-\mathrm{CH}_{3}$	$2,4-\mathrm{Cl}_{2}$	CH_{3}
				$\mathbf{8 e}$	$6-\mathrm{CH}_{3}$	$2-\mathrm{CH}_{3}, 4-\mathrm{Cl}$	H

Scheme 3.

Table 1. Physical data of the prepared compounds.

Comp	Formula	M.P., ${ }^{\text {O }}$ C	Calc. / Found				$\mathrm{V}_{(\mathrm{C}=0)^{\text {c }}}{ }^{\text {c }}$	$\mathrm{V}_{(\mathrm{C}=0)^{\text {c }}}$	$\mathrm{V}_{(\mathrm{C}=\mathrm{N})}{ }^{\text {c }}$	$\mathrm{V}_{\text {(0) }}{ }^{\text {c }}$
Yield, \%	M.W.	Solvent	\% C	\%H	\%N	$\% \mathrm{Cl}$	pyrone	acetyl		
2a	$\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{O}_{3}$	86-87	71.28	4.98			1637	1687		
72	202.21	P.Ether ${ }^{\text {b }}$	71.56	5.07						
2b	$\mathrm{C}_{1,} \mathrm{H}_{12} \mathrm{O}^{3}$	116-118	72.21	5.59			1639	1691		
85	216.24	Cyclohex ${ }^{\text {a }}$	72.45	5.64						
$2 c$	$\mathrm{C}_{4} \mathrm{H}_{0} \mathrm{ClO}$	129-131	60.90	3.83		14.98	1639	1691		
82	236.65	Cyclohex ${ }^{\text {a }}$	60.77	3.84		14.98				
2d	$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrO}_{3}$	124-125	51.27	3.23		28.42	1640	1692		
82	281.11	Cyclohex ${ }^{\text {a }}$	51.31	3.17		28.63				
2e	$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{3}$	132-134	53.17	2.97		26.15	1643	1680		
98	271.10	Cyclohex ${ }^{\text {a }}$	53.40	3.01		26.18				
2 f	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{ClO}_{2}$	152-153	62.29	4.42		14.14	1637	1687		
91	250.68	Cyclohex ${ }^{\text {a }}$	62.56	4.45		14.29				
2g	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{2}$	112-114	73.03	6.13			1636	1677		
84	230.26	Cyclohex ${ }^{\text {a }}$	73.31	6.14						
2h	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{3}$	154-156	76.18	4.79			1637	1685		
91	252.27	Cyclohex ${ }^{\text {a }}$	76.22	4.81						
2 i	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{3}$	136-138	76.18	4.79			1648	1699		
95	252.27	Cyclohex ${ }^{\text {a }}$	76.24	4.79						
5a	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{3}$	113.5-115	77.21	4.54						
73	264.2	Cyclohex ${ }^{\text {a }}$	77.38	4.41						
5b	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{3}$	90-93	77.64	5.03						
26	278.22	Cyclohex ${ }^{\text {a }}$	77.52	5.11						
5c	$\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{BrO}_{3}$	141-143	59.48	3.21						
74	343.2	Cyclohex ${ }^{\text {a }}$	59.73	3.29						
5d	$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{3}$	210-212	80.20	4.45						
72	314.2	Dioxane	80.09	4.32						
7a	$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{5}$	119-121	57.74	4.08		17.94				
21	395.24	Cyclohex ${ }^{\text {a }}$	57.32	4.02		17.77				
7b	$\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{O}_{5}$	94-95	53.11	3.52		24.75				
18	429.68	Cyclohex ${ }^{\text {a }}$	53.50	3.45		24.50				
7c	$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{5}$	104-105	57.74	4.08		17.94				
25	395.24	Cyclohex ${ }^{\text {a }}$	52.85	4.19		17.75				
7f	$\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{NO}_{8}$	112-114	64.43	3.83		3.13				
18	447.40	Toluene	64.28	3.72		3.15				
8a	$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{4}$	150-151	60.80	3.74		18.80				
	377.22	Ethanole	59.96	3.69		18.82				
8b	$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{O}_{4}$	187-189	55.44	3.18		25.84				
	411.67	Ethanole	55.25	3.18		25.95				
8c	$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{4}$	145-148	60.50	3.74		18.89				
	377.20	Ethanole	60.44	3.52		18.01				
8d	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{4}$	127-129	61.40	4.12		18.12				
	391.25	Ethanole	61.28	4.05		18.25				
8 e	$\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClO}_{4}$	153-156	67.33	4.80		9.94				
	356.81	Ethanole	67.45	4.92		10.23				
8 f	$\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{NO}_{5}$	241-244								

Table 1 contd.

