

ISSN 1420-3049 http://www.mdpi.org

Convenient Synthesis of Two Mango Allergens

Shyam V. Trivedi, Ayyulur S. Subbaraman, Subrata Chattopadhyay and Vasant R. Mamdapur*

Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai – 400 085, India 57007 Tel.: (022)-550-5050, Fax: (022) 550-5151, E-mail: schatt@apsara.barc.in

* Author to whom correspondence should be addressed.

Received: 10 September 1998 / Accepted: 16 July 1999 / Published: 30 August 1999

Abstract: The mango allergens, 5[2'(Z)-heptadecenyl]resorcinol (10) and 5[12'(Z)-heptadecenyl]resorcinol (20) have been synthesized by simple routes using easily accessible starting materials.

Keywords: Mango allergens, synthesis, phenolics.

Introduction

It is by now established [1] that several long chain phenolic compounds act as natural allergens imparting resistant properties to plants. Amongst the various sources of the allergens, the cashew nut shell as well as the Japanese and Chinese lacs are well known for producing the phenolic compounds like cardols [2] and urushiols [3]. Sometimes back, we have isolated [4] a non-volatile allergen, 5[2'(Z)-heptadecenyl]resorcinol (10) from the mango latex. Subsequently, another isomeric resorcinol *viz*. 5[12'(Z)-heptadecenyl]resorcinol (20) was isolated by Cojocaru *et al.* [5] from raw mango fruit peel. They have demonstrated that these phenolic compounds also act as preservatives in the necrotic organs of the plants against microbial infection. Considering that occupational allergenic contact dermatitis is a growing problem in the green house industry, the study of mango allergen seems interesting. With this aim, we have developed a novel synthesis of the above compounds in sufficient quantities to study their allergen and other biological activities. The synthesis (Scheme 1) is brief and conveniently produces the target compounds from easily accessible starting materials.

© 1999 by the authors. Reproduction of this article, by any means, is permitted for noncommercial purposes.

i) HBr/H₂SO₄/ Δ , ii) Sod. acetylide/NH ₃, iii) MeOH/BF₃.Et₂O, iv) Me₂SO₄/K₂CO₃/acetone/ Δ , v) LAH/ether, vi) SOCl ₂/py/ether, vii) *n*-BuLi/THF/Cul/**7**, viii) 5% Pd-CaCO₃/TEA/THF, ix) BBr₃ x) HBr/heptane/ Δ , xi) DHP/PPTS/CH₂Cl₂, xii) NaNH₂/1-hexyne/THF/-78 ⁰C, xiii) MeOH/PTS/ Δ , xiv) H₂/P-2 Ni/EtOH/EDA, xv) Ph ₃P.Br₂/py/CH₂Cl₂, xvi) Mg/THF/3,5-dimethoxtbenzaldehyde, xvii) MsCl/TEA/CH₂Cl₂, xviii) NaBH₄/TiCl₄/DME, xix) PCC/CH₂Cl₂, xx) Dimsyl ion/THF/CH₃(CH₂)₄PPh₃Br.

Scheme 1.

Results and Discussion

Synthesis of 5[2'(Z)-heptadecenyl]resorcinol (10)

Commercially available 1-tetradecanol (1) was converted to the bromide 2 *via* a standard route and reacted with monosodium acetylide [6] to furnish the alkyne 3. For the required aromatic moiety, 3,5-dihydroxybenzoic acid (4) was converted to the ester 5 by esterification followed by methylation. Its LAH reduction to the alcohol 6 followed by chlorination gave compound 7. Alkylation [7] of the alkyne 3 with the chloride 7 was accomplished using *n*-BuLi as the base in the presence of CuI to

Synthesis of 5[12'(Z)-heptadecenyl]resorcinol (20)

with BBr₂ to furnish the target allergen 10.

