

ISSN 1420-3049 © 2000 by MDPI http://www.mdpi.org

# Benzamidomethylation with (Benzamidomethyl)triethylammonium Chloride. 2. A Simple Method for Benzamidomethylation of Thiols, Amines and Carboxylic Acids\*

Emil Popovski<sup>1</sup>\*\*, Ljiljana Klisarova<sup>2</sup> and Drazen Vikic-Topic<sup>3</sup>

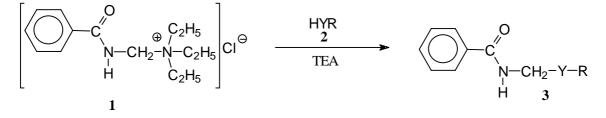
<sup>1</sup>Institute of Chemistry, Faculty of Natural Sciences & Mathematics, Sts. Cyril and Methodius University, PO Box 162, 1000 Skopje, Macedonia
E-mail: emilp@iunona.pmf.ukim.edu.mk
<sup>2</sup>Faculty of Pharmacy, Sts. Cyril and Methodius University, 1000 Skopje, Macedonia
<sup>3</sup>Rudjer Boskovic Institute, Bijenicka 54, HR-10001, Zagreb, Croatia

\*For part 1, see ref. [1] \*\*Author to whom correspondence should be addressed.

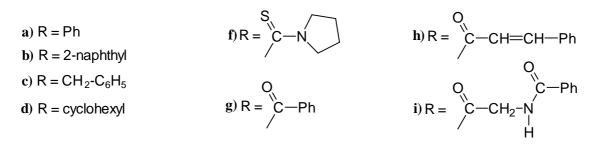
Received: 27 March 2000; revised form: 22 June 2000/Accepted: 29 June 2000/Published: 7 July 2000

Abstract: Thiols and amines were benzamidomethylated in water solution at room temperature with (benzamidomethyl)triethylammonium chloride (1) in the presence of a small quantity of triethylamine (pH>9). Benzamidomethyl thioethers (**3a-d**) and (benzamidomethyl)amines or di(benzamidomethyl)amines (**5**) were obtained in high yields (>90%) as well as  $S(CH_2NHBz)_2$  in a reaction of **1** with Na<sub>2</sub>S. Benzamidomethyl esters RCOOCH<sub>2</sub>NHBz were obtained (60-75%) in reactions of carboxylic acids with **1** in chloroform or dioxane.

Keywords: Benzamidomethylation, thiols, carboxylic acids, amines.


## Introduction

In the past, a large number of benzamidomethyl compounds have been synthesized which have been used for different purposes. In the final decade, in the case of a thiol group, benzamidomethylation was used for synthesis of ligands for <sup>99</sup>Tc complexes, which have been utilized as radiolabels [2-4]. Also, benzamidomethylation was used to obtain some benzamidomethyl aryl thioethers as intermediates in the synthesis of benzothiazines [5-7]. Among the numerous *S*-benzamidomethyl derivatives there are


reports of a *S*-benzamidomethyl-L-cysteine, which was used in peptide synthesis [8-11] and some of them are useful for the treatment of glaucoma [12]. Also, wool proteins can be analyzed as the corresponding *S*-amidomethyl derivatives [13]. Amidomethyl and benzamidomethyl esters were synthesized and evaluated as potential prodrugs of carboxylic acid agents [14-17] or amide agents [18]. The benzamidomethyl esters of carboxylic acids were used as a benzamidomethylation regent for compounds with a different nucleophilic group [19, 20]. In the case of an amine group, amidomethylation was used for synthesis of derivatives of some uracils or thiouracils that showed antitumor activity [21, 22]. Zlotin and coworkers [23] investigated some routes for the synthesis of *N*-benzamidomethyl derivatives of functional derivatives of  $\alpha$ -aminoacids and peptides, etc. Our good results with the benzamidomethylation of phenols [1] using (benzamidomethyl)triethylammonium chloride (1), prompted us to investigate the reaction of this compound with thiols, carboxylic acids and amines.

#### **Results and Discussion**

Reactions with thiols were performed in very vigorously stirred aqueous mixtures of **1** and thiols **2(a, b, c** and **d)**, in the presence of a small quantity of triethylamine (TEA) to pH>9 (Scheme 1). The reactions with liquid thiols (**2a,c,d**) in the first 5-10 minutes gave yellow oils which over the next 5-10 minutes are transformed to small white solid lumps. For best results, the lumps should be ground with a glass rod and the reaction mixture stirred over 1 hour, although in same cases the reaction is over in 30-40 minutes. The products were collected by filtration.