9a	$\mathrm{C}_{1} \mathrm{H}_{4} \mathrm{ClNO}_{2}$	114-115	58.77	4.55	5.27	13.34	1683	1612	3100
57	265.70	Cyclohex ${ }^{\text {a }}$	58.46	4.55	5.06	13.58			(br)
9b	$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{NO}_{2}$	119-121	68.56	6.16	5.71		1680	1613	3100
62	245.28	Cyclohex ${ }^{\text {a }}$	68.55	6.19	5.52				(br)
9c	$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{3}$	73-75	73.12	4.66	5.02				
48	279.2	Cyclohex ${ }^{\text {a }}$	73.17	4.82	4.88				
9d	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{3}$	90-92	73.72	5.12	4.78				
50	293.2	Cyclohex ${ }^{\text {a }}$	73.72	5.21	4.79				
9e	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{BrNO}_{3}$	121-123	56.98	3.35	3.91				
52	358.2		57.12	3.38	3.94				
10a	$\mathrm{C}_{1,3} \mathrm{H}_{12} \mathrm{ClNO}_{3}$	150-151	58.77	4.55	5.27	13.34	1681	1620	3120
20	265.70	Benzene	58.35	4.60	5.02	13.61			
10b	$\mathrm{C}_{4} \mathrm{H}_{15} \mathrm{NO}_{3}$	142-144	68.56	6.16	5.71		1675	1620	3127
28	245.28	Benzene	68.61	6.16	5.74				
10c	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NO}_{2}$	212-214	73.12	4.66	5.02				
33	279.2	Toluene	73.15	4.70	5.06				
10d	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NO}_{2}$	182-187	73.72	5.12	4.78				
35	293.2	Toluene	73.64	5.20	4.72				
10e	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{BrNO}_{3}$	221-223	56.98	3.35	3.91				
24	358.2	Toluene	57.04	3.34	3.86				
11a	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{5}$	174-175	73.74	3.94					
	358.35	Ethanol	73.64	3.70					
11b	$\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{O}_{5}$	289-291	74.19	4.33					
	372.38	Ethanol	73.99	4.23					
11c	$\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{ClO}_{5}$	270-273	67.27	3.34		9.03			
	392.80	Ethanol	67.17	3.10		8.93			
11d	$\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{ClO}_{5}$	264-266	67.91	3.72		8.71			
	406.85	Ethanol	67.70	3.52		8.50			
11e	$\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{5}$	224-226	74.60	4.70					
	386.40	Ethanol	74.40	4.65					
11f	$\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{5}$	300-301	61.85	2.83		16.60			
	427.20	DM-Et ${ }^{\text {c }}$	61.59	2.73		16.73			
119	$\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{O}_{5}$	265-267	67.27	3.34		9.03			
	392.8	Ethanol	67.10	3.20		9.09			

${ }^{\text {a }}$ solvent is cyclohexane, ${ }^{\mathrm{b}} 40-60,{ }^{\mathrm{c}}$ in cm^{-1}, ${ }^{\mathrm{c}}$ solvent DMSO-ethanol

In our study we prepared 3-acetyl-2-methylchromone derivatives $\mathbf{2}$ in high yield (72-98\%) using 2(hydroxyaroyl) acetone derivatives $\mathbf{1}$ with freshly prepared sodium acetate and acetic anhydride under classic reaction conditions by refluxing for 2 hours. Using microwave irradiation the preparation times of products 2 from the same components were shortened to only 3-8 minutes.

The structure of compounds 2 ($\mathrm{R}=\mathrm{H}$) was confirmed by IR, ${ }^{1} \mathrm{H}-\mathrm{NMR}$, and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra. IR-spectra (in nujol) showed acetyl carbonyl stretching frequencies as a strong band at $1699-1677 \mathrm{~cm}^{-1}$ and γ - pyrone at 1648 -
$1636 \mathrm{~cm}^{-1}$. In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra the CH_{3} acetyl signals occurred at $\delta 2.70-2.62 \mathrm{ppm}$, while the signals of $\mathrm{CH}_{2}{ }^{-}$ CH_{3} occurred at $\delta 2.66-2.52 \mathrm{ppm}$. Other proton signals and the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra are listed in Tables 2 and 3.

