A Facile Method for the Synthesis of
 6-Aryl-1-(3-Chloropropanoyl)-4-[(E)-1-(2-Furyl)Methylidene)]-1,2,3,4-Tetrahydro-3-Pyridazinones and 2-(2-Chloroethyl)-5[α-Aracyl- β-(2-Furyl)]-(E)-Vinyl-1,3,4-Oxadiazoles

Abdel-Sattar S. Hamad* and Ahmed I. Hashem
Department of Chemistry, Faculty of Science, University of Ain Shams, Abbassia 11566, Cairo, Egypt
Tel.: +20 (2) 4831836, Fax: +20 (2) 4831836, E-mail: hamad@ asunet.shams.eun.eg

Received: 19 January 2000; revised form: 5 June 2000/Accepted: 22 June 2000/Published: 27 June 2000

Abstract

The 6-aryl-1-(3-chloropropanoyl)-4-[(E)-1-(2-furyl)methylidene)]-1,2,3,4-tetra-hydro-3-pyridazinones ($\mathbf{6 a - d}$) were synthesized by the reaction of acid chloride $\mathbf{3}$ with α -$\operatorname{aracyl}(\beta-2$-furyl)acrylic acid hydrazides (2a-d) in a high yield, one pot reaction. On the other hand, 2-(2-chloroethyl)-5-[α-aracyl- β-(2-furyl)]-(E)-vinyl-1,3,4-oxadiazoles (7a-d) were also prepared by cyclodehydration of $N^{1}\left[\alpha\right.$-aracyl- β-(2-furyl)acroyl- $N^{2}[3$-chloro-propanoyl] hydrazine derivatives ($\mathbf{4 a - d}$). The proposed structures of the products were confirmed by elemental analysis, spectral data and chemical evidence.

Keywords: 2(3H)-Furanone, 3-Oxopyridazines, dihydropyridazines, 1,3,4-Oxadiazoles.

Introduction

We have previously reported [1,2] a synthetic approach to 5-aryl-3-furfurylidene-2-(3H)-furanones (1) via the condensation reactions of furan-2-carboxaldehyde with 3-aroylpropionic acids under Perkin conditions, which yield the corresponding E-lactones as the only product, with no detectable amount of the Z-isomers being identified by TLC and ${ }^{1}$ H NMR [3]. This result was consistent with the reports of Awad et al. [5] and others' [6,7] concerning the condensation reaction of 5-methyl-furan-2-carboxaldehyde and/or 5-methyl thiophene-2-carboxaldehyde with 3-aroylpropionic acids under Perkin condi-
© 2000 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
tions. The conversion of these $2(3 \mathrm{H})$ furanones into benzofuran derivatives [1] and 5-oxo-2-pyrrolines [4] have also been described by one of us.

Dihydropyridazinone rings are of chemical and biological interest, having been reported as having antihypertensive activity [8]. In addition, Nannini et al. [9] has established that the pyridazinones display analgesic and anti-inflammatory activities. On the other hand, 1,3,4-oxadiazoles and N^{2} (acyl)-benzoic hydrazides are reported to exhibit carcinostatic activity against several types of tumors [10] and antimicrobial effects against Mycobacterium tuberculosis and Mycobacterium lapreae [11]. The amino-3substituted propyl functionality is found in many compounds having vasodilator, antispasmodic, blood platelet aggregation inhibition [12], antiarrhythmic [13] and anticholesterolesmic [14] activities.

This reported biological importance of $2(3 \mathrm{H})$-furanones, 4,5-dihydropyridazinones and 1,3,4oxadiazoles prompted us to attempt the conversion of $2(3 \mathrm{H})$-furanones (1a-d) into heterocyclic systems of potential synthetic and biological importance, for example, the acrylic acid hydrazides (2a-d), 3pyridazinones ($\mathbf{6 a - d}$), $N^{1}\left[\alpha\right.$-aracyl- β-(2-furyl)acroyl- $N^{2}[3$-chloro propanoyl]hydrazine (4a-d) and 1,3,4oxadiazole derivatives (7a-d), dihydropyridazinones (8a-d).

Results and Discussion

We report here a simple method for the synthesis of 6-aryl-1-(3-chloropropanoyl)-4-[(E)-1-(2-furyl)methylidene)]-1,2,3,4-tetrahydro-3-pyridazinones (6a-d) and 2-(2-chloroethyl)-5-[α-aracyl- β-(2-furyl)]-(E)-vinyl-1,3,4-oxadiazoles (7a-d) in good yields via the interaction of hydrazides (2a-d) with acid chloride (3) and POCl_{3} in a one pot reaction.

In this investigation, hydrazides ($\mathbf{2 a}-\mathbf{d}$) proved to be useful precursors in the synthesis of several heterocyclic systems. When the $2(3 H)$ furanones (1a-d) were allowed to react with hydrazine hydrate in ethanol, ring opening occurs with the formation of the E-isomers of α-aracyl- β-(2 -furyl)acrylic acid hydrazides ($\mathbf{2 a - d}$) as the only products. There was no detectable amount of the corresponding Z isomers according to ${ }^{1} \mathrm{H}$ NMR [3]. The configurational structures of the $2(3 \mathrm{H}$)-furanones (1a-d) as E isomers were confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, as illustrated in Tables 2 and 4 . The infrared spectra of these products (2a-d) (cf. Table 1) show an absorption band at 3199.7-3104.2-3331 cm^{-1} (broad band) characteristic of the NH group, and bands at $1648-55 \mathrm{~cm}^{-1}$ and $1668-97 \mathrm{~cm}^{-1}$ for $\mathrm{vC=O}$, characteristic of the amide carbonyl and ketone groups, respectively. On heating the hydrazides ($\mathbf{2 a}-\mathbf{d}$) in 1.0 N HCl for $30-60 \mathrm{~min}$, ring closure occurs, leading to the formation of the corresponding $3(2 \mathrm{H})$-pyridazinones, namely the 6-aryl-4-furylmethyl-3(2H)-pyridazinones (8a-d). The infrared spectra of compounds (8a-d) (cf. Table 1) show a broad absorption band at $3150-3300 \mathrm{~cm}^{-1}$ characteristic of the NH group and an absorption band at $1654-60 \mathrm{~cm}^{-1}$ for $\mathrm{vC=O}$, characteristic of the amide carbonyl group. The infrared spectra of these compounds are similar to those reported for other pyridazinone derivatives [15-18].

