Crystal and molecular structure of cis-Dichlorobis(triphenylphosphite) Platinum(II)

Seyyed Javad Sabounchei * and Ali Naghipour

Chemistry. Dept., Science Faculty, Bu-Ali-Sina University Hamadan, Iran
*Author to whom correspondence should be addressed; e-mail: jsabounchei@basu.ac.ir

Received: 5 December 2000; in revised form 26 August 2001 / Accepted: 27 August 2001 / Published: 31 August 2001

Abstract

The single crystal structure of cis-dichlorobis(triphenyphosphite) platinum(II), $\left[\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{2}\right]$ has been determined. This complex crystallises in the orthorhombic space group, $\mathrm{P} 2_{1} 2_{1} 2_{1}$ with cell constant, $\mathrm{a}=10.4135(13), \mathrm{b}=14.0635(16), \mathrm{c}=23.505(3) \AA$ and $\mathrm{v}=3448.3(7) \AA^{3}$. The $\mathrm{Pt}_{\mathrm{Cl}}^{1} 1$ and $\mathrm{Pt}^{2}-\mathrm{Cl}_{2}$ distances are $2.3390(10) \AA$ and $2.3256 \AA$, These data together with bond angles suggest a distorted square planar geometry for this complex with two chlorine ligands in a cis configuration.

Keywords: Crystal structure, Molecular structure, Triphenylphosphite ligands, Platinum complex

Introduction

In spite of the extensive structural studies on platinum and palladium complexes containing a variety of P-donor ligands [1,2], X-ray structure analyses of platinum derivatives containing triphenylphosphite derivatives are scarce. To the best of our knowledge no such determinations of the
title compound have been reported so far. We have recently reported a new procedure for the synthesis of a palladium complex [3] and herein we describe the synthesis and structure determination of an analogous platinum complex.

Results and discussion

Cis-dichlorobis(triphenylphophite)platinum, $\left[\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{2}\right]$, (1) has been studied in solution This complex was synthesised using a new method but the IR and NMR data are in excellent agreement with an earlier conclusion [1]. However, relatively little work has been done on structural determinations of this type of complex and this lack of information is probably due to difficulty experienced in crystallising the compound from the ethanol reaction solution [4,5]. This work describes the new method of the preparation and characterisation of (1). The structure of (1) is shown in Figure 1.

Figure1. Molecular structure of $\left[\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{2}\right]$ showing the atom numbering scheme used.

Crystal data, structural refinement are summarised in Table 1.

Table 1. Crystal data and structure refinement

Identification code	jsal
Empirical formula	$\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Pt}$
Formula weight	886.59
Temperature	213(2) K
Wavelength	$0.71073 \mathrm{~A}^{\circ}$
Crystal system, space group	orthorhombic, P $2_{1} 2_{1} 2_{1}$
Unit cell dimensions	$\begin{aligned} & \mathrm{a}=10.4315(13) \text { Á alpha }=90 \mathrm{deg} . \\ & \mathrm{b}=14.0635(16) \text { Á beta }=90 \mathrm{deg} . \\ & \mathrm{c}=23.505 \quad(3) \text { Á gamma }=90 \mathrm{deg} . \end{aligned}$
Volume	3448.3 (7) Á 3
Z, calculated density	$4,1.708 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$4.164 \mathrm{~mm}^{-1}$
F (000)	1744
Crystal size	$0.68 \times 0.20 \times 0.16 \mathrm{~mm}$
Theta range for data collection	1.73 to 24.26 deg.
Index ranges	$-11<=\mathrm{h}<11,-16<=\mathrm{k}<=16,-26<=1<=26$
Reflections collected / unique	22003/5449 [R(int) $=0.0534$]
Completeness to 2theta $=24.26$	98.0\%
Max. and min. transmission	0.5554 and 0.1640
Refinement method	full-matrix least-squares on F^{2}
Data / restraints / parameters	5449 / 0 /424
Goodness-of-fit on F^{\wedge}	0.943
Final r indices [$\mathrm{l}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R}_{1}=0.0203, \mathrm{WR}_{2}=0.0410$
R indices (all data)	$\mathrm{R}_{1}=0.0280, \mathrm{WR}_{2}=0.0425$
Absolute structure parameter	-0.018(5)
Largest diff. peak and hole	0.559 and -0.783 e. A^{-3}
Absorption correction	numerical (X-SHAPE : Stoe, 1997)
	$\mathrm{T}_{\text {min }}=0.1640, \mathrm{~T}_{\text {max }}=0.5554$
	22003 measured reflections
	5449 independent reflections
	4677 reflections with >2 sigma(I
	$\mathrm{R}_{\text {int }}=0.0534$

The more important bond lengths and angles together with references are presented in Table 2.
Table 2. Selected distances and angles for $\left[\mathrm{PtCl}_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{2}\right]$.