3-Benzoyl-2-methylchromone derivatives 5 were prepared by treatment of 2-hydroxybenzoyl-acetophenones with acetic anhydride and sodium acetate at $110^{\circ} \mathrm{C}$ for 3 hours. On the other hand compounds 5 were produced after $3-6$ minutes in a yield of 80% by focused microwave irradiation.

10

	R	R^{1}	R	R^{1}	
9a	$4-\mathrm{Cl}, 5-\mathrm{CH}_{3}$	CH_{3}	$\mathbf{1 0 a}$	$5-\mathrm{Cl}, 6-\mathrm{CH}_{3}$	CH_{3}
9b	$4,5-\left(\mathrm{CH}_{3}\right)_{2}$	CH_{3}	$\mathbf{1 0 b}$	$4,5-\left(\mathrm{CH}_{3}\right)_{2}$	CH_{3}
9c	H	$\mathbf{1 0 c}$	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	
9d	$5-\mathrm{CH}_{3}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathbf{1 0 d}$	$6-\mathrm{CH}_{3}$	$\mathrm{C}_{6} \mathrm{H}_{5}$
$\mathbf{9 e}$	$5-\mathrm{Br}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathbf{1 0 e}$	$6-\mathrm{Br}$	$\mathrm{C}_{6} \mathrm{H}_{5}$

Scheme 4.

The preparation of compounds $\mathbf{7}$ and $\mathbf{8}$ paved a new route to synthesis of the title compounds. Reaction of compounds $\mathbf{1}$ with acid chlorides and potassium carbonate in acetone under reflux for 3 hours yielded 3-acetyl-2aryloxymethylchromone derivatives $\mathbf{3}$ in about 47% yields. Intermediates 7 could be isolated from a cold waterhydrogen carbonate solution after gentle acidification with $\mathrm{CH}_{3} \mathrm{COOH}$ in about $27-30 \%$ yields. The cyclocondensation of intermediates $\mathbf{7}$ with compounds $\mathbf{8}$ is very easy to affect by heating in toluene. Furthermore, by heating the starting compounds under reflux in dry toluene for 3 hrs , only cyclic products $\mathbf{8}$ were isolated (80% yields). In the microwave oven the condensation reaction of components

1 with acylchlorides, potassium carbonate and acetone took only 2 minutes to achieve 85% yield of compounds 8. No intermediates 7 were isolated.

Compounds 2 contain two active CH_{3} groups which can react by aldol reaction. The aldol condensation product 11 was obtained by the reaction of 2 with 3 -formyl chromones in an acetyl anhydride medium by both classic and microwave irradiation methods. In both cases, the reaction occured only at the methyl group position 2 of the γ-pyrone ring. Again, the classic method required heating at about $120-130{ }^{\circ} \mathrm{C}$ for $2-3$ hrs. The microwave irradiation shortened the reaction time to 40 sec to 2 min .

Scheme 5.

Table 2. ${ }^{1} \mathrm{H}$-NMR spectra of the prepared compounds.