For  $\mathbf{a}$ ,  $\mathbf{b}$ ,  $\mathbf{c}$ ,  $\mathbf{d}$  and  $\mathbf{f}$ , Y = S (only for  $2\mathbf{f} HY = NH_4S$ ); for  $\mathbf{g}$ ,  $\mathbf{h}$  and  $\mathbf{i}$ , Y = O



Scheme 1.

| Com-<br>pound          | <sup>1</sup> H-1                                           | NMR (300 MHz                     | z; DMSO-d <sub>6</sub> ;                                   |                                                                                   |                                                                                                                                                                                                     |
|------------------------|------------------------------------------------------------|----------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | CONHCH <sub>2</sub>                                        | Aromatic                         | NHCH <sub>2</sub>                                          | Other                                                                             | - <sup>13</sup> C-NMR (75 MHz; δ in ppm)                                                                                                                                                            |
| <b>3</b> a             | t, 9.33<br>1H, <i>J</i> 5.9                                | m, 7.86-7.21<br>10H              | d, 4.84<br>2H, <i>J</i> 5.9                                | -                                                                                 | 166.53 C=O; 43.91 CH <sub>2</sub> ;<br>Ar: 135.56, 134.02, 131.84, 129.9,<br>129.3, 128.64, 127.54, 126.68                                                                                          |
| 3b                     | t, 9.41<br>1H, <i>J</i> 5.9                                | m, 8.05-7.44<br>12H              | d, 4.97<br>2H, <i>J</i> 6.2                                | -                                                                                 | 166.37 C=O; 43.63 CH <sub>2</sub> ;<br>Ar: 133.79, 133.39, 132.85, 131.6,<br>131.48, 128.39, 127.78, 127.59, 127.5<br>127.3, 127.1, 126.64, 125.88                                                  |
| 3с                     | t, 9.22<br>1H, J 5.9                                       | m, 7.9-7.21<br>10H               | d, 4.42<br>2H, <i>J</i> 5.9                                | s, 3.9 2H,<br>PhC <i>H</i> <sub>2</sub>                                           | 166.68 C=O; 41.08 CH <sub>2</sub> ; 34.66 PhCH <sub>2</sub><br>Ar: 139.2, 134.36, 131.73, 129.13, 128.61, 127.56, 127.01,                                                                           |
| 3d                     | 9.13<br>1H<br>broad s(t)                                   | m, 7.88-7.46<br>5H               | d, 4.46<br>2H, <i>J</i> 6.2                                | 2.89 1H, SC <i>H</i><br>broad s(quin)<br>m, 1.98-1.24<br>10H, 5 × CH <sub>2</sub> | 166.27 C=O; 42.28 CH <sub>2</sub> ; 39.68 SCH;<br>33.54, 25.62, 25.41 5× CH <sub>2</sub> ;<br>Ar: 134.31, 131.65, 128.61, 127.48                                                                    |
| 3e                     | t, 9.2<br>2H, <i>J</i> 6.2                                 | m, 7.89-7.46<br>10H              | d, 4.65<br>4H, <i>J</i> 6.2                                | -                                                                                 | 166.6 C=O; 41.57 CH <sub>2</sub> ;<br>Ar: 134.05, 131.91, 128.73, 127.48                                                                                                                            |
| 3f                     | t, 9.28<br>1H, <i>J</i> 6.0                                | m, 7.89-7.46<br>5H               | d, 5.19<br>2H, <i>J</i> 6.3                                | t, 3.79, 2H<br>NCH <sub>2</sub> C<br>t, 3.59, 2H<br>NCH <sub>2</sub> C            | 190.18 C=S; 166.74 C=O; 46.71 CH <sub>2</sub> ;<br>54,88 and 50.70, 2 × N- <i>C</i> H <sub>2</sub> -C;<br>25.64 and 23.81, 2 × C- <i>C</i> H <sub>2</sub> -C;<br>Ar: 133.31, 131.83, 128.48, 127.44 |
|                        |                                                            |                                  |                                                            | quin, 2.00, 2H<br>CC <i>H</i> <sub>2</sub> C                                      |                                                                                                                                                                                                     |
|                        |                                                            |                                  |                                                            | quin, 1.91, 2H<br>CC <i>H</i> <sub>2</sub> C                                      |                                                                                                                                                                                                     |
| <b>3g</b> <sup>a</sup> |                                                            | m, 8.08-7.41<br>11H <sup>b</sup> | d, 5.73<br>2H, <i>J</i> 7.3                                | -                                                                                 | 167.57 C=O; 167.48 C=O; 65.2 CH <sub>2</sub> ;<br>Ar: 133.51, 133.22, 132.29, 129.87,<br>129.39, 128.70, 128.45, 127.29                                                                             |
| 3h <sup>c</sup>        | t, 9.61<br>1H, <i>J</i> 6.7                                | m, 7.96-7.4<br>11H <sup>d</sup>  | d, 5.50<br>2H, <i>J</i> 6.7                                | d, 6.66<br>1H, <i>J</i> 16.1<br>=C <i>H</i> COO                                   | 167.12 C=O; 166.0 C=O; 65.18 CH <sub>2</sub> ;<br>Ar and H <i>C</i> = <i>C</i> H: 145.06, 134.01,<br>133.24, 132.08, 130.63, 129.0, 128.55<br>127.62, 117.92                                        |
| 3i                     | t, 9.63<br>1H, <i>J</i> 6.5<br>t, 9.02<br>1H, <i>J</i> 5.6 | m, 7.96-7.49<br>10H              | d, 4.44<br>2H, <i>J</i> 6.5<br>d, 4.07<br>2H, <i>J</i> 5.9 | -                                                                                 | 170.08 C=O; 167.40 C=O; 167.1 C=O<br>65.62 O-CH <sub>2</sub> ; 41.44 C-CH <sub>2</sub> ;<br>Ar: 133.95, 133.39, 132.36, 131.85,<br>128.79, 128.7, 127.85, 127.58                                    |

