ISSN 1420-3049

Synthesis and Reactions of New
 4-Oxo-4H-benzopyran-3-carboxaldehydes Containing Hydroxy Groups or 2-Oxopyran Cycles

Margita Lacova* ${ }^{1}$, Dusan Loos, Mikulas Furdik ${ }^{\mathbf{1}}$, Maria Matulova ${ }^{2}$ and Hafez M. El-Shaaer ${ }^{3}$
${ }^{1}$ Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovak Republic. Tel. +421 07 60296338, Fax +4210765429064 (lacova@fns.uniba.sk)
${ }^{2}$ Slovak Academy of Sciences, 84238 Bratislava, Slovak Republic
${ }^{3}$ Department of Chemistry, Faculty of Education,Ain Shams University, Roxy, Cairo, Egypt

Received: 27 January 1998 / Accepted: 14 April 1998 / Published: 15 May 1998

Abstract

The synthesis of eight hydroxy- and 2-oxopyranochromone-3-carboxaldehydes 3, 5 and their reactions with 2-hydroxyaniline, 2,4-dinitrophenylhydrazine and 2-benzothiazolylhydrazine were investigated. Products were confirmed by IR, NMR spectral and elemental analysis data. The semi-empirical AM1 quantum-chemical method has been used to study optimal geometries and heats of formation of synthesized 3formylchromones

Keywords: 3-Formylchromones, Vilsmeier - Haack reaction, 2-oxobenzopyrane, imines, enamines, AM1 calculations

Introduction

This work was done in connection with our study of synthetic, theoretical, spectral [1-5] and biological [6, 7] properties of 3 -formylchromone derivatives. In the course of biological investigation of 3-formylchromone derivatives we found a hereditary bleaching effect on the plastid system of Euglena gracilis [7] and antimycobacterial activity similar to effect of isonicotin acid hydrazide (INH) [5, 7]. Due to their biological activity are chromone derivatives are a subject of considerable
pharmaceutical and chemical interest. The natural chromones of the abundant flavonoid family contain prevailingly one or several hydroxyl groups which can be free or protected. 3-Formylchromones are also attractive syntons for preparative organic chemistry due to a behaviour similar to α, β-unsaturated aldehydes [8, 9]. Therefore our attention was aimed at the investigation of favourable conditions for the preparation of two biologically interesting groups of aldehydes e.g. 3formylchromones containing the condensed 2-oxopyran

[^0]ring 5a-5e and difficultly accessible aldehydes with non protected hydroxy groups at the benzene ring 3a-3c.

Results and Discussion

In the first part of the work the preparation of 7-hydroxy-, 6-n-hexyl-7-hydroxy- and 7, 8-dihydroxy-3formylchromones 3a-3e was studied. It has been found that their preparation using the Vilsmeier-Haack formylation of appropriate o-hydroxyacetphenones afforded very low yields ($20-30 \%$). Our efforts to prepare 5,7-dihydroxy-3-formylchromones by direct formylation of 2, 4, 6-trihydroxyacetphenone 1d were unsuccesfull. The reaction resulted in polymeric products in all experiments. It can be assumed that the hydroxy groups of compounds $\mathbf{1 a}-\mathbf{1 d}$ caused the lowering of the acetyl group acidity and preferably enables the formylation of the benzene ring and polycondensation of intermediates. The new 2, 4-dihydroxy-5-hexylacetophenone 1c was prepared by acetylation in acetic acid and ZnCl_{2} at reflux in 56% yield.

In the second part of this work we developed the method of synthesis of a 3 -formyl- chromone having a condensed 2-oxopyrane ring. The synthetic strategy of 3formylchromones 5a-5e had to be based on building up the 2-benzopyrone skeleton. The key - step in this synthesis was the preparation of a suitable acetyl derivative $\mathbf{4 a}-\mathbf{4 d}$, from which the requested 3-formylchromones were obtained by Vilsmeier-Haack double formylation in $80-90 \%$ yields. The synthesis of $\mathbf{5 a}-\mathbf{5 e}$ is shown in Scheme 2.