Compound	${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ${ }^{\text {a }}$ (solvent CDCl_{3} or DMSO^{\times}) δ (ppm)
2a	8.14($1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}=8.4$ and $1.6, \mathrm{H}-5$), $7.64\left(1 \mathrm{H}\right.$, ddd, ${ }^{3} \mathrm{~J}=7.1,8.2$ and $\left.1.6, \mathrm{H}-7\right), 7.39\left(1 \mathrm{H}, \mathrm{dd},{ }^{4} \mathrm{~J}=8.2\right.$ and $1.1, \mathrm{H}-8), 7.37(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.4,7.1$ and $1.1, \mathrm{H}-6), 2.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ acetyl), and $2.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2}-\mathrm{CH}_{2}\right)$.
2b	$7.99\left(1 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J}=2.3, \mathrm{H}-5\right), 7.50\left(1 \mathrm{H}, \mathrm{dd},{ }^{4} \mathrm{~J}=8.7\right.$ and $\left.{ }^{4} \mathrm{~J}=2.3, \mathrm{H}-7\right), 7.34\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=8.7, \mathrm{H}-8\right), 2.67(3 \mathrm{H}, \mathrm{s}$, CH_{3} acetyl), $2.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2}-\mathrm{CH}_{3}\right)$, and $2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6}-\mathrm{CH}_{3}\right)$.
2c	8.14(1H, d, $\left.{ }^{4}=2.6, ~ H-5\right), ~ 7.60\left(1 H, ~ d d, ~{ }^{3} J=8.8\right.$ and $\left.{ }^{4} \mathrm{~J}=2.6, \mathrm{H}-7\right), 7.38\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=8.8, \mathrm{H}-8\right), 2.64(3 \mathrm{H}, \mathrm{s}$, CH_{3} acetyl), and $2.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2}-\mathrm{CH}_{3}\right)$.
2d	$8.30\left(1 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J}=2.4, \mathrm{H}-5\right), 7.76\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}=8.8\right.$ and $\left.{ }^{4} \mathrm{~J}=2.4, \mathrm{H}-7\right), 7.33\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=8.8, \mathrm{H}-8\right), 2.64(3 \mathrm{H}, \mathrm{s}$, CH_{3} acetyl), and $2.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2}-\mathrm{CH}_{3}\right)$.
2e	8.04(1H, d, $\left.{ }^{4} \mathrm{~J}=2.2, \mathrm{H}-5\right), 7.70\left(1 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J}=2.2, \mathrm{H}-7\right), 2.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ acetyl), and 2.60(3H, s, C2-CH3).
2 f	$8.12(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 7.33(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8), 2.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ acetyl), $2.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2}-\mathrm{CH}_{3}\right)$, and $2.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{7}-\right.$ $\left.\mathrm{CH}_{3}\right)$.
2g	$7.89(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-5), 7.18(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-8), 2.66\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3} \text { acetyl), 2.52(3H, s, } \mathrm{C}_{2}-\mathrm{CH}_{3}\right), 2.42\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{C}_{7}-\right.$ $\left.\mathrm{CH}_{3}\right) \text {, and } 2.35\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{C}_{6}-\mathrm{CH}_{3}\right) \text {. }$
2h	$9.97\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=8.6, \mathrm{H}-9\right), 8.06\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=8.9, \mathrm{H}-7\right), 7.85\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=9.5, \mathrm{H}-12\right), 7.68\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}=8.6\right.$ and $6.9, \mathrm{H}-10), 7.61\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}=6.9\right.$ and $\left.9.5, \mathrm{H}-11\right), 7.45\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=8.9, \mathrm{H}-8\right), 2.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ acetyl), and 2.52(3H, s, C2-CH3).

Table 2. Continued.

