molecules

ISSN 1420-3049
© 2000 by MDPI
http://www.mdpi.org

Regioselective Oxidation of 3-Substituted Pyridinium Salts

Joel L. Terán ${ }^{1}$, Dino Gnecco ${ }^{*, 1}$, Alberto Galindo ${ }^{1}$, Jorge R. Juárez ${ }^{1}$, Raúl G. Enríquez ${ }^{\mathbf{2}}$, Manuel Soriano ${ }^{2}$ and W.F. Reynolds ${ }^{3}$
${ }^{1}$ Centro de Química del Instituto de Ciencias. BUAP. Puebla, Pue. México. Tel /Fax +52(22)453277.
${ }^{2}$ Instituto de Química. UNAM. Cd. Universitaria. D.F. 04510. México. Tel/Fax +52(55) 6224404.
${ }^{3}$ Department of Chemistry, University of Toronto, Toronto, M5S BHG Canada. Tel/Fax +1(416)-9783563.
*Author to whom correspondence should be addressed; E-mail: dgnecco@siu.cen.buap.mx
Received: 18 Aug 2000; in revised form 3 Oct 2000 / Accepted: 4 Oct 2000 / Published: 31 Oct 2000

Abstract

R)-(+)-3-Hydroxymethyl-1-(1'-phenyl-ethyl)-pyridinium chloride (1), 1-benzyl-3-[1', 3']-dioxolan-2'-yl-pyridinium chloride (2) and (2'S, 4'S, 5'R)-(-)-1-benzyl-3-(3',4'-dimethyl-5'-phenyl-oxazolidin-2'-yl)-pyridinium bromide (3), were transformed by oxidation with potassium ferricyanide into the corresponding 1 H -pyridin-2-ones in excellent yields with high regioselectivity.

Keywords: pyridinium salts, regioselective oxidation and chirality.

Introduction

The oxidation of chiral pyridinium salts is an area of research with wide interest because enantiopure 1 H -pyridin-2-ones obtained can be used in the asymmetric synthesis of alkaloids. The synthesis of chiral $1 H$-pyridin-2-ones is useful, because the starting material is easily obtained and the regioselectivities of the reactions can attain high values depending on the substituent at position $3 .[1,2,3,4,5,6,7,8]$. In a preliminary communication [9], we reported the oxidation of 3-(methyl and ethyl) pyridinium salts, where in all cases, the oxidation at the 2 -position in the starting material was favored. Now, we report three different examples of pyridinium salts differently substituted at position 3, incorporating chiral substituents in the quaternary nitrogen or at position 3 , which were oxidized with potassium ferricyanide.

We observe an increasing percentage of oxidation at position 6 when the bulkiness of the substituent was increased. The products obtained were characterized by NMR and in one case, by X-ray diffraction.

Results and Discussion

For this purpose, we prepared pyridinium salt (1) from the corresponding 1-(2,4-dinitro-phenyl)-3-hydroxymethyl-pyridinium chloride and (R)-(+)-1-phenyl-ethylamine [10]. The salts (2) and (3) were obtained from pyridin-3-carbaldehyde with ethane-1, 2-diol or (1R, 2S)-(-)-2-methylamino-1-phenyl-propan-1-ol followed of quaternisation with benzyl bromide [11]. See Experimental.

The oxidation of chiral non-racemic pyridinium salt (1) with potassium ferricyanide produced a mixture of (1'R)-(+)-5-hydroxymethyl-1-(1'-phenyl-ethyl)-1H-pyridin-2-one (4) and (1'R)-(+)-3-hydroxymethyl-1-(1'-phenyl-ethyl)-1 H -pyridin-2-one (5) (Scheme 1); the overall yield was 90% with a ratio of (4):(5) = 70:30 after column chromatography $\left(\mathrm{SiO}_{2}\right.$, gradient dichloromethane-methanol $)$. The products all gave satisfactory spectroscopic data.

Scheme 1.

