

ISSN 1420-3049

Synthesis and Reactions of New 4-Oxo-4H-benzopyran-3-carboxaldehydes Containing Hydroxy Groups or 2-Oxopyran Cycles

Margita Lacova*1, Dusan Loos, Mikulas Furdik¹, Maria Matulova² and Hafez M. El-Shaaer³

¹ Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovak Republic. Tel. +421 07 60296338, Fax +421 07 65429064 (lacova@fns.uniba.sk)

² Slovak Academy of Sciences, 842 38 Bratislava, Slovak Republic

³ Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt

Received: 27 January 1998 / Accepted: 14 April 1998 / Published: 15 May 1998

Abstract: The synthesis of eight hydroxy- and 2-oxopyranochromone-3-carboxaldehydes **3**, **5** and their reactions with 2-hydroxyaniline, 2,4-dinitrophenylhydrazine and 2-benzothiazolylhydrazine were investigated. Products were confirmed by IR, NMR spectral and elemental analysis data. The semi-empirical AM1 quantum-chemical method has been used to study optimal geometries and heats of formation of synthesized 3-formylchromones

Keywords: 3-Formylchromones, Vilsmeier - Haack reaction, 2-oxobenzopyrane, imines, enamines, AM1 calculations

Introduction

This work was done in connection with our study of synthetic, theoretical, spectral [1 - 5] and biological [6, 7] properties of 3-formylchromone derivatives. In the course of biological investigation of 3-formylchromone derivatives we found a hereditary bleaching effect on the plastid system of *Euglena gracilis* [7] and antimycobacterial activity similar to effect of isonicotin acid hydrazide (INH) [5, 7]. Due to their biological activity are chromone derivatives are a subject of considerable

pharmaceutical and chemical interest. The natural chromones of the abundant flavonoid family contain prevailingly one or several hydroxyl groups which can be free or protected. 3-Formylchromones are also attractive syntons for preparative organic chemistry due to a behaviour similar to , -unsaturated aldehydes [8, 9]. Therefore our attention was aimed at the investigation of favourable conditions for the preparation of two biologically interesting groups of aldehydes e.g. 3-formylchromones containing the condensed 2-oxopyran

* To whom correspondence should be addressed.

© 1998 MDPI. All rights reserved. Molecules http://www.mdpi.org/molecules/

ring **5a** - **5e** and difficultly accessible aldehydes with non - protected hydroxy groups at the benzene ring **3a** - **3c**.

Results and Discussion

In the first part of the work the preparation of 7hydroxy-, 6-n-hexyl-7-hydroxy- and 7, 8-dihydroxy-3formylchromones 3a - 3e was studied. It has been found that their preparation using the Vilsmeier-Haack formylation of appropriate o-hydroxyacetphenones afforded very low yields (20 - 30 %). Our efforts to prepare 5,7-dihydroxy-3-formylchromones by direct formylation of 2, 4, 6-trihydroxyacetphenone 1d were unsuccesfull. The reaction resulted in polymeric products in all experiments. It can be assumed that the hydroxy groups of compounds 1a - 1d caused the lowering of the acetyl group acidity and preferably enables the formylation of the benzene ring and polycondensation of intermediates. The new 2, 4-dihydroxy-5-hexylacetophenone 1c was prepared by acetylation in acetic acid and ZnCl₂ at reflux in 56% yield.

In the second part of this work we developed the method of synthesis of a 3-formyl- chromone having a condensed 2-oxopyrane ring. The synthetic strategy of 3-formylchromones 5a - 5e had to be based on building up the 2-benzopyrone skeleton. The key - step in this synthesis was the preparation of a suitable acetyl derivative 4a - 4d, from which the requested 3-formylchromones were obtained by Vilsmeier-Haack double formylation in 80 - 90 % yields. The synthesis of 5a - 5e is shown in Scheme 2.

The Vilsmeier-Haack formylation was used to afford two different aldehydes **5d** and **5d**₁ from 2-oxo-2H-6acetyl-5,7-dihydroxy-4-methylbenzopyran **4d**. However, only one product was isolated from the reaction mixture. The ¹H NMR spectra confirmed the structure of **5d**. The signal of the proton of the hydroxy group was a singlet and a coupled constant ⁴J for a hydroxy group was absent.