Compound	${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ${ }^{\text {a }}$ (solvent CDCl_{3} or $\left.\mathrm{DMSO}^{\times}\right) \delta(\mathrm{ppm})$
$2 \mathbf{i}^{\text {b }}$	$8.45\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=7.5, \mathrm{H}-9\right), 8.12\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=8.7, \mathrm{H}-5\right), 7.92\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=6.8, \mathrm{H}-12\right), 7.76\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=8.7, \mathrm{H}-\right.$ 6), $7.72\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=7.5, \mathrm{H}-10\right), 7.67\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=6.8, \mathrm{H}-11\right), 2.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ acetyl), and $2.66(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}_{2}-\mathrm{CH}_{3}\right)$.
3c	8,23-7.07(8H, m, arH); 2.52(3H, s)
4b	$15.57(1 \mathrm{H}, \mathrm{s}, 1 \mathrm{OH}) ; 11.87(1 \mathrm{H}, \mathrm{s}, 2 \mathrm{OH}) ; 7.98-6.70(9 \mathrm{H}, \mathrm{m})$
4c	$15.48(1 \mathrm{H}, \mathrm{s}, 1 \mathrm{OH}) ; 12.01(1 \mathrm{H}, \mathrm{s}, 2 \mathrm{OH}) ; 8.02-7.44(9 \mathrm{H}, \mathrm{m})$
5a	7.40-7.96(9H, m); 2.37(3H)
5b ${ }^{\text {x }}$	7.95-7.85(3H, m); 7.53-7.40(5H, s); 2.44(3H, s); 2.36(3H, s)
5d	8.56-7.43(11H, m); $2.20(3 \mathrm{H}, \mathrm{s}$)
7 a	$7.92(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; 7.45-6.76(7 \mathrm{H}, \mathrm{m}) ; 4.71\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\mathrm{O}-\right) ; 2.44\left(3 \mathrm{H}, \mathrm{CH}_{3}\right.$) ; 2.39(3H, $\left.\mathrm{CH}_{3}\right)$
7b	7.98(1H, s, OH); 7.48-7.26(5H, m); 6.99(1H, s); 7.74(2H, s, $\left.\mathrm{CH}_{2}-\mathrm{O}\right) ; 2.44(3 \mathrm{H}, \mathrm{s}) ; 2.40(3 \mathrm{H}, \mathrm{s})$
7c	$\begin{aligned} & 10.55(1 \mathrm{H}, \mathrm{~s}, \mathrm{OH}) ; 8.44\left(1 \mathrm{H}, \mathrm{~d},{ }^{3} \mathrm{~J} 8.2 \mathrm{~Hz}\right) ; 6.99(1 \mathrm{H}, \mathrm{~s}) ; 7.64-6.60(7 \mathrm{H}, \mathrm{~m}) ; 4.66\left(2 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{2} \mathrm{O}\right) ; \\ & 2.40(3 \mathrm{H}, \mathrm{~s}) ; 2.39(3 \mathrm{H}, \mathrm{~s}) \end{aligned}$
8a	7.97(1H, s, H-5); 7.49-6.95(5H, Ar-H); 5.40(2H, s, $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 2.60(3 \mathrm{H}, \mathrm{s}) ; 2.47(3 \mathrm{H}, \mathrm{s})$
8b insoluble	
8c	8.19(1H, s, H-5); 7.74-6.63(5H, m); 5.26(2H, s); 2.57(3H, s); 2.20(3H, s)
8d	$\begin{aligned} & \hline 7.95(1 \mathrm{H}, \mathrm{~s}) ; 7.48-7.15(5 \mathrm{H}, \mathrm{~m}) ; 5.99-5.90(1 \mathrm{H}, \mathrm{q}, \mathrm{CH}-\mathrm{O}) ; 2.50(3 \mathrm{H}, \mathrm{~s}) ; 2.46(3 \mathrm{H}, \mathrm{~s}) ; 1.6\left(3 \mathrm{H}, \mathrm{~d}^{3} \mathrm{~J}=6.8\right. \\ & \mathrm{Hz}) \\ & \hline \end{aligned}$
8 e	7.99(1H, s, H-5); 7.59-6.60(5H, m); 5.29(2H, s, CH ${ }_{2}-\mathrm{O}$) ; 2.56(3H, s); $2.46(3 \mathrm{H}, \mathrm{s}) ; 2.21(3 \mathrm{H}, \mathrm{s})$
8 f	8.03(1H, s, H-5); 7.87-7.46(6H, m); 5.19(2H, s, CH2-N); 2.62(3H, s); 2.49(3H, s)
9 a	$\begin{aligned} & 11.58(1 \mathrm{H}, \mathrm{~s}, \mathrm{OH}), 7.38(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-6), 6.96(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-3), 2.44\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right), 2.41(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH} 3) \text {, and } \\ & 2.32\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right) . \end{aligned}$
9b	$\begin{aligned} & 11.63(1 \mathrm{H}, \mathrm{~s}, \mathrm{OH}), 7.19(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-6), 6.86(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-3), 2.32\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right), 2.30(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH} 3), 2.28(3 \mathrm{H}, \\ & \left.\mathrm{s}, \mathrm{CH}_{3}\right) \text {, and } 2.24\left(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}_{3}\right) . \end{aligned}$
9c	11.95(14, s, OH); 7.65-6.55(9H, m); 2.33(3H, s)
9d	$11.77(1 \mathrm{H}, \mathrm{s} \mathrm{OH}) ; 7.68-7.30(8 \mathrm{H}, \mathrm{m}) ; 2.34(3 \mathrm{H}, \mathrm{s}) ; 2.01(3 \mathrm{H}, \mathrm{s})$
9e	$11.81(1 \mathrm{H}, \mathrm{s} \mathrm{OH}) ; 7.62-6.9(8 \mathrm{H}, \mathrm{m}) ; 2.33(3 \mathrm{H}, \mathrm{s})$
10a	$7.43(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 6.98(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8), 2.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ acetyl), and $2.41\left(6 \mathrm{H}, \mathrm{brs}^{2} \mathrm{C}_{2}-\mathrm{CH}_{3}\right.$ and $\mathrm{C}_{7}-$ CH3).
10b	7.18(1H, s, H-5), 6.85(1H, s, H-8), 2.50(3H, s, CH3 acetyl), 2.32(3H, s, C2-CH3), 2.27(3H, s, C7$\left.\mathrm{CH}_{3}\right)$, and $2.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6}-\mathrm{CH}_{3}\right)$.
10c ${ }^{\text {x }}$	10.10(1H, s, OH); 7.72-6.60(9H, m); 2.26(3H,s)
10d ${ }^{\text {x }}$	9.87(1H, s, OH); 7.62-6.60(8H, m); 2.25(3H, s); 2.20(3H, s)
10c ${ }^{\text {x }}$	$10.49(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; 7.68-6.53(8 \mathrm{H}, \mathrm{m}) ; 2.25(3 \mathrm{H}, \mathrm{s})$
11a	$8.25(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2) ; 7.18-7.50(5 \mathrm{H}, \mathrm{m}) ; 2.70(3 \mathrm{H}, \mathrm{s})$
11b	8.25(1H, s, H-2); 8.50-8.10(2H, m); 7.78-7.39(7H, m); 2.69(3H, s); 2.65(3H, s)
11c	8.22(1H, s, H-2); 8.10-7.78(2H, m); 7.66-7.45(6H, m); 2.68(3H, s); 2.46(3H, s)
11d	8.23(1H, s, H-2); 8.32-8.03(2H, m); 7.80-7.42(7H, m); 2.68(3H, s);
11e	8.22(1H, s, H-2); 8.25-7.96(2H, m); 7.81-7.39(6H, m); 2.38(3H, s); 2.30(3H, s); 2.24(3H, s)
11f	8.24(1H, s, H-2); 8.32-7.40(7H, m); 2.69(3H, s); 2.39(3H, s); 2.34(3H, s)