Similarly, the oxidation of (2) afforded a mixture of 1-benzyl-5-[1',3']-dioxolane-2'-yl-1H-pyridin-2one (6) and 1-benzyl-3-[1', $\left.3^{\prime}\right]$-dioxolane-2'-yl-1H-pyridin-2-one (7) (Scheme 2); overall yield 92% with a ratio of (6):(7) = 80:20 after column chromatography $\left(\mathrm{SiO}_{2}\right.$, gradient dichloromethane-methanol). The products all gave satisfactory spectroscopic data.

Scheme 2.

Finally, the oxidation of chiral non-racemic pyridinium salt (3) exclusively afforded the (2'S, 4 'S, 5'R)-(-)-1-benzyl-5-(3',4'-dimethyl-5'-phenyl-oxazolidin-2'-yl)-1H-pyridin-2-one (8) (Scheme 3) in a yield of 97% after column chromatography $\left(\mathrm{SiO}_{2}\right.$, gradient dichloromethane-methanol). The product gave satisfactory spectroscopic data. This compound was crystallized from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CHCl}_{3}$ and submitted to X-ray studies. The ORTEP [12] view of ($\mathbf{8}$) is shown in Fig 1.

Scheme 3.

Fig. 1. ORTEP view of the crystal structure of compound (8).

Conclusions

These results show that the steric hindrance exerted by the substituent at position 3 plays a key role in the extent of 6 -oxidation in the starting material. In particular, we found that the size of the substituent in (2'S, 4'S, 5'R)-(-)-1-benzyl-3-(3',4'-dimethyl-5'-phenyl-oxazolidin-2'-yl)-pyridinium bromide (3) results in the exclusive generation of the chiral, non-racemic (2 'S, 4'S, 5'R)-(-)-1-benzyl-5-(3',4'-dimethyl-5'-phenyl-oxazolidin-2'-yl)-1H-pyridin-2-one (8).

Acknowledgements

D.G and A.G acknowledge the financial support from CONACyT (project \# 28906). J.L.T gratefully acknowledges a Ph.D. scholarship awarded by CONACyT (grant \#112584).

Experimental

General.

Melting points were determined in open capillaries and are uncorrected. IR spectra were recorded in KBr on a Nicolet Magna-750 spectrophotometer. NMR spectra were measured on a Jeol 400 MHz . spectrometer, using TMS as the internal standard. ${ }^{1} H-N M R$ assignments were confirmed by extensive use of ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ correlation techniques. Optical rotation was measured on a Perkin-Elmer Polarimeter M241. X-ray diffractions were measured on a Siemens P4/PC diffractometer.

Preparation of Chiral Pyridinium Salt (1).

To a solution of 1-(2,4-dinitro-phenyl)-3-hydroxymethyl-pyridinium chloride at $70^{\circ} \mathrm{C}(3.0 \mathrm{~g}, 9.64$ mmol) in vigorously stirred n-butanol (150 mL), a solution of (R)-(+)-1-phenyl-ethylamine ($1.16 \mathrm{~g}, 9.64$ mmol) in n-butanol (50 mL) was added dropwise over a period of 15 min and the mixture was then refluxed for 12 h . Thereafter, the solvent was removed in vacuo, affording a viscous residue, which was dissolved in water (50 mL), filtered and the water solution washed with dichloromethane ($5 \times 20 \mathrm{~mL}$). To the 2,4-dinitroaniline-free water solution, toluene (75 mL) was added. The toluene-water azeotrope was removed under reduced pressure, affording $1\left(2.40 \mathrm{~g}, 80 \%\right.$ yield), after column chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 100: 0 ; 99: 1 ; 98: 2 ; 97: 3$ and 95:5 v/v).

Spectral Data.

Chiral Pyridinium Salt (1). Oil; $[\alpha]_{\mathrm{D}}+12.3$ ($\mathrm{c}=2, \mathrm{MeOH}$); IR: $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3345-3300,2923$, 1636, 1058. ${ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{ppm}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{JHz}\right): 8.97(\mathrm{H}-2, \mathrm{~s}) ; 8.91$ (H-6, d, 6.05$) ; 8.56$ (H-4, d, 7.97); 8.08 (H$5, \mathrm{t}, 7.97,6.05) ; 7.55-7.40(5 \mathrm{H}, \phi-\mathrm{H}) ; 6.20(\mathrm{H}-1 ', \mathrm{q}, 7.03) ; 4.85(2 \mathrm{H}-7, \mathrm{~s}) ; 2.02\left(3 \mathrm{H}-2^{\prime}, \mathrm{d}, 7.03\right) .{ }^{13} \mathrm{C}$ NMR: δ (ppm, $\mathrm{CD}_{3} \mathrm{OD}$): C-2, 145.98; C-6, 145.23; C-3, 143.21; C-4, 142.48; C-3', 138.79; C-6', 131.78; 2C-4', 130.90; C-5, 129.50; 2C-5', 128.78; C-1', 72.50; C-7, 61.38; C-2', 21.03.