The Vilsmeier-Haack formylation was used to afford two different aldehydes $\mathbf{5 d}$ and $\mathbf{5 d}_{\mathbf{1}}$ from 2-oxo- $2 \mathrm{H}-6$ -acetyl-5,7-dihydroxy-4-methylbenzopyran 4d. However, only one product was isolated from the reaction mixture. The ${ }^{1} \mathrm{H}$ NMR spectra confirmed the structure of $\mathbf{5 d}$. The signal of the proton of the hydroxy group was a singlet and a coupled constant ${ }^{4} \mathrm{~J}$ for a hydroxy group was absent.

8-Acetyl-7-hydroxy-4-methylcoumarin $\mathbf{4 a}$ was prepared from 1,3-dihydroxybenzene in three reaction steps, namely by the Pechmann reaction, acetylation, and then by Fries rearrangement. All three reaction steps proceeded in high yields ($84-90 \%$). After recrystallisation of the Fries rearrangement product another isomer $\mathbf{4 b}(6 \%)$ was isolated from the mother liquor. The product 4b (6-acetyl-7-hydroxycoumarin) was obtained directly as the main product from 2, 4dihydroxyacetophenone 1a by the Pechmann reaction in the presence of POCl_{3}.

6-Acetyl-5-hydroxy-4-methyl coumarin $\mathbf{4 c}$ was also prepared from compound $\mathbf{1 a}$ by Pechmann reaction in the presence of AlCl_{3}. 2, 4, 6-Trihydroxyacetophenone 1d yielded a mixture of both isomers $\mathbf{4 d}$ and $\mathbf{4 e}$ by Pechmann reaction in a ratio $1: 1$. The pure products $\mathbf{4 d}$ were isolated by recrystallization from ethanol. Product $4 \mathbf{e}$ was soluble
and was isolated after evaporation of the mother liquor. The preparation of compounds $\mathbf{5 d}$ and $\mathbf{5 e}$ from the parent phenol involved three steps. Two steps of the synthesis yielded about 80-90 \% of products. Only the second step, the product of the Pechmann reaction gave $40-50 \%$ yield. The elemental analysis data of the prepared compounds is listed in Table 1.

The assumed structures of the aldehydes $\mathbf{3}, 5$ and the compounds 4 were proved by infrared and ${ }^{1} \mathrm{H}$ NMR spectra. The infrared spectra of 3 -formylchromones 3 showed two strong absorption bands of the $\mathrm{C}=\mathrm{O}$ stretching vibrations belonging to the carbonyl group of γ-pyrone at $1620 \mathrm{~cm}^{-1}$ and to the aldehyde carbonyl group at 1695 cm^{-1}.

The $\mathrm{C}=\mathrm{O}$ stretching vibrations of the carbonyl groups of $\mathbf{5}$ exhibited strong absorption bands in three very well distinguished regions: $1655-1637 \mathrm{~cm}^{-1}, 1704-1694 \mathrm{~cm}^{-1}$ and $1760-1724 \mathrm{~cm}^{-1}$ belonging to the $v(\mathrm{C}=\mathrm{O})$ of the γ pyrone ring, the aldehyde groups and the α-pyrone ring, respectively (Table 2).

The structure of the prepared compounds was also confirmed by ${ }^{1} \mathrm{H}$ NMR spectra. The resonance signals and their multiplicity are given in Table 3. In this table also included are the chemical shifts for the acetyl derivatives $\mathbf{4 a}$ - 4c, because these compounds were previously reported without ${ }^{1} \mathrm{H}$ NMR spectral data.

The condensation reactions of the aldehydes 3a-3c and 5a-5e were carried out with 2-hydroxyaniline, 2,4dinitrophenylhydrazine, 2-benzothiazolylhydrazine and ethyl acetoacetate. 2,4-Dinitrophenylhydrazones and 2benzothiazolylhydrazones $\mathbf{7 a}-\mathbf{7 k}$ were formed by refluxing the starting mixture in ethanol. The products appeared as coloured and slightly soluble compounds decomposing near their melting points. The reaction of 2hydroxyaniline with 3-formylchromones gives chromanones $\mathbf{8}$ or $\mathbf{9}$ using different reaction media (Scheme 3). In ethanol the adducts $\mathbf{8}$ were obtained, in diethylether the compounds 9 were formed with two molecules of 2-hydroxyaniline. The aldol condensation product 6 was obtained by heating the aldehyde 3a, and ethyl acetatoacetate with $\mathrm{CH}_{3} \mathrm{COOK}$ as catalyst.