The ${ }^{1} \mathrm{H}$ NMR spectra of compounds (2a-d) exhibit singlet signals at 4.41 for $\left(\mathrm{CH}_{2} \mathrm{COAr}\right)$, a singlet at $\delta 6.67$ for olefinic protons, triplet signals at $\delta 7.07$ for $\left(-\mathrm{NH}-\mathrm{NH}_{2}\right)$ and two signals dd for $\left(-\mathrm{NH}^{2}-\mathrm{NH}_{2}\right)$ due to the strong electrical quadrupole moment effect [19]. In compounds (8a-d) the $\mathbf{C H}_{2}$ adjacent to
the furan ring exhibited a singlet at $\delta 3.92$, the olefinic proton of the unsaturated double bond showed a doublet signal at $\delta 7.56$ and the (-NH-) group a singlet at $\delta 13.23 \mathrm{ppm}$.

The interaction of α-aracyl- β-(2-furyl)acrylic acid hydrazides (2a-d) with 3-chloropropanoyl chloride (3) was studied also under different conditions at $0-15^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$. When the reaction took place at 0 $15^{\circ} \mathrm{C}$ over $4-5 \mathrm{~h}$, it gave a 85% yield of N^{l} [α-aracyl- β-(2-furyl)acroyl- $N^{2}[3$-chloropropanoyl]-hydrazine compounds ($4 \mathbf{a}-\mathbf{d}$), but when the reaction took place at $80^{\circ} \mathrm{C}$ over $30-60 \mathrm{~min}, \mathrm{HCl}$ was liberated to give an $80-92 \%$ yield of 6-aryl-1-(3-chloropropanoyl)-4-[(E)-1-(2-furyl)methylidene)]-1,2,3,4-tetrahydro-3pyridazinones (6a-d) as illustrated in Scheme 1.

Scheme 1.

In a parallel experiment using benzene solvent in the presence of acid catalyst $(1.0 \mathrm{~N} \mathrm{HCl})$ at $80^{\circ} \mathrm{C}$ the hydrazine compounds ($\mathbf{4 a - d}$) cyclised and only formation of products ($\mathbf{6 a - d}$) was noted, as evidenced by TLC after 1 h . We believe the liberation of HCl aided the ring closure of the hydrazine derivatives compounds ($\mathbf{4} \mathbf{a}-\mathbf{d}$) under the reaction conditions at $80^{\circ} \mathrm{C}$ to provide compounds ($\mathbf{6 a - d}$). These
compounds were shown by direct comparison (m.p and mixed m.p) and also by TLC to be identical in all aspects with the authentic products obtained by the action of 1.0 N HCl in benzene solvent with $N^{l}\left[\alpha\right.$-aracyl- β-(2-furyl)acroyl- $N^{2}[3$-chloropropionyl]hydrazine compounds (4a-d). Acid catalysis proved to be essential and reaction was essentially complete after $30-60 \mathrm{~min}$ at $80^{\circ} \mathrm{C}$ (ca. 92% yield). The ${ }^{1} \mathrm{H}$ NMR spectra of ($\mathbf{4 a - d}$) exhibited singlet signals for the CH_{2} protons at $\delta 4.41 \mathrm{ppm}$ and also show two doublet signals at 9.8 and 10.11 ppm for the hydrazine ($-\mathrm{NH}-\mathrm{NH}-$) group.

The alternative mode of ring closure of $N^{l}\left[\alpha\right.$-aracyl- β-(2-furyl)acroyl- $N^{2}[3$-chloropropionyl]hydrazine compounds ($\mathbf{4} \mathbf{a}-\mathbf{d}$), that is attack by the N^{l}, would lead to the formation of the corresponding N -(3-chloropropionyl)aminopyrrolines (5a-d) as intermediates. But these N-aminopyrrolines (5) are not formed, and the pyridazinones ($\mathbf{6 a - d}$) are the only isolable products obtained from this reaction. We believe that the N-aminopyrrolines (5a-d) are unstable under the acid catalyzed reaction conditions and if formed, they might undergo ring expansion [1b] yielding the corresponding $3(2 H)$ pyridazinones ($\mathbf{6 a - d}$). This behavior is in accordance with the reported rearrangements of N-aminophthalimides in acid medium to the corresponding phthalaza-1,4-diones [15]. The structure of compounds (6a-d) was confirmed by ${ }^{1} \mathrm{H}$ NMR (300 MHz), microanalysis and infrared spectral data. The IR spectra show an absorption band for the $\mathrm{vC}=\mathrm{O}$ stretching vibrations of cyclic carboxamides at $1666-1678 \mathrm{~cm}^{-1}$, characteristic of the $3(2 H)$ pyridazinone ring, and in the $1725-1733 \mathrm{~cm}^{-1}$ region for the $\mathrm{C}=\mathrm{O}$ of the open alkylcarboximide, as well as a broad band at $3227-3337 \mathrm{~cm}^{-1}$ characteristic of the NH group. The spectra of compounds (6a-d) (cf, Table 1) are similar to those of 1-benzoyl-6-aryl-4-thienylidene-1,6-dihydropyridazin-3-(2H)ones [20]. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data showed evidence for the formation of a bicyclic structure as shown in Tables 2 and 3. In compounds ($6 \mathbf{a}-\mathbf{d}$), as expected, the two olefins ($=\mathrm{C}$ H) have different chemical shifts both in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. These highly conjugated structures show a typical two singlet signal for the $\mathrm{C}-\mathrm{H}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum at δ 6.6-6.7 and 7.08-7.13 for $\mathrm{CH}=\mathrm{C}-\mathrm{Ar}$ and Fur- $\mathrm{CH}=\mathrm{C}-$ respectively, because in the case of Fur- $\mathrm{CH}=\mathrm{C}$ - there is a long range coupling with the furan- H and this evidence can be obtained from the coupling constants between $\mathrm{H}(7)$ and furan- $\mathrm{H}(9)$ as illustrated in Table 2. Further evidence to support our assignments was obtained from the ${ }^{13} \mathrm{C}$ NMR spectrum of compound ($\mathbf{6 b}$) that showed the carbons of the highly conjugated system at $\mathrm{C}(5)$ and $\mathrm{C}(7)$ to be at $\delta 118.7$ and 126.25 respectively as shown in Table 3. It is clear also from the ${ }^{1} \mathrm{H}$ NMR spectrum of the compounds ($\mathbf{6 a - d}$) that in the $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CO}$ - system, the CH_{2} adjacent to the carbonyl appears as a triplet at $\delta 3.722 \mathrm{ppm}$ and the other CH_{2} adjacent to the chlorine nuclei are completely decoupled from directly attached protons, and appear as two triplet signals at 2.54-2.77 ppm, due to the strong electrical quadrupole moment effect [19].

