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Abstract:  Cycloaddition of C,N-diphenylnitrone to .�PHWK\OHQH��-butyrolactone afforded
two diastereomeric 5-spirosubstituted isoxazolidines with high selectivity. Structural as-
signment was ascertained by NMR studies and an X-ray diffraction experiment on a single
crystal of the major isomer and the diastereoselectivity was rationalized on examination of
the alternative transition states leading to the two diastereoisomers.
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Introduction

During the last two decades the nitrone cycloaddition to alkenes has emerged as one of the most

versatile methods for the construction of complex nitrogen heterocycles by manipulation of the pri-

mary saturated isoxazole cycloadducts [1]. In this context, our research group has been active in the

synthesis of variously spiro-cyclized isoxazolidines and isoxazolines as intermediates to a series of

functionalized heterocycles, including pyridones, azepinones, indolizinones, quinolizinones, through

an original protocol involving the thermal rearrangement of the strained isoxazole derivatives [2]. The

5-spiro cycloadducts were synthesized by cycloaddition of nitrones or nitrile oxides to alkylidenecy-

clopropanes [3] or –butanes [4]. 4,5-Dispirocyclopropane and 3-spirocyclobutane isoxazole derivatives
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have also been obtained by cycloaddition of bicyclopropylidene [5] or N-methylcyclobutylideneamine

N-oxide [6], respectively.

Recently, de March, Font, and coworkers have reported the synthesis of 2-spirocyclized perhydro-

pyrrolo[1,2-b]isoxazole derivatives by cycloaddition of exo-methylenebutyrolactones to a cyclic ni-

trone, pyrroline N-oxide [7]. These data prompt us to report our own results on the cycloaddition of an

acyclic nitrone, namely C,N-diphenylnitrone, to α– and γ–methylenebutyrolactone. Our study com-

plements the Spanish group’s one, constituting the first example of cycloaddition of exo-substituted

methylene lactones to acyclic nitrones [8], the only previous example being on a cyclic one [7], in

contrast to the nitrone cycloadditions to endo-substituted unsaturated lactones, which have been stud-

ied in greater detail [7,9].

Results and Discussion

The reaction of C,N-diphenylnitrone (1) with .�PHWK\OHQH���EXW\URODFWRQH (2), carried out in re-

fluxing benzene or toluene as solvent, required 5 h and 3 h, respectively, for completion and afforded

in both cases two products, which were assigned the diastereomeric structures 3 (Scheme 1). On the

contrary, reaction of the same nitrone 1 with ��PHWK\OHQH���EXW\URODFWRQH (4) at either 110°C or 70°C

in toluene, gave only tars deriving from decomposition and polymerization of starting materials, con-

firming the already observed much lower reactivity of 4 with respect to 2 [7].

Scheme 1. Reactions of nitrone 1 with methylenebutyrolactones 2 and 4.
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column chromatography, with isolation of a pure sample of 3b for characterization and structural as-

signment purposes. Both isomers turned out to be 5-spirocyclic isoxazolidines, deriving from a com-

plete regioselectivity of the cycloaddition, as expected on the basis of previous results [7] and FMO

considerations [1a,10]. The assignment of the structures as 5-disubstituted isoxazolidines 3 was

straightforward on the basis of the lack of the deshielded protons on the 5-position of isoxazolidine and

the multiplicity of the protons of this heterocycle (AMX spin system) in the 1H NMR spectra and the

signals for C-5’ and C-4’ carbon atoms of the isoxazolidine, which appear as a quaternary carbon and a

methylene, respectively, in the 13C NMR spectra of both isomers 3. Much less obvious was the as-

signment of the relative configuration to the stereogenic centers in the two diastereoisomers 3a and 3b.

The observed high stereoselectivity is consistent with the selectivity obtained in the cycloaddition of

pyrroline N-oxide to the same lactone 2 [7]. However, the present case is complicated by the possible

E-Z equilibration of acyclic nitrones [1a,11]. C-Alkyl and C-aryl acyclic nitrones are usually assumed

to undergo cycloadditions as the most stable Z diastereoisomer [1a,11], in contrast to cyclic nitrones,

which must react in the only available E form. Indeed, the time required for E-Z interconversion is

usually long [11,12] even at high temperatures, consistently with calculated activation energies of

more than 30 kcal/mol [1d]. This case complements therefore the reported one with the cyclic nitrone

[7].