The starting compounds $\mathbf{1}$, and 3 -formylchromone derivatives $\mathbf{3 a}-\mathbf{3 c}, 5 \mathbf{5 a}-\mathbf{5 e}$ were studied by the semiempirical quantum chemical AM1 method [10]. The full optimisation of the geometry of every structural parameter for several conformers was performed. Heats of formation were calculated for all s-cis and s-trans conformations. The s-cis conformations appeared to be energetically more favourable then the s-trans ones. The difference in the heats of formation is about $20 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for acetophenones $\mathbf{1}$ and 22-26 kJ mol ${ }^{-1}$ for 3-formylchromones 3, 5 . In accordance with the ${ }^{1} \mathrm{H}$ NMR spectra, the results of theoretical calculation of both isomers of aldehydes $\mathbf{5 d}$ and $\mathbf{5 d}_{\mathbf{1}}$ (Scheme 2) shows that the isomer $\mathbf{5 d}$ is about 4.5 $\mathrm{kJ} / \mathrm{mol}$ more stable than the isomer $\mathbf{5 d}_{\mathbf{1}}$.

Table 1. Elemental analysis data of prepared compounds.

Compound	Formula M_{r}	$\begin{aligned} & \mathrm{W}_{\mathrm{i}} \text { (calc.) \% } \\ & \mathrm{W}_{\mathrm{i}} \text { (found) } \% \end{aligned}$			M.p. $\left({ }^{\circ} \mathrm{C}\right)$
		C	H	N	
1c	$\begin{gathered} \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \\ 236.2 \end{gathered}$	$\begin{aligned} & 71.18 \\ & 71.13 \end{aligned}$	$\begin{aligned} & 8.51 \\ & 8.47 \end{aligned}$		75-77
3a	$\begin{gathered} \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{4} \\ 190.2 \end{gathered}$	$\begin{aligned} & 63.14 \\ & 63.31 \end{aligned}$	$\begin{aligned} & 3.17 \\ & 3.10 \end{aligned}$		268-270
3b	$\begin{gathered} \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{5} \\ 206.2 \end{gathered}$	$\begin{aligned} & 58.30 \\ & 58.26 \end{aligned}$	$\begin{aligned} & 2.91 \\ & 2.98 \end{aligned}$		264-266
3c	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{18} \\ 274.2 \end{gathered}$	$\begin{aligned} & 70.07 \\ & 70.01 \end{aligned}$	$\begin{aligned} & 6.57 \\ & 6.60 \end{aligned}$		233-234
5a	$\begin{gathered} \mathrm{C}_{14} \mathrm{H}_{8} \mathrm{O}_{5} \\ 256.2 \end{gathered}$	$\begin{aligned} & 65.62 \\ & 65.33 \end{aligned}$	$\begin{aligned} & 3.13 \\ & 3.12 \end{aligned}$		310-312
5b	$\begin{aligned} & \mathrm{C}_{14} \mathrm{H}_{8} \mathrm{O}_{5} \\ & 256.2 \end{aligned}$	$\begin{aligned} & 65.62 \\ & 65.48 \end{aligned}$	$\begin{aligned} & 3.13 \\ & 3.01 \end{aligned}$		255-260
5c	$\begin{aligned} & \mathrm{C}_{14} \mathrm{H}_{8} \mathrm{O} \\ & 256.2 \end{aligned}$	$\begin{aligned} & 65.62 \\ & 65.32 \end{aligned}$	$\begin{aligned} & 6.57 \\ & 3.07 \end{aligned}$		233-234
5d	$\begin{aligned} & \mathrm{C}_{14} \mathrm{H}_{8} \mathrm{O}_{6} \\ & 272.2 \end{aligned}$	$\begin{aligned} & 61.79 \\ & 61.62 \end{aligned}$	$\begin{aligned} & 2.94 \\ & 2.99 \end{aligned}$		273-274
5e	$\begin{aligned} & \mathrm{C}_{14} \mathrm{H}_{8} \mathrm{O}_{6} \\ & 272.2 \end{aligned}$	$\begin{aligned} & 61.79 \\ & 61.77 \end{aligned}$	$\begin{aligned} & 2.94 \\ & 2.92 \end{aligned}$		291-293
7a	$\begin{aligned} & \mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} \\ & 337.3 \end{aligned}$	$\begin{aligned} & 60.53 \\ & 60.37 \end{aligned}$	$\begin{aligned} & 3.26 \\ & 3.25 \end{aligned}$	$\begin{aligned} & 12.46 \\ & 12.27 \end{aligned}$	248-250
7b	$\begin{aligned} & \mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} \\ & 421.4 \end{aligned}$	$\begin{aligned} & 65.60 \\ & 65.35 \end{aligned}$	$\begin{aligned} & 5.46 \\ & 5.33 \end{aligned}$	$\begin{aligned} & 9.97 \\ & 9.54 \end{aligned}$	219-220
7c	$\begin{aligned} & \mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S} \\ & 403.3 \end{aligned}$	$\begin{aligned} & 57.79 \\ & 57.48 \end{aligned}$	$\begin{aligned} & 3.12 \\ & 3.11 \end{aligned}$	$\begin{aligned} & 11.90 \\ & 11.76 \end{aligned}$	259-261
7d	$\begin{aligned} & \mathrm{C}_{21} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S} \\ & 403.3 \end{aligned}$	$\begin{aligned} & 62.50 \\ & 62.37 \end{aligned}$	$\begin{aligned} & 3.24 \\ & 3.23 \end{aligned}$	$\begin{aligned} & 10.41 \\ & 10.29 \end{aligned}$	253-255