Figure 1. MM2 Calculations for compound $\mathbf{6 b}$.

Steric Energy

Stretch:
Bend:
Stretch-Bend: -0.7962
Torsion: -3.2895
Non-1,4 VDW: 37.3133
1,4 VDW:
10.1824

Dipole/Dipole: -3.8562

Minimize Energy

Stretch:	0.7590
Bend:	15.6902
Stretch-Bend:	0.0215
Torsion:	-6.0891
Non-1,4 VDW:	-5.2474
1,4 VDW:	9.1168
Dipole/Dipole:	-5.3897

Total of the minimum energy for the structure
(6b): $8.8612 \mathrm{kcal} / \mathrm{mol}$

Another piece of evidence to support our assignment the structure of compound ($\mathbf{6 b}$) was obtained through MM2 calculations for the minimum and total steric energy, as illustrated in Figure 1. It is important to point out that we have examined steric energies from $68.479 \mathrm{kcal} / \mathrm{mole}$ to the lowest energy structure at $8 . .86 \mathrm{kcal} / \mathrm{mole}$ over 392 iterations. Minimization terminated normally because the gradient norm was less than the minimum gradient norm.

The interaction of hydrazides (2a-d) with POCl_{3} provided 2-(β-chloroethyl)-5-[α-aracyl- β-(2-furyl)](E)-vinyl-1,3,4-oxadiazoles (7a-d) as the only products in $75-83 \%$ yield.. The infrared spectra (IR) of these products (cf. Table 1) show an absorption band at $1695-1698 \mathrm{~cm}^{-1}$ for $v \mathrm{C}=\mathrm{O}$, characteristic of the ketone carbonyl group, and $1578-1617 \mathrm{~cm}^{-1}$ for $v \mathrm{C}=\mathrm{N}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of compounds ($7 \mathbf{a}-\mathbf{d}$) exhibit singlet signals at $\delta 4.37$ for $\left(\mathrm{CH}_{2} \mathrm{COAr}\right)$ and a singlet signal at $\delta 6.65$ for the olefinic proton and the disappearance the signals of the hydrazo group as illustrated in Table 2.

Table 1. Infrared (IR) and ${ }^{1} \mathrm{H}$ NMR (300 MHz) spectral data for compounds 1a-8d.