Scheme 2. Transition state trajectories for formation of the two diastereoisomers 3a and 3b.
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2.106 Å

lations of the two transition state structures have been performed [13]. The calculations gave a much

higher energy for the exo TS (Figure 1), according to our proposed model and in good qualitative

agreement with the observed diastereomeric ratio. The difference in energy must be ascribed essen-

tially to steric effects, no favorable orbital overlapping being apparent. On the basis of these consid-

erations, we speculated that the endo-C=O TS is favored and consequently we assigned the structure

3a, with the cis relationship between C=O and the hydrogen at C-3’ of the isoxazolidine ring, to the

major product of the reaction. The minor diastereoisomer would then be 3b, having the opposite rela-

tive stereochemistry at C-3’ and C-5’ of the isoxazolidine, derived from the exo-C=O TS. Thus, the

major product of the cycloaddition of lactone 2 with the acyclic nitrone 1 would possess the opposite

relative stereochemistry with respect to the cycloadduct from the same lactone with the cyclic nitrone

[7]. However, this is only a consequence of the opposite stereochemistry at the C=N double bond of

the reacting nitrone, the endo placement for C=O of the lactone being preferred in any case.

Figure 1. Calculated transition states from nitrone Z-1 (hydrogen atoms are omitted).

Figure 2. Calculated transition states from nitrone E-1 (hydrogen atoms are omitted).

2.118 Å2.039 Å

2.059 Å

exo TS

5.799

endo TS

0rel.Energy (kcal/mol)

2.032 Å

2.018 Å2.092 Å 2.093 Å

endo TS

0

exo TS

7.795rel.Energy (kcal/mol)



Molecules 2000, 5 641

However, occurrence of cycloaddition through the less stable E isomer can not be ruled out. Similar

calculations of TS from the E-nitrone showed the opposite preference for diastereoisomer 3b, the al-

ternate TS being even more differentiated in energy, still in favor of the endo approach (Figure 2).

Figure 3. NOESY correlations for the minor isomer 3b.

Figure 4. ORTEP view of the major isomer 3a.
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between the ortho hydrogens of the C-phenyl group and its C-4’ geminal SURWRQ��/ 2.97 ppm), which is
therefore cis to phenyl (Figure 3). Definite assessment of the structural assignment as in Scheme 1 de-
rived from an X-ray diffraction study performed on a single crystal of the major isomer 3a, obtained
by crystallization from methanol (Figure 4).

As far as acyclic nitrones are involved in cycloaddition reactions, an issue which is rarely taken into
account is the stereoisomerism of the reacting nitrone. At the best, the same configuration of the more
stable isomer is considered the reacting one as a preliminary unproven assumption. Comparison of the
stereoselection data from the reported cycloaddition with the calculations performed on the corre-
sponding transition states allows us to state that the reaction occurs, at least predominantly, from the
more stable Z form of the nitrone. The major isomer is formed through the exo-C=O transition state,
while the minor might derive either from the alternate endo-C=O TS or through the less stable E ni-
trone.

Conclusion

The results of cycloaddition reactions of methylenebutyrolactones with C,N-diphenylnitrone as a

model acyclic nitrone have been reported. The reaction with .�PHWK\OHQH���EXW\URODFWRQH at 80°C

showed a good 9:1 diastereoselectivity, which has been rationalized in terms of unfavorable steric ef-

fects at the transition state leading to the minor isomer, as evidenced by calculations.

Experimental

General

Methylenebutyrolactones 2 and 4 were obtained from Aldrich Chemical Company (USA) and were

used as received. C,N-Diphenylnitrone (1) was synthesized as reported by condensation of benzalde-

hyde with phenylhydroxylamine [1d].
Melting points (mp) were measured with a Büchi 510 apparatus and are uncorrected. Rf values are

referred to TLC on 0.25 mm silica gel plates (Merck F254) by eluting with the same eluent used for the

chromatographic separation of the compound. 1H NMR spectra (in CDCl3 solutions) were obtained

using a Varian VXR 300 or a Bruker DRX 500 spectrometer and were recorded at 300 MHz and 500

MHz, respectively. 13C NMR spectra (in CDCl3 solutions) were obtained using a Varian Gemini 200

NMR and were recorded at 50 MHz. NMR signal assignments of proton signals were also allowed by

bidimensional spectroscopy (COSY, NOESY) experiments. IR spectra were recorded with a Perkin

Elmer 881. Mass spectra were measured with a QMD 1000 Carlo Erba Instrument (EI, 70 eV). Ele-

mental analyses were recorded with a Perkin-Elmer 240 C instrument.