This was synthesized by two methods. In the first route, 1,10-decanediol (11) was monobrominated [8] to the bromohydrin 12 which on pyranylation gave compound 13. Alkylation of 1-hexyne with 13 followed by acid catalyzed depyranylation afforded the alcohol 15. Its *cis*-selective partial hydrogenation over P-2 Ni [9] produced the alkenol 16 which was brominated with $Ph_3P.Br_2$ [10] to furnish 17. This was then converted to the corresponding Grignard reagent and reacted with 3,5-dimethoxybenzaldehyde yielding compound 18. Its mesylation and susequent reduction with LAH gave 19.

furnish 8. Its cis-selective partial hydrogenation afforded the dimethyl ether 9 which was demethylated

In an alternative approach, 10-undecenol (21) was brominated to give 22. As above, the Grignard reagent prepared from 22 was reacted with 3,5-dimethoxybenzaldehyde to furnish the alcohol 23 which on mesylation and LAH reduction afforded the alkene 24. This on *anti*-Markonikov hydration with NaBH₄-TiCl₄ [11] followed by pyridinium chlorochromate (PCC) [12] oxidation gave the aldehyde 26. Its *Z*-selective Wittig olefination with *n*-pentyltriphenylphosphonium bromide in the presence of dimsyl ion as the base led to 19. As done for 10, demethylation of 19 with BBr₃ afforded the title compound 20. The spectral and microanalytical data of both the synthetic samples were in good agreement with those reported [4,5] in literature.

Experimental

General

All the boiling points are uncorrected. The IR spectra were scanned with a Perkin-Elmer spectrophotometer model 837. The PMR spectra were recorded in $CDCl_3$ with a Varian A-60 (60 MHz) instrument. The GLC analyses were carried out using Shimadzu GC-7A chromatograph using a 3% OV-17 column and a N₂ flow rate 40 mL/min. Anhydrous reactions were carried out under Ar using freshly dried solvents. The organic extracts were dried over anhydrous Na₂SO₄.

1-Bromotetradecane (2)

A mixture of the alcohol **1** (21.4 g, 0.1 mol), 48% HBr (50 mL) and H₂SO₄ (5 mL) was heated for 8 h at 130 °C, brought to room temperature, diluted with water and extracted with ether. The ether layer was washed several times with half-saturated brine, dried, concentrated and distilled under reduced pressure to give pure **2**. yield: 23.5 g (85%); bp: 118-120 °C/2 mm; IR: 2950, 2880, 1475, 1265 cm⁻¹; PMR: δ 0.9 (dist. t, 3H), 1.27 (br. s, 24H), 3.4 (t, *J* = 6 Hz, 2H).

1-Hexadecyne (3)

A solution of sodium acetylide (0.13 mol) in NH₃ (100 mL) was prepared as described [13] in literature. Ammonia was slowly removed and the bromide **2** (13.85 g, 0.05 mol) in DMF (30 mL) was added to it in 0.5 h. The mixture was heated at 70 $^{\circ}$ C for 4 h, brought to room temperature and treated with aqueous saturated NH₄Cl solution. It was diluted with water, extracted with ether, the ether layer washed with water and brine and dried. Removal of solvent followed by distillation of the residue gave pure **3.** yield: 7.0 g (65%); bp: 103 $^{\circ}$ C/1 mm, (lit. [14] bp: 115 $^{\circ}$ C/5 mm); IR: 3320, 2860, 2120 cm⁻¹; PMR: δ 0.87 (dist. t, 3H), 1.3 (br. s, 24H), 1.9-2.18 (m, 3H).

Methyl 3,5-Dimethoxybenzoate (5)

A mixture of the acid **4** (15.4 g, 0.1 mol) and BF₃.Et₂O (2.0 mL) in MeOH (100 mL) was refluxed for 12 h. Most of the solvent was removed in vacuo, water added to the residue which was extracted with ether. The ether layer was washed aqueous 10% NaHCO₃, water and brine and dried. Removal of solvent followed by crystallization gave the ester of **4**. yield: 13.5 g (80%); mp: 165 $^{\circ}$ C; IR: 3380, 1700, 1610 cm⁻¹; PMR: δ 3.86 (s, 3H), 6.6-7.2 (m, 3H), 12.9 (br. s, D₂O exchangeable, 2H).