 Table 1. NMR data of compounds 3a-i.

<sup>a1</sup>H-NMR (360 MHz; CDCl<sub>3</sub>), <sup>13</sup>C-NMR (90 MHz);

<sup>b</sup>one of the 11H is from N*H*;

<sup>c1</sup>H-NMR (250 MHz), <sup>13</sup>C-NMR (63 MHz);

<sup>d</sup>one of the 11H is from PhCH= .

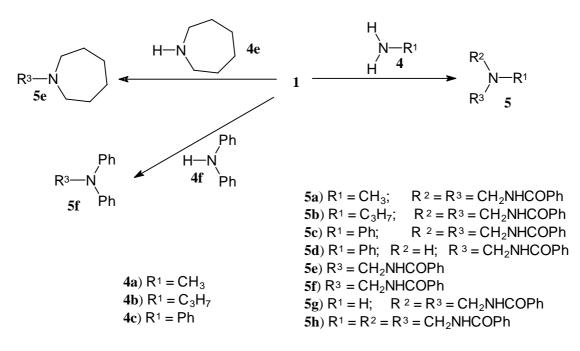

| Com-<br>pound | Yield<br>% | M.p.<br>°C         | Calc/found   |            | FTIR (KBr) / cm <sup>-1</sup> |                  |                  |                  |                                                  |
|---------------|------------|--------------------|--------------|------------|-------------------------------|------------------|------------------|------------------|--------------------------------------------------|
|               |            |                    | С            | Н          | N                             | vNH              | Amide I          | Amide II         | Other                                            |
| 3a            | 99.3       | 64 <sup>e</sup>    | 69.1<br>69.3 | 5.4<br>5.7 | 5.8<br>5.6                    | 3306.5           | 1630.0           | 1531.7           |                                                  |
| 3b            | 98.8       | 127-30             | 73.7<br>74.0 | 5.1<br>4.9 | 4.8<br>4.8                    | 3242.4           | 1638.9           | 1542.7           |                                                  |
| 3c            | 93.6       | 79-80 <sup>f</sup> | 70.0<br>69.9 | 5.9<br>5.7 | 5.4<br>5.5                    | 3354.1           | 1638.9           | 1539.7           |                                                  |
| 3d            | 94.6       | 67-8               | 67.4<br>67.3 | 7.6<br>7.7 | 5.6<br>5.6                    | 3313.4           | 1639.3           | 1540.0           |                                                  |
| 3e            | 96.3       | 179                | 64.0<br>63.7 | 5.4<br>5.7 | 9.3<br>9.2                    | 3311.4           | 1658.6<br>1644.0 | 1531.7           |                                                  |
| 3f            | 95.7       | 119-20             | 55.7<br>55.4 | 5.7<br>6.0 | 10.0<br>9.8                   | 3397.1           | 1673.9           | 1507.0           |                                                  |
| 3g            | 73.0       | 95-96 <sup>g</sup> | 70.6<br>70.7 | 5.1<br>5.4 | 5.5<br>5.4                    | 3311.8           | 1655.5           | 1534.8           | 1723.7<br>CH <sub>2</sub> O- <i>C</i> = <i>O</i> |
| 3h            | 62.3       | 111-12             | 72.6<br>72.2 | 5.4<br>5.2 | 5.0<br>5.0                    | 3344.6           | 1657.8           | 1536.5           | 1709.1<br>CH <sub>2</sub> O- <i>C</i> = <i>O</i> |
| <b>3</b> i    | 74.4       | 171                | 65.4<br>65.1 | 5.2<br>5.2 | 9.0<br>8.9                    | 3372.5<br>3320.1 | 1663.5<br>1648.1 | 1533.5           | 1745.7<br>CH <sub>2</sub> O- <i>C</i> = <i>O</i> |