Table 1. Continued.

Compound	Formula M_{r}	$\begin{aligned} & \mathrm{W}_{\mathrm{i}} \text { (calc.) \% } \\ & \mathrm{W}_{\mathrm{i}} \text { (found) } \% \end{aligned}$			M.p. (${ }^{\circ} \mathrm{C}$)
		C	H	N	
7e	$\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$	60.13	3.12	10.01	325-8
	419.3	60.22	3.19	9.71	
7f	$\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$	62.50	3.24	10.41	240-242
	403.3	62.38	3.20	10.39	
7g	$\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{7} \mathrm{~N}_{4}$	51.90	2.72	15.13	297-9
	378.3	51.62	2.76	14.89	decomp.
7h	$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{~N}_{4}$	58.15	4.88	12.33	296-8
	454.4	57.86	4.84	12.09	decomp.
$7 \mathbf{i}$	$\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{8} \mathrm{~N}_{4}$	49.75	2.61	14.50	173-6
	386.3	49.36	2.66	14.28	decomp.
7j	$\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{O}_{8} \mathrm{~N}_{4}$	55.05	2.77	12.84	289-94
	436.3	54.89	2.77	12.75	
7k	$\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{O}_{9} \mathrm{~N}_{4}$	53.11	2.67	12.38	300-2
	452.3	52.84	2.80	12.06	decomp.
8a	$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{6}$	67.18	4.83	3.56	275-6
	393.4	66.89	4.59	3.12	
8b	$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{7}$	64.55	4.65	3.42	259-60
	409.4	64.36	4.00	3.30	
9a	$\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6}$	68.42	4.39	6.13	180-5
	456.4	68.22	4.51	6.02	
9b	$\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6}$	66.10	4.24	5.92	158-62
	472.4	66.05	4.24	5.74	
9c	$\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6}$	68.42	4.39	6.13	188-90
	456.4	68.51	4.37	6.19	

Table 2. IR - spectral data (in cm^{-1}).

3a	1620	1695	-	-	-
3b	1630	1682	-	-	-
3c	1630	1696	-	-	-
5a	1657	1700	1726	-	-
5b	1655	1693	1748	-	-
5c	1637	1693	1700	-	-
5d	1640	1702	1734	-	-
5e	1640	1704	1724	-	-
7a	1634	-	-	-	-
7b	1630	-	-	-	-
7d	1630	-	1720	-	-
7 g	1640	-	-	1318	1580
7h	1612	-	-	1350	1580
7 i	1610	-	-	1345	1580
7j	1640	-	1722	1345	1580
7k	1606	-	1748	1310	1580
8a	1642	-	1718	-	-
8b	1642	-	1708	-	-
9a	1648	-	1700	-	-

[^1]

Scheme 1.