8-Acetyl-7-hydroxy-4-methylcoumarin 4a was prepared from 1,3-dihydroxybenzene in three reaction steps, namely by the Pechmann reaction, acetylation, and then by Fries rearrangement. All three reaction steps proceeded in high yields (84 - 90 %). After recrystallisation of the Fries rearrangement product another isomer 4b (6 %) was isolated from the mother liquor. The product 4b (6-acetyl-7-hydroxycoumarin) was obtained directly as the main product from 2. 4dihydroxyacetophenone 1a by the Pechmann reaction in the presence of POCl₃.

6-Acetyl-5-hydroxy-4-methyl coumarin **4c** was also prepared from compound **1a** by Pechmann reaction in the presence of AlCl₃. 2, 4, 6-Trihydroxyacetophenone **1d** yielded a mixture of both isomers **4d** and **4e** by Pechmann reaction in a ratio 1 : 1. The pure products **4d** were isolated by recrystallization from ethanol. Product **4e** was soluble and was isolated after evaporation of the mother liquor. The preparation of compounds **5d** and **5e** from the parent phenol involved three steps. Two steps of the synthesis yielded about 80 - 90 % of products. Only the second step, the product of the Pechmann reaction gave 40 - 50 % yield. The elemental analysis data of the prepared compounds is listed in Table 1.

The assumed structures of the aldehydes **3**, **5** and the compounds **4** were proved by infrared and ¹H NMR spectra. The infrared spectra of 3-formylchromones **3** showed two strong absorption bands of the C=O stretching vibrations belonging to the carbonyl group of -pyrone at 1620 cm⁻¹ and to the aldehyde carbonyl group at 1695 cm⁻¹.

The C=O stretching vibrations of the carbonyl groups of **5** exhibited strong absorption bands in three very well distinguished regions: $1655 - 1637 \text{ cm}^{-1}$, $1704 - 1694 \text{ cm}^{-1}$ and $1760 - 1724 \text{ cm}^{-1}$ belonging to the (C=O) of the - pyrone ring, the aldehyde groups and the -pyrone ring, respectively (Table 2).

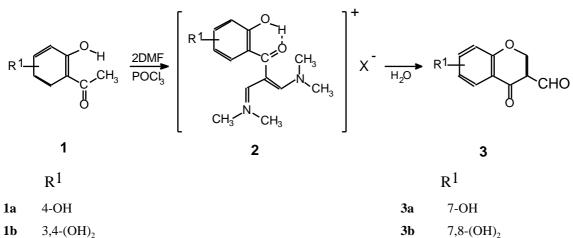
The structure of the prepared compounds was also confirmed by ¹H NMR spectra. The resonance signals and their multiplicity are given in Table 3. In this table also included are the chemical shifts for the acetyl derivatives **4a** - **4c**, because these compounds were previously reported without ¹H NMR spectral data.

The condensation reactions of the aldehydes 3a - 3c and 5a - 5e were carried out with 2-hydroxyaniline, 2,4dinitrophenylhydrazine, 2-benzothiazolylhydrazine and ethyl acetoacetate. 2,4-Dinitrophenylhydrazones and 2benzothiazolylhydrazones 7a - 7k were formed by refluxing the starting mixture in ethanol. The products appeared as coloured and slightly soluble compounds decomposing near their melting points. The reaction of 2hydroxyaniline with 3-formylchromones gives chromanones 8 or 9 using different reaction media (Scheme 3). In ethanol the adducts 8 were obtained, in diethylether the compounds 9 were formed with two molecules of 2-hydroxyaniline. The aldol condensation product 6 was obtained by heating the aldehyde 3a, and ethyl acetatoacetate with CH₃COOK as catalyst.

The starting compounds 1, and 3-formylchromone derivatives 3a - 3c, 5a - 5e were studied by the semiempirical quantum chemical AM1 method [10]. The full optimisation of the geometry of every structural parameter for several conformers was performed. Heats of formation were calculated for all s-cis and s-trans conformations. The s-cis conformations appeared to be energetically more favourable then the s-trans ones. The difference in the heats of formation is about 20 kJ mol⁻¹ for acetophenones 1 and 22 - 26 kJ mol⁻¹ for 3-formylchromones 3, 5. In accordance with the ¹H NMR spectra, the results of theoretical calculation of both isomers of aldehydes 5d and 5d₁ (Scheme 2) shows that the isomer 5d is about 4.5 kJ/mol more stable than the isomer 5d₁.