| 5a            | 97.3       | 119-21             | 68.7<br>68.8 | 6.4<br>6.4 | 14.1<br>14.1                  | 3350.9           | 1645.6           | 1536.9           |                                                  |
| 5b            | 90.9       | 119-20             | 70.1<br>69.8 | 7.1<br>7.4 | 12.9<br>12.7                  | 3319.5           | 1641.4           | 1538.5           |                                                  |
| 5c            | 91.7       | 181-3              | 73.5<br>73.4 | 5.9<br>6.1 | 11.7<br>11.5                  | 3340.5<br>3298.6 | 1640.7           | 1537.4           |                                                  |
| 5d            | 100        | 116-7              | 74.3<br>74.6 | 6.2<br>6.4 | 12.3<br>12.5                  | 3418.1<br>3340.4 | 1662.6           | 1507.6           |                                                  |
| 5e            | 92.9       | 93-4               | 72.4<br>72.0 | 8.7<br>8.9 | 12.1<br>12.3                  | 3333.8           | 1636.7           | 1538.5           |                                                  |
| 5f            | 88.2       | 116-7              | 79.4<br>79.5 | 6.0<br>6.4 | 9.3<br>9.0                    | 3379.3<br>3365.3 | 1645.1<br>1636.8 | 1537.0<br>1529.5 |                                                  |
| 5g            | 50-70      | 179                | 67.8<br>67.8 | 6.0<br>6.3 | 14.8<br>14.6                  | 3360.4<br>3263.9 | 1642.9           | 1551.5           |                                                  |
| 5h            |            | 191-2              | 69.2<br>69.5 | 5.8<br>6.0 | 13.4<br>13.3                  | 3317.7           | 1642.3           | 1541.3           |                                                  |

Table 2. Physicochemical data of compounds 3a-i and 5a-h.

<sup>e</sup>lit. [25], M.p. = 67<sup>o</sup>C; lit [26], M.p. = 65-6<sup>o</sup>C; <sup>f</sup>lit. [25], M.p. = 82<sup>o</sup>C; <sup>g</sup>lit. [27], M.p. = 92<sup>o</sup>C

The sparingly water soluble 2-thionaphtole (2b) was also benzamidomethylated with 1, but the reaction mixture was stirred over 3 hours. Reactions of 1 with aqueous solutions of Na<sub>2</sub>S always gave dibenzamidomethyl sulphide (3e; R = CH<sub>2</sub>NHBz, Y = S), regardless of the mole ratio of reactants (compound 1 : Na<sub>2</sub>S = 1:0.5; 1:1; 1:2 or 1:5). An attempt to synthesize *N*-(sulphonylmethyl)benzamide (PhCONHCH<sub>2</sub>SH) at pH = 9 (where the concentration of  $S^{2-}$  ions is minimal and concentration of SH<sup>-</sup> ions is maximal [24]) failed. Under these conditions the reaction did not occur. An experiment with and aqueous solution of H<sub>2</sub>S and controlled increase of pH failed, too. The reaction started and occurred rapidly only when the pH of the mixture was ~10 and higher; however only **3e** was obtained. Product **3e** was also obtained in the reactions of **1** with thioacetic acid and thioacetamide. However, in a reaction of ammonium pyrroldinedithiocarbamate (**2f**) with **1**, performed in aqueous solution (at room temperature), benzamidomethyl pyrroldinedithiocarbamate (**3f**) was obtained.