Scheme 2.

Table 3. ${ }^{1} \mathrm{H}$ NMR - spectral data.

compound	solvent	spectra δ (ppm)
1a	CDCl_{3}	$12.52(1 \mathrm{H}, \mathrm{~s}, \mathrm{OH}), 7.42(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-6), 6.34(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-3), 1.65-0.87$ (13Hm)
3a	DMSO	$\begin{aligned} & 10.11(1 \mathrm{H}, \mathrm{~s}, \mathrm{CHO}), 8.78(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-2), 7.99(1 \mathrm{H}, \mathrm{~d}, \mathrm{H}-5), 7.04-6.94 \\ & (2 \mathrm{H}, \mathrm{t}, \mathrm{H}-6,8) \end{aligned}$
3b	DMSO	$\begin{aligned} & 10.12(1 \mathrm{H}, \mathrm{~s}, \mathrm{CHO}), 8.77(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-2), 7.48 \text { (1H,d,H-5), } 7.00 \\ & (1 \mathrm{H}, \mathrm{~d}, \mathrm{H}-6) \end{aligned}$
3c	DMSO	10.12 ($1 \mathrm{H}, \mathrm{s} . \mathrm{CHO}$), 8.73 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2$), 7.79 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), 6.93 $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8), 2.9(2 \mathrm{H}, \mathrm{t}), 1.30(8 \mathrm{H}, \mathrm{m}), 0.86(3 \mathrm{H}, \mathrm{t})$
4a	CDCl_{3}	$\begin{aligned} & 7.68(1 \mathrm{H}, \mathrm{~d}, \mathrm{H}-5), 6.90(1 \mathrm{H}, \mathrm{~d}, \mathrm{H}-6), 6.12(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-3), 2.95 \\ & (3 \mathrm{H}, \mathrm{~s}, \mathrm{CH} \mathrm{CO}), 2.41(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}), 13.54(1 \mathrm{H}, \mathrm{~s}, \mathrm{OH}) \end{aligned}$
4b	CDCl_{3}	$\begin{aligned} & 7.96(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-5), 6.84(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-8), 6.17(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-3), 2.70 \\ & (3 \mathrm{H}, \mathrm{~s}, \mathrm{CH} \mathrm{CO}), 2.44(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}), 12.61(1 \mathrm{H}, \mathrm{~s}, \mathrm{OH}) \end{aligned}$
4c	CDCl_{3}	$\begin{aligned} & 7.85(1 \mathrm{H}, \mathrm{~d}, \mathrm{H}-7), 6.83(1 \mathrm{H}, \mathrm{~d}, \mathrm{H}-8), 6.13(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-3), 2.66 \\ & (6 \mathrm{H}, \mathrm{~s}, \mathrm{CHCO}), 14.07(1 \mathrm{H}, \mathrm{~s}, \mathrm{OH}) \end{aligned}$
4d	CDCl_{3}	$\begin{aligned} & 6.26(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-3), 5.99(1 \mathrm{H}, \mathrm{~d}, \mathrm{H}-8), 2.68(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH} \mathrm{CO}), 2.51 \\ & (3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}) \end{aligned}$
4e	CDCl_{3}	$\begin{aligned} & 6.37(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-3), 5.94(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-6), 2.68(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH} \mathrm{CO}), 2.51 \\ & (3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}) \end{aligned}$
$5 \mathrm{a}^{\text {a }}$	DMSO	10.12 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$), 8.86 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2$), 8.18 ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-10$), 7.67 ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-9$), 6.53 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7$)
$5 b^{\text {a }}$	DMSO	$10.12(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 8.97(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 8.39(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 7.87$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$), $6.56(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 2.54(3 \mathrm{H}, \mathrm{s}, \mathrm{CH})$
$5 \mathrm{c}^{\text {a }}$	DMSO	10.14 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$), 9.02 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2$), 8.31 ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-5$), 7.58 ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-6$), 6.57 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-9$), 2.74 (3H,s,CH)
$5 \mathrm{~d}^{\text {a }}$	DMSO	10.05 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$), 8.63 ($1 \mathrm{H}, \mathrm{s}, \mathrm{h}-2$), 8.12 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$), 6.78 $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 6.26(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.54(3 \mathrm{H}, \mathrm{s}, \mathrm{CH})$
5e	DMSO	$\begin{aligned} & 10.07(1 \mathrm{H}, \mathrm{~s}, \mathrm{CHO}), 9.06(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-2), 7.30(1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-10), 6.31 \\ & (1 \mathrm{H}, \mathrm{~s}, \mathrm{H}-7), 2.62(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH}) \end{aligned}$
6	CDCl_{3}	$\begin{aligned} & 8.26(2 \mathrm{H}, \mathrm{t}, \mathrm{H}-2, \mathrm{CH}), 7.10-7.56(3 \mathrm{H}, \mathrm{~m}, \text { arom }), 4.31(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}), \\ & 2.47(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH} \mathrm{COO}), 2.35(3 \mathrm{H}, \mathrm{~s}, \mathrm{CH} \mathrm{CO}), 1.35(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}) \end{aligned}$