$\begin{aligned} & \text { Cpd } \\ & \text { No } \end{aligned}$	Aryl group	$\frac{\text { Infrared bands (IR)v }}{\text { max }} \underset{\underline{(\text { Nujol }) / \mathrm{cm}^{-1}}}{ }$		${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}$); $\delta \mathbf{H}\left[{ }^{\mathbf{2}} \mathbf{H}_{6}\right]$ DMSO
		${ }^{v} \mathrm{C}=0$	$N \quad v_{-N H}$	
1a	$\mathrm{C}_{6} \mathrm{H}_{5}$	1754.0		$\begin{aligned} & \delta=6.78(\mathrm{dd}, 1 \mathrm{H}, \mathrm{~J}=1.8,3.6 \mathrm{~Hz}, \text { furan-H4), } 7.20(\mathrm{~s}, 1 \mathrm{H},- \\ & \mathrm{CH}=\mathrm{C}-\mathrm{Ar}), 7.25(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=3.3 \mathrm{~Hz}, \text { furan-H3), } 7.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}= \\ & 0.6 \mathrm{~Hz}, \text { fur-C=CH-), } 7.48-7.50(\mathrm{~m}, 3 \mathrm{H}, \text { Ph-H}), 7.80-7.84(\mathrm{dd}, 2 \mathrm{H}, \\ & \mathrm{J}=2.1,7.8 \mathrm{~Hz}, \text { Ph-Ho }), 8.04(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, \text { furan-H5) ppm. } \end{aligned}$
1b	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}$	1783.1		$\delta=2.32(\mathrm{~s}, 3 \mathrm{H}, \operatorname{Ar}-\mathrm{Me}), 6.72(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=1.8,3.6 \mathrm{~Hz}$, furan-H4), $7.08(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}=\mathrm{C}-\mathrm{Ar}), 7.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3 \mathrm{~Hz}$, furan-H3), 7.22 (d, $2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}$), 7.27 (s, 1 H , fur-C=CH-), 7.48 (d, 2 H , $\mathrm{J}=8.7 \mathrm{~Hz}$, Ar-H), $7.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}$, furan-H5) ppm.
1c	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}$	1786.0		$\delta=3.82(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{OMe}), 6.76(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=1.8,3.6 \mathrm{~Hz}$, furan$\mathrm{H} 4), 7.07$ (d, 2H, J = $9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 7.11 ($\mathrm{s}, 1 \mathrm{H},-\mathrm{CH}=\mathrm{C}-\mathrm{Ar}$), 7.20 (d, $1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}$, furan-H3), $7.25(\mathrm{~s}, 1 \mathrm{H}$, fur-C=CH-$), 7.78$ (d, $2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}$, furan-H5) ppm.
1d	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	1752.0		$\begin{aligned} & \delta=6.66(\mathrm{dd}, 1 \mathrm{H}, \mathrm{~J}=1.8,3.6 \mathrm{~Hz}, \text { furan-H4), } 6.73(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=1.2 \\ & \mathrm{Hz},-\mathrm{CH}=\mathrm{C}-\text { fur }), 6.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=3.6 \mathrm{~Hz}, \text { furan-H3), } 7.13(\mathrm{~s}, 1 \mathrm{H}, \\ & \mathrm{CH}=\mathrm{C}-\mathrm{Ar}), 7.46(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=9 \mathrm{~Hz}, \text { Ar-H), } 7.57(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=8.7 \\ & \mathrm{Hz}, \mathrm{Ar}-\mathrm{H}), 7.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=2.1 \mathrm{~Hz} \text {, furan-H5) ppm. } \end{aligned}$
2a	$\mathrm{C}_{6} \mathrm{H}_{5}$	1655-1697	3199.7-3331	$\delta=3.01-3.08\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=2.4,2.7 \mathrm{~Hz},-\mathrm{NHNHa}_{2}\right), 3.17-3.24(\mathrm{dd}$, $\left.2 \mathrm{H}, \mathrm{J}=2.4,2.7 \mathrm{~Hz},-\mathrm{NHNHb}_{2}\right), 4.41\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{COPh}\right), 6.57$ (dd, $1 \mathrm{H}, \mathrm{J}=1.8,3.3 \mathrm{~Hz}$, furan-H4), $6.67(\mathrm{~s}, 1 \mathrm{H}$, fur- $\mathrm{CH}=\mathrm{C}-$), $6.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}$, furan-H3), $7.07(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz},-\mathrm{CO}-$ NHNH_{2}), 7.27-7.29 (m, 3H, Ph-H), 7.35 (d, 2H, J $=4.5 \mathrm{~Hz}, \mathrm{Ph}-$ Ho), 7.76 (d, J = 1.8 Hz , furan-H5) ppm.
2b	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}$	1648-1687	3104.3-3325	$\delta=2.32(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{Me}), 3.015-3.085(\mathrm{dd}, 2 \mathrm{H}, \mathrm{~J}=2.4,2.7 \mathrm{~Hz},-$ NHNHa_{2}), $3.17-3.24\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=2.4,2.7 \mathrm{~Hz},-\mathrm{NHNHb}_{2}\right), 4.38$ (s, 2H, -CH2COAr), 6.57 (dd, $1 \mathrm{H}, \mathrm{J}=1.8,3.3 \mathrm{~Hz}$, furan-H4), 6.67 (s, 1H, Fur-CH=C-), 6.74 (d, $1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}$, furan-H3), $7.07\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz},-\mathrm{CO}-\mathrm{NHNH}_{2}\right), 7.22(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}$, Ar-H), 7.35 (d, 2H, J $=8.7 \mathrm{~Hz}, \operatorname{Ar-H}$), 7.78 (d, J $=1.8 \mathrm{~Hz}$, furanH5) ppm .
2 c	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}$	1648-1672	3242.3-3324	$\delta=3.82$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{OMe}$), $3.10(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=2.4,2.7 \mathrm{~Hz}$, NHNHa_{2}), 3.22 (dd, $2 \mathrm{H}, \mathrm{J}=2.4,2.7 \mathrm{~Hz},-\mathrm{NHNHb}_{2}$), $4.32(\mathrm{~s}, 2 \mathrm{H}$, $\left.-\mathrm{CH}_{2}-\mathrm{COAr}\right), 6.57(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.8,3.3 \mathrm{~Hz}$, furan- H 4$), 6.7(\mathrm{~s}$, 1 H , fur- $\mathrm{CH}=\mathrm{C}-$), $6.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}$, furan-H3), $7.1(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}$ $\left.=2.4 \mathrm{~Hz},-\mathrm{CO}-\mathrm{NHNH}_{2}\right), 7.22(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.30(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}$, Ar-H), 8.0 (d, J = 1.8 Hz , furan-H5) ppm.
2d	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	1652-1668	3235.6-3317	$\delta=3.01-3.08\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=2.4,2.7 \mathrm{~Hz},-\mathrm{NHNHa}_{2}\right), 3.17-3.24(\mathrm{dd}$, $\left.2 \mathrm{H}, \mathrm{J}=2.4,2.7 \mathrm{~Hz},-\mathrm{NHNHb}_{2}\right), 4.48$ ($\left.\mathrm{s}, 2 \mathrm{H},-\mathrm{CH} 2-\mathrm{COAr}\right), 6.57$ (dd, $1 \mathrm{H}, \mathrm{J}=1.8,3.3 \mathrm{~Hz}$, furan-H4), $6.67(\mathrm{~s}, 1 \mathrm{H}$, fur- $\mathrm{CH}=\mathrm{C}-$), $7.07\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz},-\mathrm{CO}-\mathrm{NH}_{2} \mathrm{H}_{2}\right), 7.38(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}$, Ar-H), 7.48 (d, 2H, J = 8.7 Hz, Ar-H), 7.74 (d, 1H, J $=3.3 \mathrm{~Hz}$, furan-H3), $7.76(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}$, furan-H5) ppm .