A mixture of the above ester (8.4 g, 0.05 mol), dimethyl sulphate (14.2 mL, 0.15 mol) and anhydrous K_2CO_3 (27.6 g 0.2 mol) in acetone (100 mL) was refluxed for 16 h. After bringing to room temperature, the reaction mixture was filtered, concentrated and worked-up as above. Removal of solvent followed by crystallization (MeOH-H₂O) gave **5**. yield: 8.4 g (86%); mp: 43 °C, (lit. [15] mp: 42 °C); UV: 252 (log e 3.76), 306 (log e 3.46) nm; IR: 3050, 1750, 1580, 1210 cm⁻¹; PMR: δ 3.83 (s, 6H), 3.93 (s, 3H), 6.62-7.12 (m, 3H); MS (m/z): 196 (M⁺), 165, 138, 122, 104, 92, 79.

3,5-Dimethoxybenzyl alcohol (6)

To a stirred suspension of LAH (3.8 g, 0.1 mol) in ether (50 mL) was added a solution of **5** (7.84 g, 0.04 mol) in ether (30 mL). The reaction mixture was refluxed for 3 h, brought to room temperature and the excess LAH decomposed with aqueous saturated Na_2SO_4 . The supernatant ether layer was decanted, the solid residue extracted with ether and the combined organic extract concentrated to give

pure **6**. yield: 5.95 g (87%); mp: 48 $^{\circ}$ C, (lit. [15] mp: 48 $^{\circ}$ C); UV: 280 (log e 3.28) nm; IR: 3350, 2950, 1580, 830 cm⁻¹; PMR: δ 2.26 (s, D₂O exchangeable, 1H), 3.8 (s, 6H), 4.63 (s, 2H), 6.3-6.7 (m, 3H).

3,5-Dimethoxybenzyl chloride (7)

To a cooled (0 °C) and stirred solution of **6** (5.88 g, 0.035 mol) and pyridine (0.4 mL) in ether (100 mL) was added SOCl₂ (8.0 g) in ether (50 mL) in portions. The mixture was stirred for 2.5 h at room temperature. It was extracted with ice cold water, the ether layer separated and evaporated in vacuo and the residue recrystallized from petroleum ether to get **7** as fine shinning needles. yield: 4.95g (76%); mp: 66 °C; IR: 3050, 2950, 1580, 820 cm⁻¹; PMR: δ 3.83 (s, 6H), 4.5 (s, 2H), 6.3-6.7 (m, 3H).

5-(2'-Heptadecynyl)-rescorcinol dimethylether (8)

To a cooled (-78 °C) and stirred mixture of **3** (5.5 g, 0.025 mol) in THF (100 mL) was added *n*-BuLi (15 mL, 0.024 mol, 1.6 M in hexane). After stirring for 0.5 h, CuI (1.9 g, 0.01 mol) was added followed by the chloride **7** (3.72 g, 0.02 mol) in THF (25 mL). The the mixture was slowly brought to room temperature and stirred for 5 h. It was poured in cold water, the organic layer separated and the aqueous layer extracted with ether. The combined organic extract was washed with water and brine and dried. Removal of solvent followed by distillation gave pure **8**. yield: 3.05 g (41%); bp: 155-160 °C/0.2 mm; IR: 2995, 1600, 1210, 825, 680 cm⁻¹; PMR: δ 0.9 (dist. t, 3H), 1.3 (br. s, 24H), 2.2 (t, *J* = 6 Hz, 2H), 2.83 (s, 2H), 3.8 (s, 6H), 6.35 (m, 3H). Anal Calcd. for C₂₅H₄₀O₂: %C 80.59, %H 10.82; Found: %C 80.45, %H 10.60.