${ }^{\text {a }}$ spectra were recorded on a Bruker AM 300

Scheme 3.

Experimental Section

General details

The synthesized compounds were characterized by melting points, elemental analysis, IR and ${ }^{1} \mathrm{H}$ NMR spectra.

The melting points were determined on a Boetius apparatus and are uncorrected. The IR spectra were taken on a Specord M-80 (Zeiss) spectrophotometer in a nujol suspension.

The NMR spectra were measured on a Tesla BS 487 (80 MHz) and Bruker AM 300 (300.13 MHz) spectrometers in deuterated DMSO and CHCl_{3}.

The synthesis of acetophenones $\mathbf{1 a}, \mathbf{1 b}, \mathbf{1 d}$ is described in papers [11-13] and the preparation of compounds $\mathbf{4 a}$ $4 e$ in papers [14-16].

2, 4-Dihydroxy-5-n-hexylacetophenone $\mathbf{1 c}$

4-n-Hexyl-1, 3-dihydroxybenzene ($30 \mathrm{~g}, 0.15 \mathrm{~mol}$) was gradually added to a stirred and hot mixture $\left(120{ }^{\circ} \mathrm{C}\right)$ of glacial acetic acid (45 ml) and anhydrous $\mathrm{ZnCl}_{2}(44.6 \mathrm{~g}$, $0.32 \mathrm{~mol})$. The mixture was refluxed for 10 minutes. After cooling the mixture was diluted with $\mathrm{HCl}(120 \mathrm{ml}$, diluted $1: 1)$ and was kept in refrigerator (12 hrs). The crystals were filtered off, washed with diluted $\mathrm{HCl}(1: 3)$ and recrystallized from methanol. Yield $25 \mathrm{~g}(72 \%)$

3-Formylchromones 3, 5. General procedure

To the dry dimethylformamide (121 ml) in a three necked flask, $\mathrm{POCl}_{3}(0.49 \mathrm{~mol})$ was added slowly with intensive stirring at $50{ }^{\circ} \mathrm{C}$. Heating and stirring was continued for 2 hrs at $45-55{ }^{\circ} \mathrm{C}$. The solution of 2hydroxyacetophenone (0.12 mol) in DMF (25 ml) was then slowly added under stirring at $50{ }^{\circ} \mathrm{C}$. The stirring was continued for 2 hrs at $55-60^{\circ} \mathrm{C}$. After cooling the mixture was kept over night at room temperature and diluted slowly by adding crushed ice (500 g) and stirred again for

6 hrs . The crystals were filtered off and recrystallized from alcohol. Yields of compounds $\mathbf{3}$ are 20-30\%, of $\mathbf{5}$ are 80 90%

3-(4-Oxo-7-acetoxy-4H-1-benzopyran-3-yl)-2-(1-oxoethyl)-2-ethylpropenoate 6

A mixture of 7-hydroxy-3-formylchromone 3a(1 g, 5.3 $\mathrm{mmol})$, ethyl acetoacetate $(0.82 \mathrm{~g}, 6.3 \mathrm{mmol})$, acetic anhydride $(4.32 \mathrm{~g}, 42 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.07 \mathrm{~g}, 0.53$ mmol) was heated for 1 hr . After cooling, 30 ml diethylether was added and the ester was allowed to crystallize over 12 hours at room temperature. A yellow solid product was filtered off and recrystalized from ethanol. Yield 56%.