Compound	Formula M _r	W _i (calc.) % W _i (found) %			M.p. (⁰ C)
	1v1 T	C C	H	Ν	
1c	C ₁₄ H ₂₀ O ₃ 236.2	71.18 71.13	8.51 8.47		75-77
3a	C ₁₀ H ₆ O ₄ 190.2	63.14 63.31	3.17 3.10		268-270
3b	C ₁₀ H ₆ O ₅ 206.2	58.30 58.26	2.91 2.98		264-266
3c	C ₁₆ H ₁₈ 274.2	70.07 70.01	6.57 6.60		233-234
5a	C ₁₄ H ₈ O ₅ 256.2	65.62 65.33	3.13 3.12		310-312
5b	C ₁₄ H ₈ O ₅ 256.2	65.62 65.48	3.13 3.01		255-260
5c	C ₁₄ H ₈ O 256.2	65.62 65.32	6.57 3.07		233-234
5d	C ₁₄ H ₈ O ₆ 272.2	61.79 61.62	2.94 2.99		273-274
5e	C ₁₄ H ₈ O ₆ 272.2	61.79 61.77	2.94 2.92		291-293
7a	C ₁₇ H ₁₁ N ₃ O ₃ S 337.3	60.53 60.37	3.26 3.25	12.46 12.27	248-250
7b	C ₂₃ H ₂₃ N ₃ O ₃ S 421.4	65.60 65.35	5.46 5.33	9.97 9.54	219-220
7c	C ₁₇ H ₁₁ N ₃ O ₄ S 403.3	57.79 57.48	3.12 3.11	11.90 11.76	259-261
7d	C ₂₁ H ₁₃ N ₃ O ₄ S 403.3	62.50 62.37	3.24 3.23	10.41 10.29	253-255

Table 1. Elemental analysis data of prepared compounds.

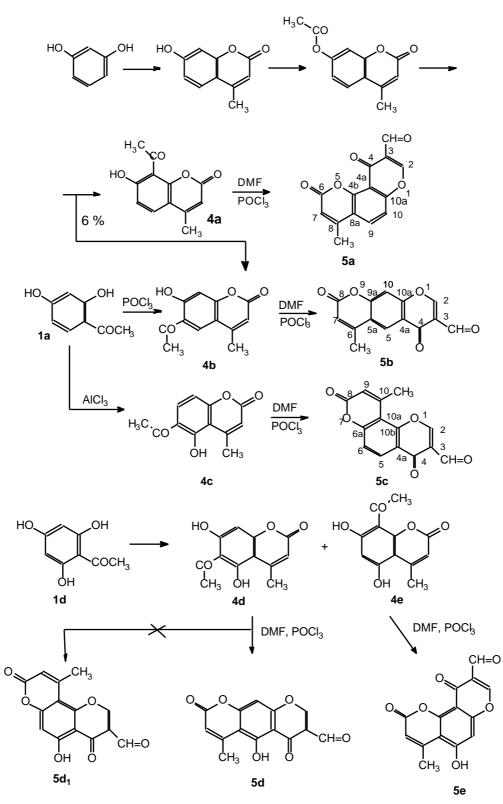

Table 1. Continued.

Compound	Formula M _r	W _i (calc.) % W _i (found) %			M.p. (⁰ C)	
		С	Н	Ν		
7e	C ₂₁ H ₁₃ N ₃ O ₅ S	60.13	3.12	10.01	325-8	
	419.3	60.22	3.19	9.71		
7f	C ₂₁ H ₁₃ N ₃ O ₄ S	62.50	3.24	10.41	240-242	
	403.3	62.38	3.20	10.39		
7g	C ₁₆ H ₁₀ O ₇ N ₄	51.90	2.72	15.13	297-9	
	378.3	51.62	2.76	14.89	decomp.	
7h	C ₂₂ H ₂₂ O ₇ N ₄	58.15	4.88	12.33	296-8	
	454.4	57.86	4.84	12.09	decomp.	
7i	C ₁₆ H ₁₀ O ₈ N ₄	49.75	2.61	14.50	173-6	
	386.3	49.36	2.66	14.28	decomp.	
7j	C ₂₀ H ₁₂ O ₈ N ₄	55.05	2.77	12.84	289-94	
	436.3	54.89	2.77	12.75		
7k	C ₂₀ H ₁₂ O ₉ N ₄	53.11	2.67	12.38	300-2	
	452.3	52.84	2.80	12.06	decomp.	
8a	C ₂₂ H ₁₉ NO ₆	67.18	4.83	3.56	275-6	
	393.4	66.89	4.59	3.12		
8b	C ₂₂ H ₁₉ NO ₇	64.55	4.65	3.42	259-60	
	409.4	64.36	4.00	3.30		
9a	C ₂₆ H ₂₀ N ₂ O ₆	68.42	4.39	6.13	180-5	
	456.4	68.22	4.51	6.02		
9b	C ₂₆ H ₂₀ N ₂ O ₆	66.10	4.24	5.92	158-62	
	472.4	66.05	4.24	5.74		
9c	C ₂₆ H ₂₀ N ₂ O ₆	68.42	4.39	6.13	188-90	
	456.4	68.51	4.37	6.19		