5-(2'(Z)-Heptadecenyl)-resorcinol dimethylether (9)

A mixture of **8** (1.86 g, 5.0 mmol) and triethylamine (TEA) (0.2 mL) and 5% Pd-CaCO₃ (50 mg) in THF (20 mL) was shaken under a slight positive pressure of H₂. After the required uptake of H₂, the reaction mixture was diluted with ether (20 mL) and passed through a short pad of silica gel. The eluent was washed with dil. 2N HCl, water and brine and dried. Removal of solvent afforded pure **9**. yield: 1.54 g (83%); bp: 155-160 °C/0.1 mm; IR: 3010, 2995, 1600, 1210, 835, 690 cm⁻¹; PMR: δ 0.9 (dist. t, 3H), 1.32 (br. s, 24H), 1.9-2.1 (m, 2H), 2.56 (d, *J* = 6 Hz, 2H), 3.8 (s, 6H), 5.4-5.5 (m, 2H), 6.33 (s, 3H); MS (m/z): 374 (M⁺), 191, 183, 168, 151, 137, 136, 121, 57, 43. Anal Calcd. for C₂₅H₄₂O₂: %C 80.16, %H 11.30; Found: %C 79.95, %H 11.15.

5-(2'(Z)-Heptadecenyl)-resorcinol (10)

To a cooled (-78 $^{\circ}$ C) and stirred solution of **9** (0. 374 g, 1.0 mmol) in CH₂Cl₂ (10 mL) was injected BBr₃ (3.0 mmol). After stirring for 6 h at the same temperature and 12 h at room temperature, the

reaction was quenched with aqueous saturated NH₄Cl solution, the organic layer separated washed with water and brine and dried. Removal of solvent followed by preparative TLC of the crude product (5% MeOH/CHCl₃ as the developing solvent, silica gel) furnished pure **10** [4]. yield: 0.245 g (71%); IR: 3440, 3010, 3000, 1600, 840, 680 cm⁻¹; PMR: δ 0.88 (dist. t, 3H), 1.3 (br. s, 24H), 1.9-2.1 (m, 2H), 2.54 (d, *J* = 6 Hz, 2H), 5.3-5.5 (m, 2H), 6.24 (br. s, D₂O excnahgeable, 2H), 6.4-6.55 (m, 3H).

1-Tetrahydropyranyloxy-10-bromodecane (13)

A mixture of the diol **11** (8.7 g, 0.05 mol) and 48% HBr (20 mL) in heptane (50 mL) was refluxed for 4 h. The organic layer was separated, a fresh lot of heptane (50 mL) added and refluxing continued for another 4 h. The process was repeated four times, the organic extracts were combined and washed successively with aqueous 5% NaHCO₃, water and brine and dried. Solvent removal followed by column chromatography of the residue (silica gel, 0-15% EtOAc/hexane) afforded **12.** yield: 8.3 g (70%); bp: 125-127 °C/3 mm, (lit. [16] bp: 166-169 °C/10 mm); IR: 3340, 1450, 1250, 1050 cm⁻¹; PMR: δ 1.33 (br. s, 16H), 1.65 (s, D₂O exchangeable, 1H), 3.45 (t, *J* = 6 Hz, 2H), 3.62 (t, *J* = 6 Hz, 2H).

A solution of **12** (7.1 g, 0.03 mol) and 3,4-dihydropyran (DHP) (2.9 g, 0.04 mol) and pyridinium *para*-toluenesulphonate (PPTS) (0.5 g) in CH₂Cl₂ (50 mL) was stirred at room temperature for 4 h. The reaction mixture was washed with aqueous 10% NaHCO₃, water and brine. After drying and solvent removal, the residue was column chromatographed (silica gel, 0-10% ether/hexane) to give pure **13**. yield: 7.8 g (81%); IR: 2920, 1460, 910, 870 cm⁻¹; PMR: δ 1.33 (br. s, 16H), 1.6-1.8 (m, 6H), 3.28-3.65 (m, 6H), 4.6 (br. s, 1H).