Continuation of the Table 1.

$\begin{gathered} \text { Cpd } \\ \text { No } \end{gathered}$	Aryl group	Infrared bands (IR) $\mathbf{v}_{\text {max }}$ (Nujol)/ cm^{-1}		${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO); $\mathbf{\delta H}\left[{ }^{2} \mathbf{H}_{6}\right]$ DMSO
		$v^{\text {c }}=0 \mathrm{O} \quad \mathrm{v}_{-} \mathrm{C}=\mathrm{N}$	$v_{-N H}$	
4a	$\mathrm{C}_{6} \mathrm{H}_{5}$	1633-1705	3100-3287	$\delta=2.57-2.67$ (pentet, $1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{ClCHa}_{2} \mathrm{CH}_{2} \mathrm{CO}-$) 2.69-2.78 (pentet, $1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{ClCHb}_{2} \mathrm{CH}_{2} \mathrm{CO}-$), $3.71(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}$, $\left.\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CO}-\right), 3.84(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH} 2 \mathrm{CO} \mathrm{Ph}), 6.64(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.8$, 3.6 Hz , furan-H4), $6.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=0.9 \mathrm{~Hz}$, fur-CH=C-), $6.96(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}$, furan-H3), 7.44-7.61 (m, 5H, Ph-H), $7.76(\mathrm{~d}, \mathrm{~J}=$ 1.5 Hz , furan-H5), $9.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz},-\mathrm{CONHNHCO}-), 10.18$ (d, 1H, J = 3.9 Hz,-CONHNH CO-), ppm.
4b	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}$	1628-1672	3140-3250	$\delta=2.32$ (s, 3H, Ar-Me), $\delta=2.48-2.64$ (pentet, $1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}$, ClCHa2CH2CO-), 2.68-2.77 (pentet, $1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{ClCHb}_{2} \mathrm{CH}_{2} \mathrm{CO}-$), 3.72 (t, $2 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CO}-$), 3.84 ($\mathrm{s}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{COAr}$), 6.72 (dd, 1H, J = 1.8, 3.6 Hz, furan-H4), 7.1 (s, 1H, Fur-CH=C-), $7.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3 \mathrm{~Hz}$, furan-H3), $7.22(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H})$, $7.51(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}$, Ar-H), $7.98(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}$, furan-H5), 9.41 (d, 1H, J = 3.3 Hz,-CONHNH CO-), 10.68 (d, 1H, J $=3.9 \mathrm{~Hz}$,-CONHNHCO-), ppm.
4 c	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}$	1633-1688	3150-3245	$\delta=3.81$ (s, 3H, Ar-Me), 2.48-2.64 (pentet, $1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}$, $\mathrm{ClCHa}_{2} \mathrm{CH}_{2} \mathrm{CO}-$), 2.68-2.77 (pentet, $1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{ClCHb}_{2} \mathrm{CH}_{2} \mathrm{CO}-$), 3.72 (t, $2 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CO}-$), 3.85 ($\mathrm{s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{COAr}\right), 6.72(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.8,3.6 \mathrm{~Hz}$, furan-H4), $7.1(\mathrm{~s}, 1 \mathrm{H}$, Fur-CH=C-) 7.17 (d, 1H, J = 3 Hz, furan-H3), 7.22 (d, 2H, J = 8.7 $\mathrm{Hz}, \mathrm{Ar}-\mathrm{H}), 7.51(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.98$ (d, J = 1.8 Hz , fu-ran-H5), 9.45 (d, 1H, J = 3.3 Hz, -CONHNHCO-), 10.61 (d, 1H, J $=3.9 \mathrm{~Hz}$,-CONHNHCO-), ppm.
4d	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	1600-1708 31	3150-3333	$\delta=2.66$ (pentet, $1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{ClCHa}_{2} \mathrm{CH}_{2} \mathrm{CO}-$), 2.71 (pentet, $\left.1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{ClCHb}_{2} \mathrm{CH}_{2} \mathrm{CO}-\right), 3.72(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}$, $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CO}-$), 3.85 ($\left.\mathrm{s}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{COAr}\right), 6.65(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.8$, 3.6 Hz , furan-H4), $6.99(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3 \mathrm{~Hz}$, furan-H3), $7.13(\mathrm{~s}, 1 \mathrm{H}$, fur-CH=C-), $7.48(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.58(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}$, Ar-H), 7.77 (d, J = 2.1 Hz , furan-H5), $9.41(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz},-$ CONHNHCO-), 10.68 (d, 1H, J = $3.9 \mathrm{~Hz},-$ CONHNH CO-), ppm.
6a	$\mathrm{C}_{6} \mathrm{H}_{5}$	1666-1715 3	3227-3337	$\delta=2.57-2.67$ (pentet, $1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{ClCHa}_{2} \mathrm{CH}_{2} \mathrm{CO}-$) 2.69-2.78 (pentet, $1 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{ClCHb}_{2} \mathrm{CH}_{2} \mathrm{CO}-$), $3.71(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}$, $\left.\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CO}-\right), 6.65(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.8,3.6 \mathrm{~Hz}$, furan-H4), $6.7(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=0.9 \mathrm{~Hz},-\mathrm{CH}=\mathrm{C}-\mathrm{Ar}), 6.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}$, furan-H3), 7.1 (s, 1H, Fur-CH=C-), 7.44-7.61 (m, 5H, Ph-H), $7.76(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}$, furan-H5), 8.76 (s, 1H, -CONH-) ppm.
6b	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}$	1672-1728.3	3287.8	$\delta=2.32$ (s, 3H, Ar-Me), 2.62 (pentet, $1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}$, $\mathrm{ClCHa}_{2} \mathrm{CH}_{2} \mathrm{CO}-$), 2.70 (pentet, $1 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{ClCHb}_{2} \mathrm{CH}_{2} \mathrm{CO}-$), $3.722\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CO}-\right), 6.59(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}=\mathrm{C}-\mathrm{Ar})$, $6.72(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.8,3.6 \mathrm{~Hz}$, furan-H4), $7.08(\mathrm{~s}, 1 \mathrm{H}$, furan-CH=C-), $7.17(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3 \mathrm{~Hz}$, furan-H3), 7.22-7.25 (d, 2H, J = 8.7 $\mathrm{Hz}, \mathrm{Ar}-\mathrm{H}), 7.48-7.51(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}$, furan-H5), 10.68 (s, 1H, -CONH-) ppm.