The benzamidomethylation reactions of carboxylic acids with **1** did not take place in aqueous solutions. Benzamidomethyl esters **3**(**g**,**h**) were obtained in the reactions of carboxylic acids **2**(**g**,**h**) and **1**, performed for 20 min in boiling chloroform in the presence of a small quantity of TEA. Benzamidomethylation of **2i** (which is sparingly soluble in chloroform) under the same conditions did not give good results. But, when the reaction was performed in a dioxane suspension of **1**, benzamidomethyl hippurate (**3i**) was obtained in more than a 70% yield. The temperature of the mixture had to be higher than 40°C (at lower temperatures, the reaction does not occur or is very slow) and lower than 60°C (otherwise, a branching reaction occurs, and *N*,*N*'-methylenedibenzamide is obtained). Under the same conditions **3f** and **3g** were also obtained. <sup>1</sup>H-NMR and <sup>13</sup>C-NMR data of compounds **3a-i** are given in Table 1, and physicochemical data are given in Table 2.





Benzamidomethylation of amines in the aqueous solutions occurred immediately (Scheme 2). At room temperature 1 reacts very quickly with the primary amines (4a-c) as well as with the secondary amine (4e). Because of that, dibenzamidomethyl derivatives of primary amines (5a-c) were obtained regardless of whether the reaction mixture had a larger quantity of primary amine than of 1. For the synthesis of monobenzamidomethyl derivative of aniline (5d), drops of a very dispersed water solution of 1 had to be added to a very concentrated and vigorously stirred aqueous solution of aniline (4c). Benzamidomethylation of sparingly water soluble diphenylamine (4f) was performed in dioxane-water mixture as a solvent.

| Com-<br>pound | $^{1}$ H-                             | -NMR (300 MH        | z; DMSO-d <sub>6</sub>      | - <sup>13</sup> C-NMR (75 MHz; δ in ppm)       |                                                                                                              |       |
|---------------|---------------------------------------|---------------------|-----------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------|
|               | CON <i>H</i> CH <sub>2</sub> Aromatic |                     | NHCH <sub>2</sub> N         |                                                |                                                                                                              | Other |
| 5a            | t, 8.78<br>2H, <i>J</i> 5.7           | m, 7.9-7.46<br>10H  | d, 4.29<br>4H, <i>J</i> 6.0 | s, 2.31<br>3H, C <i>H</i> <sub>3</sub>         | 167.12 C=O; 58.59 CH <sub>2</sub> ; 37.03 CH <sub>3</sub> ;<br>Ar: 134.25, 131.48, 128.44, 127.25            |       |
| 5b            | t, 8.74<br>2H, <i>J</i> 5.4           | m, 7.88-7.45<br>10H | d, 4.36<br>4H, <i>J</i> 5.8 | t, 2.54, 2H<br>J 7.2, NCH <sub>2</sub> C       | 167.1 C=O; 57.0 NCH <sub>2</sub> N;<br>49.94, 20.36, 11.90 propyl                                            |       |
|               |                                       |                     |                             | sex, 1.56, 2H<br>J 7.2, CCH <sub>2</sub> C     | Ar: 134.27, 131.49, 128.45, 127.22                                                                           |       |
|               |                                       |                     |                             | t, 0.95, 3H<br>J 7.2, CH <sub>3</sub>          |                                                                                                              |       |
| 5c            | t, 9.12<br>2H, <i>J</i> 4.9           | m, 7.91-6.71<br>15H | d, 5.16<br>4H, <i>J</i> 5.2 | -                                              | 166.83 C=O; 56.50 CH <sub>2</sub> ;<br>Ar: 145.35, 133.99, 131.64, 129.11,<br>128.49, 127.31, 117.69, 112.89 |       |
| 5d            | t, 8.98<br>1H, <i>J</i> 4.4           | m, 7.90-6.57<br>10H | t, 4.73<br>2H, <i>J</i> 6.0 | t, 6.31, 1H<br>J 6.6, N <i>H</i> Ph            | 166.64 C=O; 48.71 CH <sub>2</sub> ;<br>Ar: 147.20, 134.34, 131.41, 128.97,<br>128.37, 127.39, 116.61, 112.65 |       |
| 5e            | t, 8.73<br>2H, J 5.7                  | m, 7.90-7.44<br>5H  | d, 4.24<br>2H, <i>J</i> 5.9 | t, 2.73, 4H<br>$2 \times \text{NCH}_2\text{C}$ | 166.98 C=O; 61.98 NCH <sub>2</sub> N; 52.53<br>NCH <sub>2</sub> C; 28.47, 26.72 CCH <sub>2</sub> C;          |       |
|               |                                       |                     |                             | m, 1.57-1.53, 8H<br>4 × CCH <sub>2</sub> C     | Ar: 134.72, 131.16, 128.26, 127.38                                                                           |       |
| 5f            | t, 9.01<br>1H, <i>J</i> 4.9           | m, 7.85-6.96<br>15H | d, 5.27<br>2H, <i>J</i> 5.4 | -                                              | 166.87 C=O; 57.05 CH <sub>2</sub> ;<br>Ar: 146.83, 134.25, 131.43, 129.26,<br>128.28, 127.54, 121.81, 121.24 |       |
| 5g            | t, 8.80<br>2H, J 5.4                  | m, 7.84-7.41<br>10H | d, 4.27<br>4H, <i>J</i> 5.7 | broad s, 2.93, 1H                              | 166.61 C=O; 53.10 CH <sub>2</sub> ;<br>Ar: 134.34, 131.31, 128.31, 127.17                                    |       |
| 5h            | t, 8.82<br>3H, <i>J</i> 5.8           | m, 7.90-7.46<br>15H | d, 4.45<br>6H, <i>J</i> 6.0 | -                                              | 167.14 C=O; 55.56 CH <sub>2</sub> ;<br>Ar: 134.09, 131.61, 128.50, 127.23                                    |       |