2-Benzothiazolylhydrazone-3-formylchromone 7a-7f, 2, 4-dinitrophenylhydrazone-3-formylchromone 7 g - 7k and 2-ethoxy-3-(2-hydroxyphenylaminomethylene)chroman-4ones $8 \mathbf{a}, 8 \mathrm{~b}$

Ethanolic solutions of 3-formylchromone derivatives (1 mmol), and 2-benzotiazolhydrazine (or 2, 4dinitrophenylhydrazine, or 2-hydroxyaniline) (1 mmol) and one crystral of p-toluenesulfonic acid were mixed together and stirred for 1 h , at $30-35^{\circ} \mathrm{C}$. The reaction mixture was then cooled to $10{ }^{\circ} \mathrm{C}$. The yellow precipitate was filtered off and recrystallized from ethanol or a mixture DMSO - ethanol. Yields about 70-75\%.

2-(2-hydroxyphenylamino)-3-(2-

hydroxyphenylaminometylene)chroman-4-ones 9a-9c
The anhydrous chloroform solution (15 ml) of 3formylchromone (1 mmol) and 2-hydroxyaniline (2 mmol) was stirred for 30 minutes at $50{ }^{\circ} \mathrm{C}$. After cooling the mixture petroleum ether was added to form a precipitate. The product was filtered off. Toluene was used for recrystalization. Yields 50-58\%.

Acknowledgements: The authors would like to thank Dr. E. Greiplova for elemental analysis, Mgr. J. Prokes for ${ }^{1} \mathrm{H}$ NMR measurements (80 MHz), Dr. A. Perjessy for IR
spectral measurements. Financial support for this research from the Slovak Agency (grant No. 1/5058/98) is gratefully acknowledged.

References

1. El-Shaer, H. M.;, Zahradnik, P.; Lacova M.; Matulova, M. Collect. Czech. Chem. Commun. 1994, 59, 1673.
2. El-Shaaer, H.M.; Lacova, M.; Odlerova, Z.; Furdik, M. Chem. Papers 1994, 59, 1673.
3. El-Schaaer, H.M.; Perjessy, A.; Zahradnik, P.; Lacova M.; Sustekova Z. Monatsh. Chem. 1993, 124, 539.
4. Gasparova, R.; Lacova, M. Collect. Czech. Chem. Comтип. 1995, 60, 1178.
5. Lacova, M.; Stankovicova, H.; Odlerova, Z. Il farmaco 1995, 50, 885.
6. Kralova, K.; Sersen, F.; Lacova, M.; Stankovicova, H. Biol. Plant. 1995, 38, 397.
7. El-Schaaer, H.M.; Foltinova, P.; Lacova, M.; Chovancova, J.; Stankovicova, H. Il - farmaco (in press).
8. Nohara, A.; Umetani ,T.; Sanno, Y. Tetrahedron 1974, 30, 3553.
9. Nohara, A.; Umetani, T.; Sanno, Y. Tetrahedron Lett. 1973, (22) 1995-8.
10. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc., 1985, 57, 3698.
11. Brown, R.C.; Harard, R. U.S. 1980, 4238, 606 ; Chem. Abstr. 1981, 94p, 156755.
12. Klutchko, S.; Kaniansky, D. U.S. 1977, 4008, 232; Chem. Abstr. 1977, 87p, 5808.
13. Cooper, R. S. Org. Synth. Coll. Vol. III.761, John Wiley and Sons, New York 1967.
14. Desai, R.D.; Ekhlas, M. Proc Indian Acad SCi (A), 1938, 567, Chem. Abstr. 1939, 33, 3356.
15. Sethna, S.M.; Shah ,R.C. J. Chem. Soc. 1938, 228.
16. Hoesch, K. Ber. 1942, 48, 1125.

Samples Availability: Samples are available from MDPI and the authors.

[^0]: * To whom correspondence should be addressed.

[^1]: ${ }^{a}$ For numbering of carbon atoms see Scheme 2.