General Procedure for Synthesis of Pyridinium Salts (2) and (3).

A solution of pyridine-3-carbaldehyde protected with ethane-1,2-diol or (1R, 2S)-(-)-2-methylamino-1-phenyl-propan-1-ol (1.0 eq) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was cooled to $\mathrm{O}^{\circ} \mathrm{C}$ and a solution of
benzyl bromide (1.1 eq) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise over a period of 30 min with stirring. After maintaining the temperature at $35^{\circ} \mathrm{C}$ for 12 h the reaction was complete, as evidenced by by TLC monitoring $\left(\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 97: 3 \mathrm{v} / \mathrm{v}\right)$. Average yields of pyridinium salts (2) and (3) were 85% and 90% respectively after column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 100: 0 ; 99: 1\right.$ and $\left.98: 2 \mathrm{v} / \mathrm{v}\right)$.

Spectral Data.

Pyridinium Salt (2). Oil. IR: $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3422-3400,2897,1636,1105 ;{ }^{1} \mathrm{H}$ NMR: δ ($\mathrm{ppm}, \mathrm{CD}_{3} \mathrm{OD}$, JHz): 9.91 (H-6, d, 5.1); 9.57 (H-2, s); 8.42 (H-4, d, 7.7); 8.08 (H-5, t, 6.0); 7.72 (2H-9, m); 7.34 ($2 \mathrm{H}-10$ and $\mathrm{H}-11, \mathrm{~m}) ; 6.36(2 \mathrm{H}-7, \mathrm{~m}) ; 6.02(\mathrm{H}-2 \mathrm{l}, \mathrm{s}) ; 4.08\left(2 \mathrm{H}-4 \mathrm{l}, 2 \mathrm{H}-5\right.$ ', td, 11.2, 8.0). ${ }^{13} \mathrm{C}$ NMR: $\delta(\mathrm{ppm}$, $\mathrm{CD}_{3} \mathrm{OD}$): C-2, 146.20; C-6, 143.80; C-3, 140.10; C-8, 132.80; C-11, 129.87; 2C-10, 129.71; 2C-9, 129.50; C-4; C-5, 128.34; C-2', 99.80; C-4'; C-5', 66.00; C-7, 64.20.

Chiral Pyridinium Salt (3). Crystallized from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CHCl}_{3}$, mp. $153-155^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-58.4$ ($\mathrm{c}=2$, MeOH); IR: ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3445-3400, 2977, 2937, 1457; ${ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{ppm}, \mathrm{CDCl}_{3}\right.$, JHz): 10.04 (H-6, d, 5.60); 9.69 (H-2, s); 8.63 (H-4, d, 7.60); 8.12 (H-5, dd, 6.40, 1.30); $7.75(2 \mathrm{H}-9, \mathrm{~m}) ; 7.39(2 \mathrm{H}-10$ and $\mathrm{H}-$ $11, \mathrm{~m}$); 7.30 ($2 \mathrm{H}-9{ }^{\prime}, \mathrm{H}^{\prime}-11^{\prime}, \mathrm{m}$); 7.18 ($2 \mathrm{H}-10^{\prime}, \mathrm{m}$); 6.38 ($2 \mathrm{H}-7, \mathrm{AB}, 22.4,13.2$); 5.14 (H-5', d, 8.0); 5.07 (H-2', s); $3.11\left(\mathrm{H}-4^{\prime}, \mathrm{m}\right) ; 2.32\left(3 \mathrm{H}-6{ }^{\prime}, \mathrm{s}\right) ; 0.71$ (3H-7', d, 6.24). ${ }^{13} \mathrm{C}$ NMR: $\delta\left(\mathrm{ppm}, \mathrm{CDCl}_{3}\right): \mathrm{C}-2,145.93$; C-6, 144.80; C-3, 144.18; C-4, 140.80; C-8, 138.23; C-8', 132.94; C-5, 130.10; 2C-9, 2C-10, C-11, 2C9', 2C-10', C-11', 129.79 to 127.59; C-2', 93.82; C-5', 83.22; C-7, 64.44; C-4', 63.88; C-6', 36.59; C-7', 15.28.