**Table 3.** NMR data of compounds 5.

The reaction of **1** with an aqueous solution of  $NH_3$  gave a mixture of di(benzamidomethyl)amine (**5g**) and tri(benzamidomethyl)amine (**5h**). The major component (**5g**; 50-70%) was obtained when small quantities of **1** in powder form were added to a vigorously stirred large volume of 37% aqueous solution of  $NH_3$ . Compound **5h** was obtained without admixture of **5g** when aqueous  $NH_3$  was dropped into a concentrated aqueous solution of **1**. Also, **5g** formed when a large quantity of TEA was added to the aqueous reaction mixture of **1** or an aqueous mixture of **1** and any other nucleophilic substrate (phenols, thiols, etc). A possible explanation for this phenomena is that pure TEA (98%) contains some quantity of  $NH_3$ . The physicochemical data of compounds **5a-h** are given in Table 2, and their <sup>1</sup>H-NMR and <sup>13</sup>C-NMR data are given in Table 3.

### Conclusions

In conclusion, compound **1** is an excellent benzamidomethylation agent for thiols and amines and a good agent for carboxylic acids. Reactions of **1** with thiols and amines occurred faster and with higher yields (>90%) than the reactions of **1** with phenols, at room temperature. The products are easily isolated from reaction mixture by simple filtration.

#### Experimental

Compound 1 was synthesed as described previously [1].

#### Benzamidomethyl phenyl sulphide (3a)

A solution of **1** (2.8611 g, 10.59 mmol) in water (40 cm<sup>3</sup>) was added to the water (40 cm<sup>3</sup>) mixture of **2a** (0.538 g, 5.7 mmol) and TEA (0.3-0.5 cm<sup>3</sup>). The mixture was stirred for 1h at room temperature. White lumps formed, which were ground with a glass rod. Colorless crystals were collected by filtration. Purification was performed by dissolving the product in cold EtOH (the smallest quantity possible) and precipitating with drops of cold water.

#### Dibenzamidomethyl sulphide (3e)

A solution of  $Na_2S \cdot 7-9H_2O(3 \text{ g})$  in water (20 mL) was mixed with an aqueous (20 mL) solution of 1 (3.981 g, 14.7 mmol). The mixture was stirred for 30 min at room temperature and then was filtered. Colorless crystals (from acetone).

**3b**, **3c**, **3d** and **3f** were synthesized in a similar manner as **3a**, and only the differences are noted for each product.

### Benzamidomethyl 2-naphthyl sulphide (3b)

Stirring time 3 h; colorless crystals; recrystallization from acetone.

#### Benzamidomethyl benzyl sulphide (3c)

Colorless crystals; Purification was performed by dissolving the product in cold acetone (smallest quantity possible) and precipitating with drops of cold water.

### Benzamidomethyl cyclohexyl sulphide (3d)

Colorless crystals; purification as for 3a.