Table 2. IR	- spectral data (in cm ⁻¹)).
-------------	--	----

Compound	$C^4 = 0^a$	CH=O	C ⁸ =O ^a	_s (NO ₂)	as(NO ₂)
	•		/		
3a	1620	1695	-	-	-
3b	1630	1682	-	-	-
3c	1630	1696	-	-	-
5a	1657	1700	1726	-	-
5b	1655	1693	1748	-	-
5c	1637	1693	1700	-	-
5d	1640	1702	1734	-	-
5e	1640	1704	1724	-	-
7a	1634	-	-	-	-
7b	1630	-	-	-	-
7d	1630	-	1720	-	-
7g	1640	-	-	1318	1580
7h	1612	-	-	1350	1580
7i	1610	-	-	1345	1580
7j	1640	-	1722	1345	1580
7k	1606	-	1748	1310	1580
8a	1642	-	1718	-	-
8b	1642	-	1708	-	-
9a	1648	-	1700	-	-

^a For numbering of carbon atoms see Scheme 2.

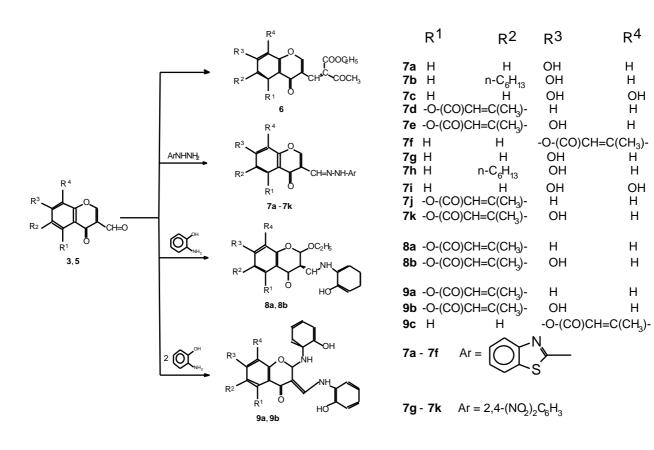


- **10** 3,4-(011)₂
- **1c** 4-OH $5-n-C_6H_{13}$
- **1d** 4,6-(OH)₂

Scheme 1.

6-n-C₆H₁₃, 7-OH

3c



Scheme 2.

 Table 3. ¹H NMR - spectral data.