Distances (Á)			
$\mathrm{O}_{1}-\mathrm{P}_{1}$	1.579(3)	$\mathrm{O}_{6}-\mathrm{P}_{2}$	1.577(3)
$\mathrm{O}_{2}-\mathrm{P}_{2}$	1.589(3)	$\mathrm{P}_{1}-\mathrm{Pt} 1$	2.1985(2)
$\mathrm{O}_{3}-\mathrm{P}_{1}$	1.484(3)	$\mathrm{P}_{2}-\mathrm{Pt}_{1}$	2.1998 (10)
$\mathrm{O}_{4}-\mathrm{P}_{2}$	1.570(3)	$\mathrm{Cl}_{1}-\mathrm{Pt}_{1}$	2.3390 (10)
$\mathrm{O}_{5}-\mathrm{P}_{2}$	1.589(3)	$\mathrm{Cl}_{2}-\mathrm{Pt}_{1}$	2.3256 (11)
Angles (${ }^{\circ}$)			
$\mathrm{O}_{1}-\mathrm{P}_{1}-\mathrm{O}_{2}$	104.69(17)	$\mathrm{O}_{4}-\mathrm{P}_{2}-\mathrm{Pt}_{1}$	117.27(14)
$\mathrm{O}_{1}-\mathrm{P}_{1}-\mathrm{O}_{3}$	98.42(19)	$\mathrm{O}_{5}-\mathrm{P}_{2}-\mathrm{Pt}_{1}$	111.30(13)
$\mathrm{O}_{2}-\mathrm{P}_{1}-\mathrm{O}_{3}$	103.42(17)	$\mathrm{O}_{6}-\mathrm{P}_{2}-\mathrm{Pt}_{1}$	119.44(13)
$\mathrm{O}_{1}-\mathrm{P}_{1}-\mathrm{Pt}_{1}$	118.46(12)	$\mathrm{P}_{1}-\mathrm{Pt}_{1}-\mathrm{P}_{2}$	93.56(4)
$\mathrm{O}_{2}-\mathrm{P}_{1}-\mathrm{Pt}_{1}$	113.57(12)	$\mathrm{P}_{1}-\mathrm{Pt}_{1}-\mathrm{Cl}_{2}$	177.20(4)
$\mathrm{O}_{3}-\mathrm{P}_{1}-\mathrm{Pt}_{1}$	116.12(14)	$\mathrm{P}_{1}-\mathrm{Pt}_{1} \mathrm{Cl}_{1}$	89.38(4)
$\mathrm{O}_{4}-\mathrm{P}_{2}-\mathrm{O}_{5}$	104.7(2)	$\mathrm{P}_{2}-\mathrm{Pt}_{1}-\mathrm{Cl}_{2}$	88.58(4)
$\mathrm{O}_{4}-\mathrm{P}_{2}-\mathrm{O}_{6}$	96.90(18)	$\mathrm{P}_{2}-\mathrm{Pt}_{1}-\mathrm{Cl}_{1}$	176.93(4)
$\mathrm{O}_{5}-\mathrm{P}_{2}-\mathrm{O}_{6}$	105.27(18)	$\mathrm{P}_{1}-\mathrm{Pt}_{1}-\mathrm{Cl}_{2}$	88.51(4)

Data collection: EXPOSE [5]. Cell refinement: CELL [6]. Data reduction: INTEGRATE [7]. Program(s) used to solve structure: [8]. Program(s) used to refine structure: SHELXL97 [9]. Molecular graphic: ORTEP3 (Farrugia, 1997).

Atomic coordinates are given in Table 3.
Table 3. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(A^{2} \times 10^{3}\right) U(e q)$ is defined as one third of the trace of the orthogonalized Uij tensor.