General Procedure for Synthesis of $\mathbf{1 H}$-pyridin-2-ones (4+5), (6+7) and (8).
A stirred solution of the corresponding pyridinium salt (4.0 mmol) in water (25 mL) was cooled to $5^{\circ} \mathrm{C}$ and a solution of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(11.0 \mathrm{eq})$ in water (30 mL) was added dropwise over a period of 1 h . Then, a solution of $\mathrm{KOH}(15.8 \mathrm{eq})$ in water (10 mL) was added dropwise over 30 min . Toluene (40 mL) was added and the mixture warmed at $40^{\circ} \mathrm{C}$ for 30 min . After maintaining the temperature at $40^{\circ} \mathrm{C}$ for 2 h the reaction was complete, as indicated by $\mathrm{TLC}\left(\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 99: 1 \mathrm{v} / \mathrm{v}\right)$. The organic layer was separated and the aqueous solution extracted with dichloromethane ($4 \times 50 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The mixture was purified and separated by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 100: 0 ; 99: 1\right.$ and $\left.98: 2 \mathrm{v} / \mathrm{v}\right)$. Overall yields: (4+5), $90 \%(\mathbf{4}, 63 \% / \mathbf{5}, 27 \%) ;(\mathbf{6}+\mathbf{7}), 92 \%(6,73.6 \% / 7,18.4 \%)$ and $97 \%(8)$.

Spectral Data.

Chiral 1H-pyridin-2-one (4): Oil. $[\alpha]_{\mathrm{D}}=+15.82\left(\mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3550-3200, 2926,

(H-6, d, 1.80); 6.51 (H-3, d, 9.12); 6.36 (H-1', q, 7.32); 4.26 ($2 \mathrm{H}-7, \mathrm{~s}$); 1.66 ($3 \mathrm{H}-2$ ', d, 7.32). ${ }^{13} \mathrm{C}$ NMR: $\delta\left(\mathrm{ppm}, \mathrm{CDCl}_{3}\right):$ C-2, 162.00; 2C-4', 140.03; C-4, 139.51; C-6, 132.25; 2C-4', 128.93; C-6', 128.12; 2C5', 127.47; C-3, 120.55; C-5, 119.88; C-7, 61.90; C-1', 52.65 and C-2', 19.13.

Chiral 1H-pyridin-2-one (5): Oil. $[\alpha]_{\mathrm{D}}=+27.61\left(\mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3500-3200, 3062, 2979, 1645, 1581, 1555. ${ }^{1} \mathrm{H}$ NMR: δ (ppm, CDCl_{3}, J Hz): 7.36-7.28 ($\phi-\mathrm{H}, 5 \mathrm{H}, \mathrm{m}$); 7.25 (H-4, d, 6.24); 7.08 (H-6, d, 6.96); 6.42 (H-1', q, 7.32); 6.14 (H-5, t, 6.96); 4.58 ($2 \mathrm{H}-7, \mathrm{~s}$); 1.70 (3H-2', d, 7.32). ${ }^{13} \mathrm{C}$ NMR: δ (ppm, CDCl_{3}): C-2, 162.39; C-3', 140.02; C-4, 135.46; C-6, 133.14; C-3, 131.23; 2C-4', 128.96; C-6', 128.15; 2C-5', 127.46; C-5, 106.54; C-7, 62.97; C-1', 52.68 and C-2', 19.21.