Cycloaddition of C,N-Diphenylnitrone (1) to .�0HWK\OHQH���EXW\URODFWRQH�(2) at 80°C

C,N-Diphenylnitrone (1, 394 mg, 2 mmol) was dissolved in benzene (3 mL) into a 10 mL round-
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bottomed flask and .�PHWK\OHQH���EXW\URODFWRQH� �2�� �����/� 2 mmol) was added by a syringe. The

solution was refluxed under a nitrogen atmosphere with magnetic stirring for 5 h, until the starting rea-

gents were no more detected at a TLC control (dichloromethane as eluent). On concentration under

vacuum, the resulting reaction mixture gave a yellowish solid, which was constituted by a 9:1 mixture

of the two diastereoisomers 3a and 3b, as judged by integration of isolated signals in the 1H NMR

spectrum of the crude recorded at 500 MHz.

Cycloaddition of C,N-Diphenylnitrone (1) WR�.�0HWK\OHQH���EXW\URODFWRQH (2) at 110°C

C,N-Diphenylnitrone (1, 302 mg, 1.53 mmol) was dissolved in toluene (3 mL) into a 10 mL round-

bottomed flask and .�PHWK\OHQH���EXW\URODFWRQH��2�������/� 1.53 mmol) was added by a syringe. The

solution was refluxed under a nitrogen atmosphere with magnetic stirring for 3 h. On concentration

under vacuum, the resulting reaction mixture gave a yellowish solid (403 mg, 89%), which was con-

stituted by a 4:1 mixture of the two diastereoisomers 3a and 3b (500 MHz 1H NMR). Partial dissolu-

tion of the mixture with toluene afforded a colorless precipitate, which was filtered, washed with di-

isopropylether and dried. The solid resulted the pure major isomer 3a (272 mg, 0.92 mmol, 60%) from

a 1H NMR analysis. The organic solution was concentrated to give a mixture of 3a and 3b (131 mg)

enriched in the minor isomer, which was separated by flash column chromatography, eluent

CH2Cl2/petroleum ether/n-BuOH 50:50:1. Three fractions were collected, the first containing the pure

major isomer 3a (Rf 0.18, 10 mg, 0.03 mmol, 2%), the intermediate containing a mixture of the two

diastereoisomers (70 mg, 15%), and the last one containing the pure minor isomer 3b (Rf 0.12, 39 mg,

0.13 mmol, 9%) as a colorless solid.

Data of (3S*,3’R*)-Spiro[tetrahydrofuran-2-one-3,5’-(2’,3’-diphenyl)tetrahydroisoxazole] (3a)

Mp 125-126°C (iPr2O).
1H NMR (300 MHz) δ: 7.53-7.49 (m, 2 H, C-Ph), 7.43-7.33 (m, 3 H, C-Ph), 7.24-7.18 (m, 2 H, N-

Ph), 7.03-6.95 (m, 3 H, N-Ph), 5.02 (apparent t, J = 7.5 Hz, 1 H, C3’-H), 4.48 (ddd, J = 9.1, 8.3, 6.8

Hz, 1 H, C5-H), 4.32 (ddd, J = 9.1, 8.2, 3.8 Hz, 1 H, C5-H), 3.12 (dd, J = 12.6, 7.4 Hz, 1 H, C4’-H),

2.61 (ddd, J = 13.8, 6.8, 3.8 Hz, 1 H, C4-H), 2.56 (dd, J = 12.6, 7.6 Hz, 1 H, C4’-H), 2.33 (dt, J = 13.8,

8.2 Hz, 1 H, C4-H).
13C NMR δ: 174.8 (s, C2), 150.3 (s, N-CipsoPh), 139.8 (s, C-CipsoPh), 128.8 (d, 2 C, C-Ph), 128.4 (d,

2 C, C-Ph), 127.7 (d, C-Ph), 126.6 (d, 2 C, N-Ph), 122.9 (d, N-Ph), 116.3 (d, 2 C, N-Ph), 81.2 (s, C3),

70.1 (d, C3’), 65.6 (t, C5), 46.1 (t, C4’), 34.1 (t, C4).

IR (KBr) cm-1: 3063, 2987, 1781, 1596, 1486, 1245, 1184, 1021.

MS m/z (%): 295 (M+, 25), 194 (31), 180 (47), 143 (30), 128 (38), 104 (42), 91 (100), 77 (88).