Continuation of the Table 1.

Continuation of the Table 1.

$\begin{gathered} \text { Cpd. } \\ \text { No } \end{gathered}$	Aryl group	$\frac{\text { Infrared bands (IR) } \underline{m}_{\text {max }}}{\underline{(\text { Nujol }) / \mathrm{cm}^{-1}}}$			${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{DMSO}$); $\boldsymbol{\delta H}\left[{ }^{\mathbf{2}} \mathbf{H}_{6}\right]$ DMSO
		${ }^{v} \mathrm{C}=0$	$v-C=N$	v-NH	
8b	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}$	1660	1610	2850-3300	$\delta=2.32(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{Me}), 3.92\left(\mathrm{~s}, 2 \mathrm{H},-\right.$ furan $\left.-\mathrm{CH}_{2}-\right), 6.23(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=3 \mathrm{~Hz}$, furan-H3), $6.42(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.8,3.6 \mathrm{~Hz}$, fu-ran-H4), 7.25 (d, 2H, J = $8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.47$ (s, 1 H , $\mathrm{CH}=\mathrm{C}-\mathrm{Ar}$), 7.51 (d, 2H, J $=8.7 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}$), 7.98 ($\mathrm{d}, \mathrm{J}=1.8$ Hz , furan-H5), 13.46 (s, 1H, -CONH-) ppm.
8c	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}$	1660	1610	3800-3400	$\delta=3.85(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{OMe}), 3.93\left(\mathrm{~s}, 2 \mathrm{H}\right.$, -furan- $\left.\mathrm{CH}_{2}-\right), 6.72$ (d, $1 \mathrm{H}, \mathrm{J}=3 \mathrm{~Hz}$, furan-H3), 7.17 (dd, $1 \mathrm{H}, \mathrm{J}=1.8,3.6 \mathrm{~Hz}$, furan-H4), $7.08(\mathrm{~s}, 1 \mathrm{H}$, furan-CH=C-), $7.26(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7$ $\mathrm{Hz}, \mathrm{Ar}-\mathrm{H}), 7.49(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=0.9 \mathrm{~Hz},-\mathrm{CH}=\mathrm{C}-\mathrm{Ar}), 7.51(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}$, furan-H5), 13.65 (s, 1H, -CONH-) ppm.
8d	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	1660	1613	3900-3400	$\delta=3.95\left(\mathrm{~s}, 2 \mathrm{H}\right.$, -furan- $\mathrm{CH}_{2}-$), $6.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.6 \mathrm{~Hz}$, fu-ran-H3), 7.1 (dd, $1 \mathrm{H}, \mathrm{J}=1.8,3.6 \mathrm{~Hz}$, furan-H4), 7.44 (d, $1 \mathrm{H}, \mathrm{J}=1.2 \mathrm{~Hz},-\mathrm{CH}=\mathrm{C}-\mathrm{Ar}), 7.46(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, $7.57(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}$, furanH5), 13.38 ($\mathrm{s}, 1 \mathrm{H},-\mathrm{CONH}-) \mathrm{ppm}$.

Experimental

General

${ }^{1} \mathrm{H}$ NMR spectra were recorded on Varian Plus $300(300 \mathrm{MHz})$ or Bruker XL $300(300 \mathrm{MHz})$ instruments, the ${ }^{13} \mathrm{C}$ NMR spectra (with DEPT 135) on a Bruker WP80 or XL 300 instrument. Infrared spectra listed as recorded 'neat' refer to a thin film of material on NaCl disks, and were taken on a Perkin Elmer 1600 FT-IR spectrometer. Mass spectra were recorded on a Kratos Concept instrument. Melting points were measured on an Electrothermal digital melting point apparatus and are uncorrected. The TLC analyses were carried out using Macherey-Nagel 0.25 mm layer fluorescent UV 254 plates with the indicated solvent system. Elemental analyses were performed by M-H-W Laboratories (Phoenix, AZ) at University of Minho, Braga, Portugal.
α-(2-Furyl)methylidene-(E)- γ-aryl-2(3H)-furanones (1a-d)
2(3H)-Furanones (1a-d) were prepared following the literature method [2]. The structures of the products were confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data as listed in Tables 1 and 2.

α-Aracycl- β-(2-furyl)acrylic acid hydrazides (2a-d) [2]

Hydrazine hydrate (1 mol) was added to a suspension of the 2-(3 H)-furanones ($\mathbf{1 a - d}$) (1 mol) in absolute ethanol (20 mL). The reaction mixture was allowed to stand at room temperature with occasional
shaking from time to time and then left overnight. The reaction was monitored by TLC and was shown to be complete after 2 days. Evaporation of the solvent by rotatory evaporator gave a colorless solid that was filtered off and recrystallized from a suitable solvent to give colorless crystals in $75-85 \%$ yield, as listed in Table 2.

4-Furylmethyl-6-aryl-3(2H)pyridazin-3-ones (8a-d)

$1.0 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ was added dropwise with stirring at $25-35^{\circ} \mathrm{C}$ over $30-60 \mathrm{~min}$ to a solution of the α-aracycl- β-(2-fury) acrylic acid hydrazides (2a-d) (1 mole) in benzene (20 mL); after completion of the addition the solid was continue stirring for 1 h , then filtered off and washed thoroughly with water. The product obtained was recrystallized from a suitable solvent as shown in Table 2.