${ }^{\mathrm{a}} \mathrm{J}$ in $\mathrm{Hz}, \quad \mathrm{b}_{\mathrm{J}_{10,11}}$ not resolved

Table 3. ${ }^{13}$ C-NMR spectra of the compound 2a-2i.

Comp.	C-2	C-3	C-4	C-4a	C-5	C-6	C-7	C-8	C-8a	$\begin{aligned} & \hline \mathrm{CO} \\ & \text { acetyl } \end{aligned}$	CH_{3} acetyl	CH_{3}
2a	168.5	$123.6{ }^{\text {a }}$	175.7	$123.8{ }^{\text {a }}$	125.5	125.8	133.9	117.6	155.2	200.3	32.1	19.7
2b	168.3	$123.3{ }^{\text {a }}$	175.9	$123.4{ }^{\text {a }}$	125.1	135.5	135.2	117.4	153.5	200.5	32.1	$\begin{aligned} & \hline 20.9 \\ & 19.7 \\ & \hline \end{aligned}$
2c	168.8	123.6	174.7	124.7	125.3	131.5	134.2	119.5	153.6	200.0	32.2	19.8
2d	168.7	123.6	174.4	125.0	128.5	118.9	136.9	119.6	154.0	199.8	32.0	19.7
2e	168.9	$124.0{ }^{\text {a }}$	174.0	125.6	124.0	131.2	134.0	123.6	149.7	199.3	32.0	19.7
2 f	168.6	123.4	174.6	122.7	125.5	132.2	143.3	119.5	153.5	200.1	32.1	$\begin{aligned} & 20.8 \\ & 19.8 \end{aligned}$
2g	168.0	123.3	175.7	121.4	125.3	134.7	144.4	117.7	153.7	200.7	32.1	$\begin{aligned} & \hline 20.3 \\ & 19.7 \\ & 19.2 \end{aligned}$
2h ${ }^{\text {b }}$	164.7	126.4	177.8	117.0	130.2	130.6	135.8	117.0	156.6	201.1	32.0	19.0
$2 i^{\text {c }}$	167.4	124.6	175.7	123.5	120.5	125.6	135.9	120.1	152.7	200.5	32.2	19.7

${ }^{\text {a }}$ The assignment can be interchanged.
${ }^{\mathrm{b}}$ values C-9 126.8, C-10 129.4, C-11 126.7, C-12 128.3.
${ }^{\mathrm{c}}$ values C-9 122.0, C-10 127.3, C-11 129.4, C-12 128.1.