Hexadec-11-yn-1-ol (15)

To a stirred suspension of NaNH₂ [prepared from Na (3.00g, 0.013 mol)] in NH₃ (100 mL) was added 1-hexyne (14.7 mL, 0.13 mol) in THF (50 mL). The mixture was stirred for 2 h, most of the NH₃ was evaporated and the content resuspended in THF (70 mL). To this was added **13** (32.0 g, 0.1 mol) in THF (30 mL) at -78 0 C. The mixture was stirred for 5 h at the same temperature, treated with aqueous saturated NH₄Cl and the organic layer separated. The aqueous portion was extracted with ether, the combined organic extract washed with water and brine and dried. Removal of solvent gave **14** which was taken in MeOH (100 mL) and refluxed for 3 h in the presence of *para*-toluenesulphonic acid (PTS) (0.5 g). Most of the solvent was removed in vacuo, water added to it and the mixture extracted with ether. The ether layer was washed with aqueous 5% NaHCO₃, water and brine and dried. Removal of solvent followed by distillation gave **15**. yield: 14.6 g (61%); bp: 138 0 C/2 mm; IR: 3360, 1480, 1070 cm⁻¹; PMR: δ 0.88 (dist. t, 3H), 1.32 (br. s, 20H), 1.53 (s, D₂O exchangeable, 1H), 2.1-2.3 (m, 4H), 3.66 (t, *J* = 6 Hz, 2H).

(11Z)-Hexadec-11-en-1-ol (16)

To a stirred solution of Ni(OAc)₂ (1.24 g, 5.0 mmol) in EtOH (50 mL) was added NaBH₄ (0.285 g, 7.5 mmol). Within 5 min, a black suspension of P-2 Ni formed and the evolution of H₂ ceased. Ethylenediamine (EDA) (0.9 g) was added to it followed by **15** (11.9 g, 0.05 mol) and the mixture shaken in an atmosphere of H₂. After the required uptake of H₂, the mixture was diluted with ether and the supernatant passed through a pad of silica gel. The eluent was concentrated and the residue distilled to get pure **16**. yield: 9.71 g (81%); bp: 145 °C/1.5 mm; IR: 3390, 3010, 1470, 1065 cm⁻¹; PMR: δ 0.9 (dist. t, 3H), 1.29 (br. s, 20H), 1.8 (s, D₂O exchangeable, 1H), 2.0-2.3 (m, 4H), 3.68 (t, *J* = 6 Hz, 2H), 5.4-5.5 (m, 2H).

(11Z)-1-Bromohexadec-11-ene (17)

To a cooled (0 0 C) and stirred solution of Ph₃P (9.5 g, 0.04 mol) in CH₂Cl₂ (50 mL) was added bromine (7.5 mL, 0.04 mol, 5.5 M in CCl₄). After stirring for 15 min, the cooling bath was removed and a mixture of **16** (7.2 g, 0.03 mol) and pyridine (3 mL) in CH₂Cl₂ (20 mL) introduced into the mixture. After stirring for 2 h, the mixture was concentrated, the residue extracted with hexane and the supernatant decanted. The hexane layer was passed through a pad (50 mm) of neutral alumina and concentrated in vacuo to afford pure **17**. yield: 6.3g (69%); bp: 128 $^{\circ}$ C/0.5 mm; IR: 2995, 1470, 1250 cm⁻¹; PMR: δ 0.9 (dist. t, 3H), 1.3 (br. s, 20H), 1.7-2.3 (m, 4H), 3.48 (t, *J* = 6 Hz, 2H), 5.3-5.5 (m, 2H).