#### Benzamidomethyl pyrroldinedithiocarbamate (3f)

Gray-white crystals; The purification was performed by dissolving the product in dioxane and precipitating with drops of cold water.

### Molecules 2000, 5

### Benzamidomethyl benzoate (3g)

Mixture of 1 (2.5633 g, 9.46 mmol), 2g (0.9758 g, 7.99 mmol) and TEA (0.2-0.4 cm<sup>3</sup>) in CHCl<sub>3</sub> (40 cm<sup>3</sup>) was refluxed for 20-30 min. The solvent was removed under reduced pressure and theresidue was dissolved in dioxane. After filtration, water was added to the dioxane solution until a white precipitate appeared. Colorless crystals were filtered and purified by repeating the last procedure. Compound 3g was also synthesized as described for 3i.

# Benzamidomethyl cinnamate (3h)

Colorless crystals were obtained and purified as for 3g.

# Benzamidomethyl hippurate (3i)

To a suspension of **1** (2.122 g, 7.83 mmol) in dioxane (40 mL) was added hippuric acid (**2i**) (1.020 g, 5.69 mmol) and TEA (0.2-0.4 cm<sup>3</sup>). The mixture was stirred and heated at 50°C for 24 h. After cooling, water was added to the mixture until a white precipitate appeared. Colorless crystals were filtered and purified as for **3g**.

# Di(benzamidomethyl)methylamine (5a)

To a solution of **1** (3.256 g, 12.02 mmol) in water (20 cm<sup>3</sup>) was added an aqueous (10 cm<sup>3</sup>) solution of **4a** (~ 0.16 g, 5 mmol) and TEA (0.4 cm<sup>3</sup>). The mixture was stirred for 30 min at room temperature. Colorless crystals were collected by filtration. Purification as for **3a**.

# (Benzamidomethyl)phenylamine (5d)

A solution of **1** (1.328 g, 4.9 mmol) in water (50 mL) was slowly dropped into a vigorously stirred aqueous (20 mL) solution of **4c** (1.522 g, 16.3 mmol). The mixture was stirred for 30 min at room temperature and then the colorless crystals were filtered. Recrystallized from toluene.

# $(Benzamidomethyl) diphenylamine (\mathbf{5f})$

An aqueous  $(10 \text{ cm}^3)$  solution of **1** (2.03g, 7.5 mmol) was added to a dioxane (30 cm<sup>3</sup>) solution of **4f** (0.956, 6.4 mmol). Water was added dropwise to the mixture until it became slightly cloudy. The reaction was stirred for 4 h, then water was added until the product appeared as a white precipitate. Recrystallized from hexane : toluene (5 : 1).

# Di(benzamidomethyl)amine (5g)

Powdered 1 (2.1769 g, 8.04 mmol) was added with spatula in small portions to the vigorously stirred 37% aqueous solution of  $NH_3$  (60 cm<sup>3</sup>). After 20 min, the precipitate formed was filtered off and dissolved in a small quantity of acetone. The solution was filtered to remove the admixture of **5h**. Colorless crystals of **5g** were obtained by precipitation with water.

**5b**, **5c**, **5e** and **5h** were synthesized in a similar manner as **5a**, and only the differences are presented for each product.

Di(benzamidomethyl)propylamine (5b)

Colorless crystals. Purification as for 3c.

Di(benzamidomethyl)phenylamine (5c)

Colorless crystals. Recrystallization from toluene.

*N-(Benzamidomethyl)azacycloheptane* (5e)

In this synthesis the mole ratio of 1 and 4e was 1.2 : 1. Colorless crystals (from hexane).

Tri(benzamidomethyl)amine (5h)

In this synthesis the mole ratio of 1 and NH<sub>3</sub> was 4 : 1. Colorless crystals (from acetone).