	X	Y	Z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{C}(1)$	$-2590(4)$	$790(3)$	$676(2)$	$23(1)$
$\mathrm{C}(2)$	$-3845(4)$	$792(3)$	$527(2)$	$27(1)$
$\mathrm{C}(3)$	$-4399(5)$	$1648(4)$	$360(2)$	$38(1)$
$\mathrm{C}(4)$	$-3686(5)$	$2466(4)$	$354(2)$	$33(1)$
$\mathrm{C}(5)$	$-2407(5)$	$2449(3)$	$506(2)$	$29(1)$
$\mathrm{C}(6)$	$-1838(4)$	$1607(3)$	$666(2)$	$29(1)$
$\mathrm{C}(7)$	$-1961(4)$	$353(3)$	$2097(2)$	$29(1)$

C(8)	-2141 (4)	-373(3)	2478(2)	33(1)
C(9)	-3208(6)	-338(4)	2833(2)	43(2)
$\mathrm{C}(10)$	-4054(6)	411(4)	2806(3)	50(2)
$\mathrm{C}(11)$	-3837(6)	1135(4)	2425(3)	45(2)
$\mathrm{C}(12)$	-2744(5)	1116(4)	2075(2)	37(1)
C(13)	-363(4)	-2130(3)	1175(2)	27(1)
$\mathrm{C}(14)$	-472(6)	-2386(4)	629(3)	43(2)
$\mathrm{C}(15)$	169(7)	-3192(4)	440(3)	59(2)
C(16)	863(8)	-3722(4)	806(3)	59(2)
C(17)	940(9)	-3467(4)	1371(3)	51(2)
C(18)	327(6)	-2650(4)	1571(3)	37(2)
$\mathrm{C}(19)$	1955(5)	1924(3)	1511(2)	29(1)
C(20)	2633(7)	2444(4)	1139(3)	60(2)
C(21)	2063(9)	3343(5)	949(3)	68(2)
C(22)	900(10)	3581(5)	1160(4)	59(2)
C(23)	272(8)	3078(5)	1545(4)	60(2)
C(24)	793(6)	2243(4)	1729(3)	45(2)
C(25)	2115(5)	-548(3)	2526(2)	26(1)
C(26)	1685(4)	120(5)	2905(2)	36(1)
C(27)	2154(5)	107(5)	3455(2)	41(1)
C(28)	3020(5)	-574(4)	3614(2)	39(1)
C(29)	3433(5)	-1243(4)	3231(2)	37(1)
C(30)	2986(5)	-1238(3)	2681(2)	30(1)
C(31)	4158(4)	-1167(3)	1316(2)	24(1)
C(32)	5391(5)	-1294(4)	1486(3)	38(1)
C(33)	5971(6)	-2158(4)	1380(3)	51(2)
C(34)	5323(5)	-2877(4)	1112(3)	43(2)
C(35)	4070(6)	-2743(3)	951(2)	38(1)
C(36)	3466(5)	-1882(4)	1050(2)	32(1)
$\mathrm{O}(1)$	-2095(3)	-105(3)	865(1)	$26(1)$
$\mathrm{O}(2)$	-868(3)	348(2)	1741(1)	26(1)
$\mathrm{O}(3)$	-1010(3)	-1320(2)	1391(1)	30(1)
$\mathrm{O}(4)$	2427(3)	1063(2)	1730(2)	36(1)
$\mathrm{O}(5)$	1607(3)	-558(2)	1966(1)	28(1)
$\mathrm{O}(6)$	3653(3)	-252(2)	1432(1)	24(1)
$\mathrm{P}(1)$	-772(1)	-267(1)	1176(1)	22(1)
$\mathrm{P}(2)$	2200(1)	53(1)	1446(1)	22(1)

$\mathrm{Cl}(1)$	$-175(1)$	$-72(1)$	$-151(1)$	$30(1)$
$\mathrm{Cl}(2)$	$2851(1)$	$175(1)$	$153(1)$	$32(1)$
$\mathrm{Pt}(1)$	$1005(1)$	$-26(1)$	$694(1)$	$18(1)$