1-(3',5'-Dimethoxyphenyl)-heptadec-12-en-1-ol (18)

To a cooled (0 0 C) and stirred solution of the Grignard reagent [prepared from **17** (6.0 g, 0.02 mol) and Mg (0.528 g, 0.022 mol) in THF (60 mL)] was added 3,4-dimethoxybenzaldehyde (3.32 g, 0.02 mol) in THF (20 mL). After stirring for 4 h, the reaction was quenched with aqueous saturated NH₄Cl solution, the organic portion separated and the aqueous layer extracted with ether. The combined organic extract was washed with water and brine and dried. Removal of solvent followed by column chromatography of the residue (silica gel, 0-15% EtOAc/hexane) gave **18**. yield: 4.1g (52%); bp: 145-147 $^{\circ}$ C/0.05 mm; IR: 3420, 3010, 1610, 1170, 1075 cm⁻¹; PMR: δ 0.9 (dist. t, 3H), 1.29 (br. s, 22H), 1.5 (s, D₂O exchangeable, 1H), 1.9-2.3 (m, 4H), 3.76 (s, 6H), 4.12 (t, *J* = 6 Hz, 1H), 5.3-5.5 (m, 2H), 6.33 (m, 3H). Anal. Calcd. for C₂₅H₄₂O₃: %C 76.87, %H 10.84; Found: %C 77.08, %H 11.04.

5-(12'(Z)-Heptadecenyl)-resorcinol dimethyl ether (19)

To a cooled (0 $^{\circ}$ C) and stirred solution of **18** (3.9 g, 0.01 mol) and TEA (2.1 mL, 0.012 mol) in CH₂Cl₂ (30 mL) was added mesyl chloride (1.1 mL, 0.012 mol). The mixture was stirred at the same

temperature for 3 h, poured in ice-water, the organic layer separated and the aqueous portion extracted with CHCl₃. The combined organic extract was washed with water and brine, dried and concentrated in vacuo to get a residue which was used directly for the next step.

To a stirred suspension of LAH (0.76 g, 0.02 mol) in ether (50 mL) was dropwise added the above mesylate in ether (20 mL). The mixture was refluxed for 8 h, brought to room temperature and treated with aqueous saturated Na₂SO₄. The resultant mixture was filtered, the eluent concentrated and the residue purified by distillation to furnish pure **19**. yield: 1.82 g (90%); bp: 152 $^{\circ}$ C/0.02 mm; IR: 3000, 2940, 1610, 1470, 1220, 1150 cm⁻¹; PMR: δ 0.9 (dist. t, 3H), 1.27 (br. s, 22H), 1.8-2.2 (m, 4H), 2.68 (t, *J* = 6 Hz, 2H), 3.76 (s, 6H), 5.3-5.5 (m, 2H), 6.33 (s, 3H); MS (m/z): 374 (M⁺), 304, 223, 151, 137, 136, 57. Anal. Calcd. for C₂₅H₄₂O₂; %C 80.16, %H 11.30; Found: %C 80.35, %H 11.12.

5-(12'(Z)-Heptadecenyl)-resorcinol (20)

As described for **10**, demethylation of **19** (0. 374 g, 1.0 mmol) was carried out with BBr₃ (3.0 mmol) in CH₂Cl₂ (10 mL). The resultant product was purified by preparative TLC of (5% MeOH/CHCl₃ as the developing solvent, silica gel) to furnish pure **20**. yield: 0.235 g (68%); IR: 3400, 3030, 3010, 1610, 1210, 1160 cm⁻¹; PMR: δ 0.9 (dist. t, 3H), 1.30 (br. s, 22H), 1.9-2.1 (m, 4H), 2.55 (t, *J* = 6 Hz, 2H), 5.3-5.5 (m, 2H), 6.4-6.5 (m, 3H), 8.1 (br. s, D₂O excnahgeable, 2H).