compound	solvent	spectra (ppm)		
1a	CDCl ₃	12.52 (1H,s,OH), 7.42 (1H,s,H-6), 6.34 (1H,s,H-3), 1.65-0.87		
	5	(13Hm)		
3a	DMSO	10.11 (1H,s,CHO), 8.78 (1H,s,H-2), 7.99 (1H,d,H-5), 7.04-6.94 (2H,t,H-6,8)		
3b	DMSO	10.12 (1H,s,CHO), 8.77 (1H,s,H-2), 7.48 (1H,d,H-5), 7.00 (1H,d,H-6)		
3c	DMSO	10.12 (1H,s.CHO), 8.73 (1H,s,H-2), 7.79 (1H,s,H-5), 6.93 (1H,s,H-8), 2.9 (2H,t), 1.30 (8H,m), 0.86 (3H,t)		
4a	CDCl ₃	7.68 (1H,d,H-5), 6.90 (1H,d,H-6), 6.12 (1H,s,H-3), 2.95 (3H,s,CH CO), 2.41 (3H,s,CH), 13.54 (1H,s,OH)		
4b	CDCl ₃	7.96 (1H,s,H-5), 6.84 (1H,s,H-8), 6.17 (1H,s,H-3), 2.70 (3H,s,CH CO), 2.44 (3H,s,CH), 12.61 (1H,s,OH)		
4c	CDCl ₃	7.85 (1H,d,H-7), 6.83 (1H,d,H-8), 6.13 (1H,s,H-3), 2.66 (6H,s,CHCO), 14.07 (1H,s,OH)		
4d	CDCl ₃	6.26 (1H,s,H-3), 5.99 (1H,d,H-8), 2.68 (3H,s,CH CO), 2.51 (3H,s,CH)		
4e	CDCl ₃	6.37 (1H,s,H-3), 5.94 (1H,s,H-6), 2.68 (3H,s,CH CO), 2.51 (3H,s,CH)		
5aª	DMSO	10.12 (1H,s,CHO), 8.86 (1H,s,H-2), 8.18 (1H,d,H-10), 7.67 (1H,d,H-9), 6.53 (1H,s,H-7)		
5b ^a	DMSO	10.12 (1H,s,CHO), 8.97 (1H,s,H-2), 8.39 (1H,s,H-5), 7.87 (1H,s,H-10), 6.56 (1H,s,H-7), 2.54 (3H,s,CH)		
5c ^a	DMSO	10.14 (1H,s,CHO), 9.02 (1H,s,H-2), 8.31 (1H,d,H-5), 7.58 (1H,d,H-6), 6.57 (1H,s,H-9), 2.74 (3H,s,CH)		
5d ^a	DMSO	10.05 (1H,s,CHO), 8.63 (1H,s,h-2), 8.12 (1H,s,H-10), 6.78 (1H,s,H-7), 6.26 (1H,s,OH), 2.54 (3H,s,CH)		
5e	DMSO	10.07 (1H,s,CHO), 9.06 (1H,s,H-2), 7.30 (1H,s,H-10), 6.31 (1H,s,H-7), 2.62 (3H,s,CH)		
6	CDCl ₃	8.26 (2H,t,H-2,CH), 7.10-7.56 (3H,m,arom), 4.31 (2H,q,CH), 2.47 (3H,s,CH COO), 2.35 (3H,s,CH CO), 1.35 (3H,t,CH)		

^a spectra were recorded on a Bruker AM 300

Scheme 3.

Experimental Section

General details

The synthesized compounds were characterized by melting points, elemental analysis, IR and ¹H NMR spectra.

The melting points were determined on a Boetius apparatus and are uncorrected. The IR spectra were taken on a Specord M-80 (Zeiss) spectrophotometer in a nujol suspension.

The NMR spectra were measured on a Tesla BS 487 (80 MHz) and Bruker AM 300 (300.13 MHz) spectrometers in deuterated DMSO and CHCl₃.

The synthesis of acetophenones **1a**, **1b**, **1d** is described in papers [11 - 13] and the preparation of compounds **4a** -**4e** in papers [14 - 16].

2, 4-Dihydroxy-5-n-hexylacetophenone 1c

4-n-Hexyl-1, 3-dihydroxybenzene (30 g, 0.15 mol) was gradually added to a stirred and hot mixture (120 °C) of glacial acetic acid (45 ml) and anhydrous $ZnCl_2$ (44.6 g, 0.32 mol). The mixture was refluxed for 10 minutes. After cooling the mixture was diluted with HCl (120 ml, diluted 1 : 1) and was kept in refrigerator (12 hrs). The crystals were filtered off, washed with diluted HCl (1 : 3) and recrystallized from methanol. Yield 25 g (72 %)

3-Formylchromones 3, 5. General procedure

To the dry dimethylformamide (121 ml) in a three necked flask, POCl₃ (0.49 mol) was added slowly with intensive stirring at 50 °C. Heating and stirring was continued for 2 hrs at 45 - 55 °C. The solution of 2-hydroxyacetophenone (0.12 mol) in DMF (25 ml) was then slowly added under stirring at 50 °C. The stirring was continued for 2 hrs at 55 - 60 °C. After cooling the mixture was kept over night at room temperature and diluted slowly by adding crushed ice (500 g) and stirred again for

6 hrs. The crystals were filtered off and recrystallized from alcohol. Yields of compounds **3** are 20 - 30 %, of **5** are 80 - 90 %

3-(4-Oxo-7-acetoxy-4H-1-benzopyran-3-yl)-2-(1oxoethyl)-2-ethylpropenoate **6**

A mixture of 7-hydroxy-3-formylchromone **3a** (1 g, 5.3 mmol), ethyl acetoacetate (0.82 g, 6.3 mmol), acetic anhydride (4.32 g, 42 mmol) and K_2CO_3 (0.07 g, 0.53 mmol) was heated for 1 hr. After cooling, 30 ml diethylether was added and the ester was allowed to crystallize over 12 hours at room temperature. A yellow solid product was filtered off and recrystalized from ethanol. Yield 56 %.