Anal. Calcd for C18H17NO3: C 73.20, H 5.80, N 4.74; found: C 73.50, H 5.75, N 4.90.
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Data of (3S*,3’S*)- Spiro[tetrahydrofuran-2-one-3,5’-(2’,3’-diphenyl)tetrahydroisoxazole] (3b)

Mp 127-128°C (iPr2O).
1H NMR (500 MHz) δ: 7.60-7.56 (m, 2 H, C-Ph), 7.42-7.37 (m, 2 H, C-Ph), 7.36-7.31 (m, 1 H, C-

Ph), 7.22-7.16 (m, 2 H, N-Ph), 7.01-6.94 (m, 3 H, N-Ph), 4.56 (dd, J = 9.1, 7.8 Hz, 1 H, C3’-H), 4.51

(ddd, J = 9.1, 7.5, 7.0 Hz, 1 H, C5-H), 4.36 (ddd, J = 9.1, 7.8, 4.5 Hz, 1 H, C5-H), 2.97 (dd, J = 12.6,

9.1 Hz, 1 H, C4’-H), 2.86 (dd, J = 12.6, 7.8 Hz, 1 H, C4’-H), 2.61 (ddd, J = 13.6, 6.9, 4.5 Hz, 1 H, C4-

H), 2.40 (dt, J = 13.6, 7.7 Hz, 1 H, C4-H).
13C NMR δ: 174.3 (s, C2), 149.8 (s, N-CipsoPh), 139.3 (s, C-CipsoPh), 128.9 (d, 2 C, C-Ph), 128.5 (d,

2 C, C-Ph), 128.0 (d, C-Ph), 127.3 (d, 2 C, N-Ph), 123.0 (d, N-Ph), 116.7 (d, 2 C, N-Ph), 80.6 (s, C3),

69.9 (d, C3’), 65.3 (t, C5), 47.0 (t, C4’), 34.6 (t, C4).

IR (KBr) cm-1: 3063, 2916, 1774, 1597, 1486, 1242, 1187, 1014.

MS m/z (%): 295 (M+, 16), 194 (29), 180 (41), 143 (29), 128 (40), 104 (38), 91 (75), 77 (100).

Anal. Calcd for C18H17NO3: C 73.20, H 5.80, N 4.74; found: C 73.17, H 5.90, N 4.69.

X-Ray Structural Analysis of (3S*,3’R*)-Spiro[tetrahydrofuran-2-one-3,5’-(2’,3’-diphenyl)tetrahydro-

isoxazole] (3a)

C18H17NO3, M=295.33, triclinic, space group P-1, a=8.847(5) Å, b=9.024(5) Å, c=10.713(5) Å,

α=109.670(5)°, β=92.780(5)°, γ=108.370(5)°, V=752.8(7) Å3, Z=2 Dc=1.303, µ=0.721 mm-1,

F(000)=312.

Analysis on prismatic colorless single crystal was carried out with a Siemens P4 X-ray diffracto-

meter at room temperature. Graphite-monochromated Cu Kα radiation was used for cell parameter

determination and data collection. The intensities of two standard reflections were monitored during

data collection to check the stability of the crystal: no loss of intensity was recognized. The integrated

intensities, measured using the θ/2θ scan mode, were corrected for Lorentz and polarization effects

[14]. The reflections collected were 2605 with a 4.45<θ< 59.97 range; 2147 were indipendent and the

final R index was 0.0414 for reflections having I>2σI, and 0.0435 for all data. The non-hydrogen at-

oms were refined anisotropically; aromatic hydrogens were assigned in calculated positions and the

others were found in the Fourier difference synthesis; all of them were refined as isotropic. This struc-

ture was solved by direct methods of SIR92 [15] and refined using the full-matrix least squares on F2

provided by SHELXL97 [16]. Crystallographic data for the structure reported in this paper have been

deposited at the Cambridge Crystallographic Data Centre and allocated with the deposition number

CCDC-140748. The found values for bond lengths and bond angles of 3a are reported in Tables 1 and

2, respectively.
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Table 1. Bond lengths [Å] for 3a.

O(1)-C(1) 1.435(2) C(3)-H(3A) 0.99(3) C(8)-C(9) 1.388(3) C(14)-C(15) 1.384(2)
O(1)-N(1) 1.464(2) C(3)-H(3B) 1.02(3) C(8)-H(8) 0.93 C(14)-H(14) 0.93
O(2)-C(2) 1.194(2) C(4)-H(4A) 0.97(2) C(9)-C(10) 1.370(4) C(15)-C(16) 1.379(3)
O(3)-C(2) 1.335(2) C(4)-H(4B) 0.97(2) C(9)-H(9) 0.93 C(15)-H(15) 0.93
O(3)-C(3) 1.462(3) C(5)-C(6) 1.544(2) C(10)-C(11) 1.377(4) C(16)-C(17) 1.376(3)
N(1)-C(13) 1.420(2) C(5)-H(5A) 0.96(2) C(10)-H(10) 0.93 C(16)-H(16) 0.93
N(1)-C(6) 1.489(2) C(5)-H(5B) 0.95(2) C(11)-C(12) 1.385(3) C(17)-C(18) 1.385(3)
C(1)-C(5) 1.513(2) C(6)-C(7) 1.518(2) C(11)-H(11) 0.93 C(17)-H(17) 0.93
C(1)-C(4) 1.513(2) C(6)-H(6) 0.94(2) C(12)-H(12) 0.93 C(18)-H(18) 0.93
C(1)-C(2) 1.535(2) C(7)-C(8) 1.383(2) C(13)-C(18) 1.391(2)
C(3)-C(4) 1.509(3) C(7)-C(12) 1.384(3) C(13)-C(14) 1.392(2)

Table 2. Angles [deg] for 3a.