The structural analysis proved a cis-distorted square planar arrangement for $\mathbf{1}$, and different interatomic distances and bond angles in comparison with $\left[\mathrm{PtCl}_{4}\right]^{2}-\mathbf{(2)}$ was observed. The Pt-P and PtCl bonds are approximately within the same range of other phosphine complexes [1,2], but the $\mathrm{Pt}-\mathrm{Cl}$ distances are significantly shorter than Pt-P (see Table 3). This causes a big distortion which leads to asymmetric structure and is much bigger than what we observed in cis- $\left[\mathrm{PdCl}_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{2}\right]$ (3) structure [3]. Evidently the small difference between $\mathrm{Cl}_{2}-\mathrm{Pt}_{1}-\mathrm{P}_{1}\left[177.20^{\circ}\right.$ (4)] and $\mathrm{Cl}_{1}-\mathrm{Pt}_{1}-\mathrm{P}_{2}\left[176.93^{\circ}(4)\right]$ angles also confirms the distorted square planar geometry of $\mathbf{1}$. This is in contrast with what has been observed in solution [5]. Discussion of bond-length in $\mathbf{1}$ [in comparison with $\mathbf{2}$ containing a C_{2} axis] in relation to the above configuration is quite interesting. We noticed that $\mathbf{1}$ with the different $\mathrm{P}_{1}-\mathrm{Pt}_{1}-\mathrm{P}_{2}$ [93.56 (4)], $\mathrm{P}_{1}-\mathrm{Pt}_{1}-\mathrm{Cl}_{1}\left[89.38^{\circ}\right.$ (4) $], \mathrm{P}_{2}-\mathrm{Pt}_{1}-\mathrm{Cl}_{2}\left[88.58^{\circ}\right.$ (4)] and $\mathrm{Cl}_{1} \mathrm{Pt}_{1}-\mathrm{Cl}_{2}\left[88.51^{\circ}\right.$ (4)] angles is completely asymmetrical. Not only it changes from $D_{4 h}$ and $C_{2 v}$ symmetry from 2 and $\mathbf{3}$ respectively but it is also consistent with C_{1} symmetry structure. These can be taken probably as a structural confirmation of the effect of different metal atoms in $\mathbf{1}$ and $\mathbf{3}$ or a larger proportion of σ-donor character in the Pt-P bonds for $\mathbf{1}$ in comparison with the Pd-P bonds of $\mathbf{3}$, which results in a greater strict effect of the phosphite ligands. All the bond lengths (Table 2) are approximately within the normal range compared with other phosphine complexes [1,2]. Finally as one can see the $\mathrm{P}_{1}-\mathrm{Pt}_{1}-\mathrm{Cl}_{2}$ angle $\left[88.51^{\circ}(4)\right]$ is narrower than the $\mathrm{P}_{1}-\mathrm{Pt}_{1}-\mathrm{P}_{2}\left[93.56^{\circ}(4)\right]$ angle and this is apparently due to the steric effect of phosphite ligands.

Acknowledgements

We thank the University of Bu-Ali-Sina for grant support to A.N and Dr. Jamie F. Bickley, University of Liverpool, UK, for the crystal structure analysis.

Experimental

Refluxing PtCl_{2} and POPh_{3} at $60^{\circ} \mathrm{C}$ in a molar ratio of 1:2 in toluene for 6 h . gave a yellowish precipitate, which was extracted from the obtained suspension. Colourless crystals suitable for X-ray diffraction analysis were obtained by slow addition of methanol to a chloroform solution containing the compound. Crystallographic data was recorded on a Stoe IPDS diffractometer using graphite monochromated Mok α-radiation ($\lambda=0.71073 \AA$), $T=200 \mathrm{~K}$. Structures were solved by direct methods and refined by full-matrix least squares against F^{2} using all data. Supplementary material, comprising
crystallographic experimental details, positional parameters for all atoms, bond distances and angles, anisotropic thermal parameters and hydrogen atoms coordinates has been deposited with the Cambridge Crystallographic Database. The deposition code is CCDC144750.

References

1. Kitano, Y.; Ashida, T. Acta Crystallogr., 1983, C39, 1015.
2. Davies, J.A.; Pinkerton, A.A.; Staples, R.J. Acta Crystallogr., 1990, C48, 48.
3. Sabounchei, S.J.; Naghipour, A; Bickley, J.F. Acta Crystallgr., 2000, C56, 280.
4. Allen, F.A.; Pidcok, A.; Waterhouse, C.R. J. Chem. Soc. (A), 1970, 2087.
5. Ahmed, N.; Ainscough, E.W.; James, T.A.; Robinson, S.D. J. Chem. Soc. Dalton Trans., 1973, 1148.
6. EXPOS, Stoe IPDS Software for Publication, version 2.79; Stoe IPDS, Darmstadt, Germany, Stoe 1997a.
7. Cell Program for Cell Refinement; Version 2.79, Stoe IPDS, Darmstadt, Germany, Stoe 1997b.
8. INTEGRATE Program for Reduction of IPDS Data, Version 2.79 Stoe IPDS, Darmstadt, Germany Stoe 1997c.
9. Sheldrick, G.M. Acta Crytallogr., 1990, A46, 467.
10. Sheldrick, G.M. SHELXL 97 release 97-1; Program for Refinement of [3d] Crystal Structure, University of Göttingen, Germany, 1997.

Sample Availability: The product reported in this paper is available from MDPI
© 2001 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.