### **References and Notes**

- 1. Part 1: Popovski, E.; Klisarova, Lj.; Vikic-Topic, D. Synth. Commun. 1999, 29(19), 3451-3458.
- 2. Okarvi, S. M.; Adriaens, P.; Verbruggen, A. J. Labelled Comp. Radiopharm. 1997, 39(10), 853-874.
- Bromans, G.; Cleynhens, B.; Adriaens, P.; Vanbilloen, H.; De Roo, M.; Verbruggen, A. Nucl. Med. Biol. 1995, 22(3), 339-349.
- 4. Bryson, N.; Lister-James, J.; Jones, A. G.; Davis, W. M.; Davison, A. Inorg. Chem. 1990, 29, 2948-2951.
- 5. Szabo, J.; Bani-Akoto, E.; Dombi, G.; Bernáth L. Fodor, G.; Sohár, P. J. Heterocyclic Chem. **1992**, *29*, 1513-1517.
- Szabo, J.; Bani-Akoto, E.; Dombi, G.; Günther, G.; Bernáth, G.; Fodor, L. J. Heterocyclic Chem. 1992, 29, 1321-1324.
- Sohár, P.; Kövesdi, I.; Szabo, J.; Katócs, Á.; Fodor, L.; Szücs, E.; Bernáth, G.; Tamás, J. Magn. Res. Chem. 1989, 27, 760-766.
- 8. Akaji, K.; Tataumi, T.; Yoshida, M.; Kimura, T.; Fujiwara, Y.; Kiso, Y. J. Chem. Soc., Chem. Commun. 1991, 267-268.
- 9. Fujii, N.; Otaka, A.; Watanabe, T.; Okamachi, A.; Tamamura, H.; Yajima, H.; Inagaki, Y.; Nomizu, M.; Asano, K. J. Chem. Soc., Chem. Commun. **1989**, 283-284.
- 10. Chakravarty, P. K.; Olsen, R. K. J. Org. Chem. 1978, 43(6), 1270-1271.
- 11. Papsuevich, O. S.; Ars, G.; Miksta, O. Zh. Obshch. Khim. 1975, 6, 1384-1388.
- 12. Gauri, K. K.; Aasmul-Olsen, S.; Widmer, F. PCT Int. Appl. WO 92 16, 550 (CA 118: 148065a).
- 13. Herbert, R. B.; Woods, L. J. Electrophoresis 1994, 15(7), 972-976 (CA 121: 152593a).
- 14. Iley, J.; Moreira, R.; Calherios, T.; Mendes, E. Pharm. Res. 1997, 14(11), 1634-1639.
- 15. Moreira, R.; Calherios, T.; Cabrita, J.; Mendes, E.; Pimentel, M.; Iley, J. *Pharm. Res.* **1996**, *13*(1), 70-75 (CA 124: 241882y).

- 16. Moreira, R.; Mendes, E.; Calherios, T.; Bacelo, M. J.; Iley, J. *Tetrahedron Lett.* **1994**, *35*(*38*), 7107-7110 (CA 121: 280586n).
- 17. Bundgaard, H.; Nielsen, N. M.; Buur, A. Int. J. Pharm. 1988, 44, 151-158.
- 18. Iley, J.; Moreira, R.; Rosa, E. J. Chem. Soc. Perkin Trans. 2 1991, 563-570.
- 19. Hashimoto, M.; Niwata, S.; Iwata, S.; Fukami, H. Chem. Express **1992**, 7(1), 65-68 (CA 116: 128317q).
- 20. Ivanov, E. B.; Chichkanova, V. T.; Krokhina; S. S.; Ageeva, B. A. *Izv. Akad. Nauk SSSR, Ser. Khim.* **1982**, *7*, 1620-1623.
- Prikazchikova, P. L.; Khutova, M. B.; Klyuchko, V. S.; Ryhchenko, I. L.; Zhukova, S. O.; Yurchenko, Ya. N.; Pilipenko; V. T.; Glazkova, Yu. T. *Fiziol. Akt. Veshchestva* 1991, 23, 37-39 (CA 118: 224974p).
- 22. Khutova, M. B.; Klyuchko, V. S.; Prikazchikova, P. L.; Dracha, S. B. Dokl. Akd. Nauk Ukr. SSR, Ser. B: Geol., Khim. Biol. Nauki 1989, 12, 42-45 (CA 114: 6423j).
- 23. Zlotin, G. S.; Sharova, V. I.; Luk'yanov, A. O. Izv. Akad. Nauk, Ser. Khim. 1996, 6, 1480-1488.
- 24. Savc, J.; Savic, M. Osnovi Analiticke Hemije; Svetlost: Sarajevo, 1989: p 118.
- 25. Hellmann, H.; Haas, G. Chem. Ber. 1957, 90, 444-446.
- 26. Branchaud, B. P.; Tsai, P. J. Org. Chem. 1987, 52, 5475-5478.
- 27. Bohme, H.; Tippmann, E. Arch. Pharm. (Weinheim) 1976, 309(9), 756-761.

Sample Availability: Available from the authors.

© 2000 by MDPI (http://www.mdpi.org).