1-Bromo-undec-10-ene (22)

As described for **17**, bromination of **21** (8.5 g, 0.05 mol) was carried out with Ph₃P (13.2 g, 0.05 mol) and bromine (10.0 mL, 0.05 mol, 5.5 M in CCl₄) and pyridine (5 mL) in CH₂Cl₂ (75 mL). Usual isolation afforded pure **22**. yield: 10.0 g (85%); bp: 114-115 °C/5 mm, (lit. [17] bp: 103 °C/4 mm); IR: 3070, 1640, 1460, 990, 910 cm⁻¹; PMR: δ 1.33 (br. s, 14H), 1.9-2.2 (m, 2H), 3.56 (t, *J* = 6 Hz, 2H), 4.8-6.3 (m, 3H).

1-(3',5'-Dimethoxyphenyl)-dodec-11-en-1-ol (23)

To a cooled (0 °C) and stirred solution of the Grignard reagent prepared from **22** (9.32 g, 0.04 mol) and Mg (1.06 g, 0.04 mol) in THF (50 mL) was dropwise added 3,5-dimethoxybenzaldehyde (6.64 g, 0.04 mol) in THF (30 mL). Stirring was continued at the same temperature for 2 h and at room temperature for 12 h. It was quenched with aqueous saturated NH₄Cl, the organic layer separated and the aqueous portion extracted with ether. The organic extract was washed with water and brine and dried. Removal of solvent followed by distillation gave pure **23**. yield: 8.9 g (63%); bp: 133-135 °C/1.5 mm; IR: 3400, 3120, 1650, 1470, 995, 915 cm⁻¹; PMR: δ 1.33 (br. s, 16H), 1.9-2.5 (m, 2H), 2.84 (br. s, D₂O exchangeable, 1H), 3.8 (s, 6H), 4.16 (t, *J* = 6 Hz, 1H), 4.8-6.3 (m, 3H), 6.5-7.1 (m, 3H). Anal Calcd. for C₂₀H₃₂O₃: %C 74.96, %H 10.07; Found: %C 74.85, %H 9.90.

Molecules 1999, 4

1-(3',5'-Dimethoxyphenyl)-dodec-11-ene (24)

As described for the preparation of 19, mesylation of 23 (8.0 g, 0.025 mol) with mesyl chloride

(2.2 mL, 0.025 mol) was carried out in the presence of triethyl amine (4.2 mL, 0.025 mol) in CH₂Cl₂ (60 mL). The resultant product was directly reduced with LAH (1.9 g, 0.05 mol) in ether (75 mL). The product 24 obtained was purified by distillation. yield: 6.1 g (80%); bp: 128-130 °C/1 mm; IR: 3120, 1650, 1470, 1000, 915 cm⁻¹; PMR: δ 1.27 (br. s, 16H), 1.9-2.3 (m, 4H), 3.8 (s, 6H), 4.8-6.3 (m, 3H), 6.5 (m, 3H). Anal Calcd. for C₂₀H₃₂O₂: %C 78.89, %H 10.59; Found: %C 78.80, %H 10.45.

12-(3',5'-Dimethoxyphenyl)-dodecanal (26)

To a stirred suspension of NaBH₄ (2.3 g, 0.06 mol) in 1,2-dimethoxyethane (DME) (25 mL) was injected TiCl₄ (3.5 mL, 0.03 mol) and the mixture stirred for 1 h. To this was added the alkene 24 (6.08 g, 0.02 mol) and stirring continued for 16 h at room temperature. The excess hydride was carefully decomposed by addition of water and the mixture extracted with ether. The ether layer was washed with water and brine and dried. Removal of solvent followed by distillation gave pure 25. yield: 5.0 g (77%); bp: 144-145 ^oC/0.5 mm; IR: 3350, 3010, 1610, 1580 cm⁻¹; PMR: δ 1.27 (br. s, 20H), 2.37 (t, J = 6 Hz, 2H), 3.2 (s, D₂O exchangeable, 1H), 3.6 (t, J = 6 Hz, 2H), 3.8 (s, 6H), 6.5 (s, 3H).