$N^{l}\left[\alpha\right.$-Aracyl- $\beta-\left(2\right.$-furyl)acroyl- $N^{2}[3$-chloropropionyl]hydrazine (4a-d)

To a solution of the α-aracycl- β-(2-furyl)acrylic acid hydrazides ($\mathbf{2 a - d}$) (1 mol) in benzene (50 mL) was added 3 -chloro-propionyl chloride (3) $(1.01 \mathrm{~mol})$ and the mixture stirred at $0-15^{\circ} \mathrm{C}$ for 5 h . The progress of the reaction was monitored by TLC and shown to be complete after 5-6 hrs and when the color become yellow. The solid separated out were collected and re-crystallized from ethanol to yield the title compounds in $80-92 \%$ yield ($c f$. Table 2).

6-Aryl-1-(3-chloropropanoyl)-4-[(E)-1-(2-furyl)methylidene)]-1,2,3,4-tetrahydro-3-pyridazinones (6a-d)

To a solution of the α-aracycl- β-(2-furyl)acrylic acid hydrazides ($\mathbf{2 a}-\mathbf{d}$) (1 mol) in benzene (50 mL) was added 3-chloropropionyl chloride (3) (1.1 mol) and the reaction mixture was refluxed at $80^{\circ} \mathrm{C}$ for $30-60 \mathrm{~min}$. The progress of the reaction was monitored by TLC during this time and the reaction was shown to be complete after 1 h when the color become yellow. The solvent was removed by rotatory evaporator and the solids which separated out were collected and then recrystallized from ethanol to yield the products in $80-92 \%$ yield ($c f$. Table 2). In a parallel experiment with hydrazine derivatives (4ad) in benzene solvent in the presence of acid catalyst (1.0 N HCl) using the same reaction conditions previously mentioned, the only products which could be identified by TLC after 30-60 min. were compounds ($\mathbf{6 a - d}$). These compounds were shown by direct comparison of m.p and mixed m.p, TLC and spectral data to be identical in all aspects with authentic samples.

2-(β-Chloroethyl)-5-[α-aracyl- $\beta-(2-f u r y l)]-(E)$-vinyl-1,3,4-oxadiazoles (7a-d)

A mixture of the $N^{l}\left[\alpha\right.$-aracyl- β-(2-furyl)acroyl- $N^{2}[3$-chloropropionyl]hydrazine compounds (4a-d) $(1 \mathrm{~mol})$ and $\mathrm{POCl}_{3}(10 \mathrm{~mL})$ were stirred and heated at $106^{\circ} \mathrm{C}$ for 1 h ., then allowed to cool, poured onto crushed ice and washed with aqueous $1.0 \mathrm{~N} \mathrm{NaHCO}_{3}$. The yellowish solid precipitate was filtered off, washed with water and recrystallized from benzene-petroleum ether (b.p. $100-120^{\circ} \mathrm{C}$) mixture to produce compounds (7a-d) (cf. Table 2). These experiments were repeated using $\mathrm{Ac}_{2} \mathrm{O}$ as dehydrating agent instead of POCl_{3} and there is no indication for any change in the yields.

Table 2. Physical data for compounds 1a-8d.

Cpd.	Aryl	m.p ${ }^{\circ} \mathrm{C}$	Yield	Recryst.	MF	Analysis [Calc./Found]		
No.	Group			Solvent		C	H	N
1a	$\mathrm{C}_{6} \mathrm{H}_{5}$	195-198	78\%		$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{3}$	75.63/75.56	4.20/4.19	
1b	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$	205-207	88\%		$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{3}$	76.19/76.20	4.76/4.63	
1 c	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}$	215-217	91\%	EtOH	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{4}$	71.64/71.42	4.47/4.56	
1d	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	235-238 dec.	75\%		$\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{ClO}_{3}$	66.05/66.24	3.30/3.42	
2 a	$\mathrm{C}_{6} \mathrm{H}_{5}$	134-135	76\%		$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$	66.67/66.85	5.18/5.07	10.37/10.53
2 b	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$	172-173	72\%		$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$	67.60/67.56	5.63/5.54	9.86/9.71
2 c	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}$	125-126	78\%	EtOH	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$	64.00/63.88	5.33/5.23	9.33/9.12
2 d	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	216-217	73\%		$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{3}$	59.11/59.01	4.27/4.19	9.19/9.32
4 a	$\mathrm{C}_{6} \mathrm{H}_{5}$	135-136	82\%		$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cl}$	59.91/60.10	4.71/4.82	7.76/7.55
4b	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$	173-175	85\%		$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cl}$	60.88/60.92	5.07/4.99	7.47/7.67
4 c	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}$	110-112	83\%	MeOH	$\mathrm{C}_{19} 9 \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Cl}$	58.38/58.12	4.86/4.77	7.17/7.27
4 d	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}{ }^{3}$	215-217	80\%		$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cl}_{2}$	54.68/54.33	4.05/4.25	7.08/7.20
6 a	$\mathrm{C}_{6} \mathrm{H}_{5}$	160-162	80\%		$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}$	63.06/63.02	4.37/4.16	8.17/8.28
6b	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$	182-183	92\%		$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}$	63.95/63.69	4.76/4.47	7.85/7.55
6 c	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}$	173-175	92\%	EtOH	$\mathrm{C}_{19} 9 \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cl}$	61.20/61.15	4.56/4.45	7.51/7.57
6 d	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}{ }^{3}$	205-206	89\%		$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}_{2}$	57.29/57.25	3.71/3.22	7.42/7.76
7 a	$\mathrm{C}_{6} \mathrm{H}_{5}$	157-158	75\%		$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}$	63.06/63.02	4.37/4.16	8.17/8.28
7b	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$	175-177	83\%		$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}$	63.95/63.69	4.76/4.47	7.85/7.55
7 c	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}$	180-182	82\%	Benz.	$\mathrm{C}_{19} 9 \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cl}$	61.20/61.15	4.56/4.45	7.51/7.57
7 d	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	165-167	79\%		$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}_{2}$	57.29/57.25	3.71/3.22	7.42/7.76
8 a	$\mathrm{C}_{6} \mathrm{H}_{5}$	207-210	75\%		$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$	71.42/71.53	4.76/4.87	11.11/10.95
8b	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$	239-240	79\%	EtOH	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$	72.1872.13	5.26/5.00	10.52/10.60
8 c	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}$	172-173	80\%	EtOH	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$	68.08/68.38	4.96/5.14	9.92/10.13
8d	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	210-212	77\%		$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}$	62.82/62.64	3.83/3.80	9.77/9.80