1H-Pyridin-2-one (6): Oil. IR (KBr, cm^{-1}): 3450-3400, 2925, 2880, 1669, 1607, 1544. ${ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{ppm}, \mathrm{CDCl}_{3}, \mathrm{JHz}\right): 7.41(\mathrm{H}-4, \mathrm{dd}, 9.16,2.56) ; 7.31(\mathrm{H}-6, \mathrm{~s}) ; 7.30(2 \mathrm{H}-9, \mathrm{~m}) ; 7.29(2 \mathrm{H}-10, \mathrm{~m}) ; 7.28$ (H-11, m); 6.63 (H-3, d, 9.16); 5.49 (H-2', s); $5.12(2 \mathrm{H}-7, \mathrm{~s}) ; 3.97\left(2 \mathrm{H}-4{ }^{\prime}, 2 \mathrm{H}-5{ }^{\prime}, \mathrm{A}_{2} \mathrm{X}_{2}, 8.8\right) .{ }^{13} \mathrm{C}$ NMR: δ (ppm, CDCl_{3}): C-2, 162.51; C-4, 137.82; C-6, 136.29; C-8, 136.20; 2C-10, 129.0; 2C-9; C-11, 128.19; C-3 121.39; C-5, 115.55; C-2', 101.54; C-4'; C-5', 65.35; C-7, 53.52.

1H-Pyridin-2-one (7): Oil. IR (KBr, cm^{-1}): 3450-3400, 2925, 2880, 1650, 1591, 1559. ${ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{ppm}, \mathrm{CDCl}_{3}, \mathrm{JHz}\right): 7.59(\mathrm{H}-4, \mathrm{dd}, 6.76,2.2) ; 7.31(\mathrm{H}-11, \mathrm{~m}) ; 7.30(2 \mathrm{H}-9$ and $2 \mathrm{H}-10, \mathrm{~m}) ; 7.28(\mathrm{H}-6$, dd, 6.76, 1.84); 6.16 (H-5, t, 6.76); $6.00(\mathrm{H}-2 \mathrm{l}, \mathrm{s}) ; 5.14(2 \mathrm{H}-7, \mathrm{~s}) ; 4.05\left(2 \mathrm{H}-4{ }^{\prime}\right.$ and $2 \mathrm{H}-5$ ', dt, 15.4, 4.03, 1.84). ${ }^{13} \mathrm{C}$ NMR: $\delta\left(\mathrm{ppm}, \mathrm{CDCl}_{3}\right): \mathrm{C}-2,161.51 ; \mathrm{C}-4,137.74 ; \mathrm{C}-3, \mathrm{C}-6,136.41 ; 2 \mathrm{C}-10,128.97 ; 2 \mathrm{C}-9$, C11, 128.51; C-8, 128.16; C-5, 105.56; C-2', 99.51; C-4'; C-5', 65.37 and C-7, 51.93.

Chiral 1H-pyridin-2-one (8): Crystallized from $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CHCl}_{3}, \mathrm{mp}=144^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}=-6.1\left(\mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3450-3400, 2947, 2892, 1667, 1610, $1541 .{ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{ppm}, \mathrm{CDCl}_{3}, \mathrm{JHz}\right): 7.67(\mathrm{H}-4$, dd, 9.32, 2.2); 7.45 (H-6, d, 2.2); 7.33-7.30 (2ф-H, 10H, m); 6.69 (H-3, d, 9.52); 5.16 (2H-7, AB, 23.98, 14.28); 5.06 (H-5', d, 8.04); 4.41 (H-2', s); 2.90 (H-4', qd, 8.4, 6.6); 2.13 (3H-6', s); 0.73 (3H-7', d, 6.6). ${ }^{13} \mathrm{C}$ NMR: $\delta\left(\mathrm{ppm}, \mathrm{CDCl}_{3}\right): \mathrm{C}-2,163.03 ; \mathrm{C}-4,139.33 ; \mathrm{C}-6,137.65$; C-8, C-8', 136.25; C-11, C11', 129.02; 2C-10, 2C-10', 128.18; 2C-9, 2C-9', 128.10; C-3, 121.47; C-5, 116.79; C-2', 95.96; C-5', 82.28; C-4', 63.67; C-7, 52.13; C-6', 35.74; C-7', 15.14.