To a stirred solution of 25 (4.85 g, 0.015 mol) in CH₂Cl₂ (75 mL) was added PCC (4.86 g, 0.022 mol) in one lot. After completion of the reaction (cf. TLC, 3 h), the mixture was diluted with ether (75 mL) and the supernatant passed through a 2" pad of silica gel. The eluent was concentrated in vacuo to give pure **26**. yield: 3.65 g (76%); IR: 3000, 2750, 1750, 1610 cm⁻¹; PMR: δ 1.32 (br. s, 18H), 2.3-2.7 (m, 4H), 3.8 (s, 6H), 6.33 (s, 3H), 9.85 (t, *J* = 1.5 Hz, 1H).

(5-(12'(Z)-Heptadecenyl)-resorcinol dimethylether (19)

To a stirred solution of dimsyl ion [0.012 mol, in DMSO (30 mL)] was added npentyltriphenylphosphonium bromide (5.0 g, 0.012 mol) in portions. After stirring for 1 h, the resulting red ylide was diluted with THF (40 mL), cooled to -20 °C and the aldehyde 26 (3.2 g, 0.01 mol) in THF (10 mL) added in dropwise manner. Stirring was continued for 1 h at the same temperature and at room temperature for 12 h. Water was added to the mixture, the organic layer separated and the aqueous portion extracted with ether. The organic extract was washed with water and brine, dried, concentrated and the residue purified as earlier to get pure 19. Its spectral data were identical with those of the product obtained by the other route. yield:1.8 g (48%).

References and Notes

- Lampe, K. F.; Fagerstrom, R. In *Plant Toxicity and Dermatitis*, Williams and Wilkins Co., Baltimore **1968**; b. Fisher, A. A. In *Contact Dermatitis*, 2nd Edition, Lea and Fabiger Pub., Philadelphia **1973**.
- Dawson, C. R.; Wasserman, D. J. Am. Chem. Soc. 1948, 70, 3675; Symes, W. F.; Dawson, C. R. Nature 1953, 171, 841.
- Majima, R. Chem. Ber. 1922, 55B, 172; b. Sukhtankar, S. V.; Dawson, C. R. J. Am. Chem. Soc. 1954, 76, 5070.
- 4. Bandopadhyay, C.; Gholap, A. S.; Mamdapur, V. R. J. Agric. Food. Chem. 1985, 33, 377.
- 5. Cojocaru, M.; Dorby, S.; Glotter, E.; Goldman, A.; Gottlieb, H. E.; Jacoby, B.; Prusky, D. *Phytochemistry* **1986**, *25*, 1093.
- 6. Jenner, E. F.; Meier, K. D. Angew. Chem. 1959, 71, 245.
- 7. Friary, R.; Seidl, V. J. Org. Chem. 1986, 51, 3214.
- 8. Logemann, E.; Schill, G. Bert dt. Chem. Ges. 1978, 7, 2165.
- 9. Brown, C. A.; Ahuja, V. K. J. Chem. Soc. 1973, 553.
- 10. Wiley, G. A.; Hershkowitz, R. I.; Rein, B. M.; Chung, B. C. J. Am. Chem. Soc. 1964, 86, 964.
- 11. Kano, S.; Tanaka, Y.; Hibino, S. J. Chem. Soc. Chem. Commun. 1980, 415 and ref. cited therein.
- 12. Corey, E. J.; Suggs, J. W. Tetrahedron Lett.. 1975, 2647.
- 13. Brandmsa, L. In Preparative Acetylenic Chemistry, Elsevier Publ. Co., Amsterdam 1971.
- 14. Krafft, B. Ber. 1896, 29, 2236.
- 15. Ridley, D. D.; Ritchie, E.; Taylor, W. C. Aust. J. Chem. 1968, 21, 2979.
- 16. Pattison, F. L. M.; Stothers, J. B.; Woolford, R. G. J. Am. Chem. Soc. 1956, 78, 2225.
- 17. Tomecko, C. G.; Adams, R. J. Am. Chem. Soc. 1927, 49, 522.

Samples Availability: Available from the authors.

© 1999 by the authors. Reproduction of this article, by any means, is permitted for noncommercial purposes.