C(1)-O(1)-N(1) 102.12(10) H(4A)-C(4)-H(4B) 110(2) C(10)-C(11)-C(12) 120.2(2)
C(2)-O(3)-C(3) 110.83(14) C(1)-C(5)-C(6) 104.52(14) C(10)-C(11)-H(11) 119.88(13)
C(13)-N(1)-O(1) 108.46(11) C(1)-C(5)-H(5A) 112.4(13) C(12)-C(11)-H(11) 119.88(14)
C(13)-N(1)-C(6) 118.77(12) C(6)-C(5)-H(5A) 113.0(12) C(7)-C(12)-C(11) 120.4(2)
O(1)-N(1)-C(6) 105.18(11) C(1)-C(5)-H(5B) 109.6(12) C(7)-C(12)-H(12) 119.78(11)
O(1)-C(1)-C(5) 103.40(13) C(6)-C(5)-H(5B) 108.3(13) C(11)-C(12)-H(12) 119.78(14)
O(1)-C(1)-C(4) 111.98(14) H(5A)-C(5)-H(5B) 109(2) C(18)-C(13)-C(14) 119.1(2)
C(5)-C(1)-C(4) 118.1(2) N(1)-C(6)-C(7) 110.89(13) C(18)-C(13)-N(1) 120.5(2)
O(1)-C(1)-C(2) 104.04(12) N(1)-C(6)-C(5) 102.86(13) C(14)-C(13)-N(1) 120.12(14)
C(5)-C(1)-C(2) 115.82(14) C(7)-C(6)-C(5) 114.07(14) C(15)-C(14)-C(13) 119.9(2)
C(4)-C(1)-C(2) 102.92(13) N(1)-C(6)-H(6) 111.0(11) C(15)-C(14)-H(14) 120.03(12)
O(2)-C(2)-O(3) 122.1(2) C(7)-C(6)-H(6) 108.7(11) C(13)-C(14)-H(14) 120.03(9)
O(2)-C(2)-C(1) 127.6(2) C(5)-C(6)-H(6) 109.3(11) C(16)-C(15)-C(14) 120.8(2)
O(3)-C(2)-C(1) 110.3(2) C(8)-C(7)-C(12) 118.9(2) C(16)-C(15)-H(15) 119.58(12)
O(3)-C(3)-C(4) 105.7(2) C(8)-C(7)-C(6) 118.9(2) C(14)-C(15)-H(15) 119.58(11)
O(3)-C(3)-H(3A) 105.8(14) C(12)-C(7)-C(6) 122.1(2) C(17)-C(16)-C(15) 119.3(2)
C(4)-C(3)-H(3A) 115.1(14) C(7)-C(8)-C(9) 120.4(2) C(17)-C(16)-H(16) 120.34(11)
O(3)-C(3)-H(3B) 104(2) C(7)-C(8)-H(8) 119.82(11) C(15)-C(16)-H(16) 120.34(12)
C(4)-C(3)-H(3B) 111.5(14) C(9)-C(8)-H(8) 119.8(2) C(16)-C(17)-C(18) 120.7(2)
H(3A)-C(3)-H(3B) 113(2) C(10)-C(9)-C(8) 120.3(2) C(16)-C(17)-H(17) 119.64(11)
C(3)-C(4)-C(1) 104.4(2) C(10)-C(9)-H(9) 119.84(13) C(18)-C(17)-H(17) 119.64(12)
C(3)-C(4)-H(4A) 111.6(12) C(8)-C(9)-H(9) 119.84(14) C(17)-C(18)-C(13) 120.1(2)
C(1)-C(4)-H(4A) 109.2(12) C(9)-C(10)-C(11) 119.7(2) C(17)-C(18)-H(18) 119.95(12)
C(3)-C(4)-H(4B) 112.6(13) C(9)-C(10)-H(10) 120.13(13) C(13)-C(18)-H(18) 119.95(10)
C(1)-C(4)-H(4B) 109.1(12) C(11)-C(10)-H(10) 120.13(13)
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