X-ray structure of (8) Crystal data: $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}, \mathrm{M}_{\mathrm{W}}=360.44$, monoclinic, space group $\mathrm{P} 21, \mathrm{Z}=2$, $\mathrm{a}=5.443$ (1) $\AA, \mathrm{b}=8.634$ (1) $\AA, \mathrm{c}=21.073$ (2) $\AA, \beta=96.23$ (1) $\cdot, \mathrm{V}=984.4$ (2) $\AA^{3}, \mathrm{D}_{\mathrm{calc}}=1.216 \mathrm{~g}$ $\mathrm{cm}^{-3}, \mathrm{~T}=293 \mathrm{~K}, \mathrm{R}_{1}=0.041, \mathrm{wR}_{2}=0.101$ for 2608 reflections with $\mathrm{I}>2 \sigma(\mathrm{I}) .\left[\mathrm{R}_{1}=0.043, \mathrm{wR}_{2}=0.104\right.$ for all 3120 independent reflections].

References and Notes

1. (a) Coffen, D. L.; Hengartner, U.; Katonak, A.; Mulligan, M. E.; Burdick, D. C.; Olson, G. L.; Todaro, L. J. J. Org. Chem. 1984, 49, 5109; (b) Amat, M.; Llor, N.; Hidalgo, J.; Hernández, A.;

Bosch, J. Tetrahedron Asymmetry 1996, 7, 4, 977 and references cited therein; (c) Kuethe, J. T.; Padwa, A. Tetrahedron Lett. 1997, 38, 1505 and references therein; (d) Mabic, S.; Castagnoli, Jr. N. J. Org. Chem. 1996, 61, 309; (e) Munchhof, M. J.; Meyers A. I. J. Org. Chem. 1995, 60, 7086 (f) Möhrle, H.; Weber, H. Tetrahedron 1970, 26, 2953 and references cited therein.
2. Micouin, L.; Bonin, M.; Cherrier, M-P.; Mazurier, A.; Tomas, A.; Quirion, J-Ch.; Husson, H-P. Tetrahedron 1996, 52, 22, 7719 and references therein.
3. Prill, E. A.; McElvain Org. Syn. 1943, 2, 419.
4. Becher, I. Synthesis 1980, 589.
5. (a) Fujii, T.; Yoshifuji, S.; Mishishita, K.; Mitsukushi, M.; Yoshida, K. Chem. Pharm. Bull. 1973, 20, 2695 and references cited therein; (b) Gonzalez- Bello, C.; Abell, C.; Leeper, F. J. J. Chem. Soc. Perkin Trans.1. 1997, 1017; (c) Cooksey, C. J.; Johnson, M. D. J. Chem. Soc. B. 1968, 10, 1191; (d) Ruchirawat, S.; Sunkul, S.; Thbtaranonyh, Y. Tetrahedron Letters 1977, $27,2335$.
6. Buurman, D. J.; van der Plas, H. C. J. Heterocyclic Chem. 1986, 23, 1015.
7. Cotin, R. C.; Morrow, J. C.; Rapoport, H. J. Org. Chem. 1976, 41, 535.
8. Uchida, H.; Nishida, A.; Nakagawa, M. Tetrahedron Letters 1999, 40, 113.
9. Gnecco, D.; Marazano, C.; Enríquez, R. G.; Terán, J.L.; Sanchez, M. R.; Galindo, A. Tetrahedron Asymmetry 1998, 9, 2027
10. (a) Wong, Y. S.; Marazano, C.; Gnecco, D.; Genisson, Y.; Das, B. C. J. Org. Chem. 1997, 62, 729;
(b) Genisson, Y.; Marazano, C.; Mehmandoust, M.; Gnecco, D.; Das, B.C. Synlett. 1992, 431.
11. Tlekhusezh, M. A.; Makuilov, R. V.; Badovskaya, L. A. Molecules 2000, 5, M141.
12. Sheldrick, G. M. SHELX-97. Program for Refinement of Crystal Structures. University of Göttingen, Germany 1997.

Sample Availability: Available from the authors.
© 2000 by Molecular Diversity Preservation International (MDPI). Reproduction permitted for noncommercial purposes.