It is known that the reaction of 3-acetyl-2,6dimethylchromone with hydroxylamine in acetic acid gave monoxime and dioxime [10]. Reaction of 3-acetyl-2methylchromone with hydroxylamine hydrochloride and sodium acetate in ethanol gave 4-acetyl-5-(2-hydroxyphenyl)-3-methylisoxazole [11]. However in the present study we found that 3-acetyl-2-methylchromones reacted with hydroxylamine hydrochloride in pyridine at boiling point and resulted in a mixture of two different products. They were separated by fractional crystallisation from cyclohexane (Scheme 4).

The first product gave a deep red colour with alcoholic ferric chloride, and was soluble in aqueous sodium hydroxide, confirming the presence of a phenolic hydroxyl group. Their IR spectra showed a broad band centered at $3100 \mathrm{~cm}^{-1}$ for the OH group and a band at $1683-1680$ cm^{-1} for the $\mathrm{C}=\mathrm{O}$ acetyl group. These products were thus identified as isoxazole derivatives $9 \mathbf{9}-9$ e. Additionally, the structure of these isoxazoles was confirmed by ${ }^{1} \mathrm{H}$ NMR spectra (Table 2).

The second product gave no colouration with alcoholic ferric chloride and their IR spectra (Table 1), indicated the absence of a pyrone CO group of the 3-acetyl-2methylchromones. The observed IR bands at 1681-1675
cm^{-1} showed the presence of a CO acetyl group and 3127 $3120 \mathrm{~cm}^{-1}$ of an OH group. The second products were identifited as oxime derivatives $\mathbf{1 0}$ of compounds 2 . their structure was confirmed by ${ }^{1} \mathrm{H}$ NMR spectra (Table 2).

Isoxazoles turned out to be the preferred compounds with $50-70 \%$ yields. Yields of oximes $\mathbf{1 0}$ were less, about 20-30\%.

Experimental Section

General

Infrared spectra were recorded on a Specord IR 75 spectrometer (Zeiss, Jena), in $400-4000 \mathrm{~cm}^{-1}$ region in nujol. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra (δ, ppm) for compounds 3a, 3b and $\mathbf{4 a}, \mathbf{4 b}$ were measured with Tesla BS $487 \mathrm{~A}(80 \mathrm{MHz})$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$-NMR (75 MHz) spectra for compounds 2a - $\mathbf{2 i}$ were measured with a FT NMR spectrometer Bruker AM 300 at $300^{\circ} \mathrm{K}$ in solution of CDCl_{3} with TMS as internal standard. ${ }^{13} \mathrm{C}$ NMR was obtained with a 40° flip angle and relaxation delays, CCOSY using a chemical-shift-selective filter as well as a semiselective INEPT optimalized for the value of long range coupling constant ${ }^{n} \mathrm{~J}_{\mathrm{CH}}=6 \mathrm{~Hz}$, used for assignment
of 1D H signals. The melting points were determined with a Kofler apparatus.

All microwave assisted reactions were carried out in a Lavis-1000 multi Quant microwave oven. The apparatus has been adapted for laboratory application with an external reflux condenser.

3-Acetyl-2-methylchromone derivatives $2 \boldsymbol{a}$ - $2 \boldsymbol{i}$
Method A (classic)
A mixture of 2-hydroxyaroylacetones 1a - 1i (1g), acetic anhydride (8 ml) and freshly prepared sodium acetate (1 g) was refluxed for 6 hrs and allowed to cool down. The mixture was diluted with cold water (50 ml) and stirred at room temperature for 30 min . The solid products, which separated, were filtered, washed with water and recrystallized from an appropriate solvent to give $2 \mathbf{a}-2 \mathbf{i}$ (Table 1).

Method B (microwave irradiation)

The same mixture as used in the procedure A was irradiated in microwave oven at 270 W for 8 minutes. The isolation procedure is the same as above. The compounds are given in Table 1.

4-Acetyl-5-(2-hydroxyaryl)-3-methylisoxazoles 9a-9e and 4-(3-acetyl-2, 7-dimethylchromone)-oximes 10a-10e

A mixture of $2(0.0022 \mathrm{~mol})$ in pyridine (3 ml) and hydroxylamine hydrochloride ($0.15 \mathrm{~g}, 0.0022 \mathrm{~mol}$) in water (1 ml) was refluxed for 4 hr . The cooled mixture was poured onto crushed ice and acidified with acetic acid, and the solid separated from the liquid was filtered and recrystallized from cyclohexane to give 9a-9e. The unsoluble product in cyclohexane was recrystallized from benzene to give 10a-10e.