2-Benzothiazolylhydrazone-3-formylchromone **7a** - **7f**, 2, 4-dinitrophenylhydrazone-3-formylchromone **7g** - **7k** and 2-ethoxy-3-(2-hydroxyphenylaminomethylene)chroman-4ones **8a**, **8b**

Ethanolic solutions of 3-formylchromone derivatives (1 mmol), and 2-benzotiazolhydrazine (or 2, 4-dinitrophenylhydrazine, or 2-hydroxyaniline) (1 mmol) and one crystral of p-toluenesulfonic acid were mixed together and stirred for 1 h, at 30 - 35 °C. The reaction mixture was then cooled to 10 °C. The yellow precipitate was filtered off and recrystallized from ethanol or a mixture DMSO - ethanol. Yields about 70 - 75 %.

2-(2-hydroxyphenylamino)-3-(2hydroxyphenylaminometylene)chroman-4-ones **9a - 9c**

The anhydrous chloroform solution (15 ml) of 3formylchromone (1 mmol) and 2-hydroxyaniline (2 mmol) was stirred for 30 minutes at 50 °C. After cooling the mixture petroleum ether was added to form a precipitate. The product was filtered off. Toluene was used for recrystalization. Yields 50 - 58 %.

Acknowledgements: The authors would like to thank Dr. E. Greiplova for elemental analysis, Mgr. J. Prokes for ¹H NMR measurements (80 MHz), Dr. A. Perjessy for IR

spectral measurements. Financial support for this research from the Slovak Agency (grant No. 1/5058/98) is gratefully acknowledged.

References

- 1. El-Shaer, H. M.;, Zahradnik, P.; Lacova M.; Matulova, M. Collect. Czech. Chem. Commun. 1994, 59, 1673.
- El-Shaaer, H.M.; Lacova, M.; Odlerova, Z.; Furdik, M. Chem. Papers 1994, 59, 1673.
- El-Schaaer, H.M.; Perjessy, A.; Zahradnik, P.; Lacova M.; Sustekova Z. *Monatsh. Chem.* 1993, *124*, 539.
- 4. Gasparova, R.; Lacova, M. Collect. Czech. Chem. Commun. 1995, 60, 1178.
- 5. Lacova, M.; Stankovicova, H.; Odlerova, Z. *Il farmaco* **1995**, *50*, 885.
- Kralova, K.; Sersen, F.; Lacova, M.; Stankovicova, H. *Biol. Plant.* **1995**, *38*, 397.
- 7. El-Schaaer, H.M.; Foltinova, P.; Lacova, M.; Chovancova, J.; Stankovicova, H. *Il - farmaco* (in press).
- Nohara, A.; Umetani ,T.; Sanno, Y. *Tetrahedron* 1974, 30, 3553.
- 9. Nohara, A.; Umetani, T.; Sanno, Y. *Tetrahedron Lett.* **1973**, (22) 1995-8.
- 10. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc., **1985**, *57*, 3698.
- 11. Brown, R.C.; Harard, R. U.S. **1980**, 4238, 606 ; *Chem. Abstr.* 1981, 94p, 156755.
- Klutchko, S.; Kaniansky, D. U.S. 1977, 4008, 232; Chem. Abstr. 1977, 87p, 5808.
- 13. Cooper, R. S. *Org. Synth.* Coll. Vol. III.761, John Wiley and Sons, New York 1967.
- Desai, R.D.; Ekhlas, M. Proc Indian Acad SCi (A), 1938, 567, Chem. Abstr. 1939, 33, 3356.
- 15. Sethna, S.M.; Shah ,R.C. J. Chem. Soc. 1938, 228.
- 16. Hoesch, K. Ber. 1942, 48, 1125.
- *Samples Availability:* Samples are available from MDPI and the authors.