Table 3. ${ }^{13} \mathrm{C}$ Chemical shifts ($\left.\delta \mathrm{C}^{2}{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}$) for 6-(4-methylphenyl)-1-(3-chloropropanoyl)-4-[(E)-1-(2-furyl)methylidene)]-1,2,3,4-tetrahydro-3-pyridazinones (6a-d).

C-3	C-4	C-5	C-6	C-7	C-8	C-9	C-10	C-11
168.74	123.53	118.7	151.86	126.25	147.1	113.4	99.24	117.14
C-12	C-13	C-14	C-15	C-16	C-17	C-18	C-19	
146.4	129.2	126.9	139.3	20.9	168.2	53.4	36.1	

Table 4. ${ }^{13} \mathrm{C}$ Chemical shifts ($\delta \mathrm{C}\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}$) for α-(2-furyl)methylidene-(E)- γ-aryl-2(3 H)-furanones 1a and 1c.

Cpd No.	C-2	C-3	C-4	C-5	C-6	C-7	C-8	C-9	C-10	C-11	C-12	C-13	C-14	C-15
$\mathbf{1 a}$	168.58	130.4	119.7	154.6	121.1	151.4	113.9	99.24	120.27	147.8	125.1	129.1	127.84	----
$\mathbf{1 c}$	168.74	144.8	118.8	154.8	121.4	151.5	113.7	99.97	120.25	147.4	126.9	114.64	161.04	55.4

Acknowledgements: The authors gratefully thank Professor Dr. M. Fernanda Proenca, Departamento de Química, Universidade do Minho, 4710 Braga, Portugal for the use of the facilities to obtain the NMR spectra.

References and Notes

1. (a) El-Kafrawy, A.F.; Youssef, A.S.A.; Hamad, A-S.S.; Hashem, A.I. Egypt. J. Pharm. Sci. 1993, 34, 159; (b) Hamad; A-S.S.; Hashem, A.I.; El-Kafrawy, A.F.; Saad, M.M. Phosphorus, Sulfur and Silicon 2000, 159, 157-169.
2. Hashem, A. I. J. Prakt. Chem. 1977, 319, 689.
3. Hamad, A-S. S. unpublished results.
4. Hashem, A. I. J. Prakt. Chem. 1979, 321, 516.
5. Guirguis, N. R.; Awad, B. M.; Saad, H. A. J. Prakt. Chem. 1990, 332, 414.
6. Ishii, T.; Ito, T. Japanese Patent JP 6910 781, 1969 (Chem. Abstr. 1970, 71, 112795K).
7. Ishii, T.; Ito, T. Meiji Seika Kenkyu Nempo (Yakuhin Bumon) 1967, 43 (Chem. Abstr. 1968, 69, 43702X).
8. Curran, M. V. J. Med. Chem. 1974, 17, 273.
9. Nannini, G.; Biasoli, G.; Perrone, E.; Forgione, A.; Buttinoni, A.; Ferrari, M. Eur. J. Med. Chem. -

Chim. Ther. 1979, 14, 53.
10. Cajocorius, J.; Cojocarius, Z.; Niester, C. Rev. Chim. 1977, 28, 15-18.
11. Swain, A.P.; U.S. Pat., 2, 883, 391 (Chem. Abstr. 1959, 53, 16157).
12. Morrow, F.; Matier, W.L. U.S. Pat., 4, 243, 681, 1977 (Chem. Abstr. 1982, 96, 34812p).
13. Binder, D.; Ferber, H. Eur. Pat. 19, 173, 233, 1987 (Chem. Abstr. 1988, 108, 585).
14. Ferres, H.; Tyrrell, A.W.; Geen, G.R. Drugs Exp. Clin. Res. 1982, 52, 964 (Chem. Abstr. 1982, 97, 163012x).
15. Awad, W.I.; Hashem, A.I.; El-Badry, K. Indian J. Chem. 1975, 13, 1139.
16. Awad, W.I.; Omran, S.M.A.; Hashem, A.I. J. Chem. U.A.R. 1967, 10, 287.
17. Mustafa, A.; Kattab, S.; Asker, W. Can. J. Chem. 1963, 41, 1813.
18. El-Kousy, S.M.; El-Torgoman, A.M.; El-Basiouny, A.A.; Hashem, A.I. Pharmazie 1988, 43, 8081.
19. a) Henold, K.L. Chem. Commun. 1970, 1340; (b) Anderson, W.R. Jr.; Silverstein, R.M. Anal. Chem. 1965, 37, 1417; c) Silverstein, R.M.; Bassler, C.G.; Morrill, T. C. Spectrometric Identification of Organic Compounds, 5th ed.; John Wiley \& Sons: New York, 1991.
20. Yassin, S.; El-Aleem, A.H.; El-Aleem, A.; El-Sayed, I. E.; Hashem, A. I. Collect. Czech Chem. Commun. 1993, 58, 1925-1930.

Samples Availability: Available from the authors.
© 2000 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.