2-Aryloxymethyl-3-acetylchromone derivatives $8 \mathbf{a}-8 \mathrm{e}$ and intermediates $7 \boldsymbol{a}-7 \boldsymbol{c}$

Method A

To a mixture of 2-hydroxyaroylacetones $\mathbf{1}$ (1g), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{~g})$ in dry acetone (20 ml), after 2 hrs stirring at reflux, the aryloxyacetyl chlorides were added. The reaction mixture was stirred and heated under reflux for 2 h and left overnight at room temperature. The mixture was poured onto crushed ice $(50 \mathrm{~g})$ and the solid product was separated. The product was diluted with 5% cold NaHCO_{3}. The insoluble fraction (compounds 8a-8e) was separated and recrystallized from ethanol. The compounds 7 dissolved in aq. NaHCO_{3} were separated after acetic acid acidification and recrystallized from cyclohexane.

Method B

The mixture of the same components for preparation of the salt of compounds $\mathbf{1}$ and dry toluene (20 ml) were stirred at reflux for 2 hrs . After cooling the aryloxyacetyl chloride was slowly added (dropwise). The stirring continued at room temperature for 1 hr and then for an additonal 2 hrs at reflux. Toluene was removed by water vacuum distillation, thereafter the mixture was dried and then dissolved in a 1% aq. solution of NaHCO_{3}. The solid part was isolated and recrystallized from ethanol. The yield of compound $\mathbf{8}$ was 87%. No products 7 were isolated from the NaHCO_{3} solution.

Method C

The mixture of the same reaction components as above (Method B) was stirred and irradiated viz. microwave at 270 W for 3 minutes (the preparation of the salt) and then, after addition of components $\mathbf{6}$, the stirring continued for an additional 6 minutes.

Condensation products 11 of 2 with 3-formylchromones 6
Method A (classic)
A mixture of compounds 2 (0.01 mol), 3formylchromones (0.01 mol), acetic anhydride (5 ml) and freshly fused potassium acetate $(0.5 \mathrm{~g})$ was heated at 120 $130^{\circ} \mathrm{C}$ for 2 h . The cooled mixture was diluted with cooled water and the solid was separated and recrystallized from acetic acid.

Method B

A mixture of the same composition as in method A was irradiated in microwave oven for 40 sec to 2 min . The isolation of the compounds proceeded along the same lines as described in Method A.

Acknowledgement: Financial support for this research by the Slovak Grant Agency (grant No. 1/2178/95) is gratefully acknowledged.

References

1. Stankovicova, H.; Fabian, W. M. F.; Lácová, M. Molecules 1996, 1, 223-235.
2. Gasparova, R.; Lácová, M. Collect. Czech. Chem. Соттип. 1995, 60, 1178-1185.
3. Lácová, M.; Stankovicova, H.; Odlerová, Z. Il Pharmaco 1995, 50, 885.
4. El-Shaaer, H. M.; Perjéssy, A.; Zahradník, P.; Lácová, M.; Matulová, M. Monatsh. Chem. 1993, 124, 539.
5. Kostka, K. Roczniky Chem. 1996, 40, 1683.
6. Ghosh, C. K. J. Heterocyclic Chem. 1983, 20, 1437.
7. Masayuki, K.; Kunio, H.; Jpn. Kokai: Tokkyo Koho JP 62 77, 377, 09 Apr 1987, Appl. 30 Sep 1985.
8. Desai, R. D.; Vakil, V. M. Proc. Indian Acad. Sci. 1940, 13A, 357.
9. Shah, M. V.; Sethna, S. J. Chem. Soc. 1961, 2663.
10. Wittig, G.; Bangert, F. Ber. 1925, 58, 2627.
11. Ghosh, C. K.; Pal, C.; Bhattacharyya, A. Indian J. Chem., 1985, 24B, 914.

Sample Availability: Available from the MDPI.

[^0]: * This paper was presented at ECSOC-1, http://www.mdpi.org/ecsoc-1.htm, 1-30 September 1997.
 ** To whom correspondence should be addressed.

