

http://www.mdpi.org

Synthesis of Precursors for the Oxidative Tandem Cyclization of Diphenols to Galanthamine Analogs

Matthias Treu and Ulrich Jordis^{*}

Institute of Organic Chemistry, VUT, A-1060 Vienna, Getreidemarkt 9, Austria. Tel. +43 (1) 58801.15460, Fax +43 (1) 58801.15499.

* Author to whom correspondence should be addressed; email ujordis@pop.tuwien.ac.at

Received: 1 November 2001; in revised form 19 November 2001 / Accepted: 20 November 2001 / Published: 31 January 2002

Abstract: Methods for the preparation of 4-bromo-5-[2-(4-hydroxybenzyl)benzyl]-2-methoxyphenol and 4-bromo-5-[4-(4-hydroxyphenyl)butyl]-2-methoxyphenol are described.

Keywords: Tandem cyclization, isopropyl-ether protecting group, O-dealkylation, deoxygenation of benzyl alcohols.

Introduction

Galanthamine is an alkaloidal acetylcholinesterase inhibitor (AChEI) which has been approved in several countries for treating symptoms of Alzheimer's type senile dementia [1, 2]. In the course of our investigations into the oxidative tandem cyclization protocol [3, 4, 5, 6, 7, 8] we sought to extend this reaction type to the preparation of carbocyclic galanthamine analogs. To study this approach, we needed 4-bromo-5-[2-(4-hydroxybenzyl)benzyl]-2-methoxyphenol (9) and 4-bromo-5-[4-(4-hydroxybenzyl)benzyl]-2-methoxyphenol (13) as substrates for such oxidative tandem cyclizations.

Results and Discussion

The ketone 2 [9] was prepared in a Friedel-Crafts type reaction starting from anisole and 2-bromobenzoyl chloride (1) [10] in 89% yield. For the reduction of the carbonyl functionality of 2, borane*tert*.-butylamine complex/aluminum chloride was employed, yielding the diphenylmethane derivative 3 as a colorless oil in 77% yield. This reduction had previously been performed using $HSiEt_3/TFA$ [11]. O-demethylation using boron tribromide afforded the phenol **4** [12] in 80% yield as colorless crystals. To summarize, we have found a short and convenient synthetic pathway for the preparation of **4** in an overall yield of 55% using readily available starting materials.

Scheme 1.

The conversion of compound **4** into the corresponding isopropyl ether **5** (isopropyl bromide, potassium carbonate) was achieved with a yield of 70%. Compound **5** was then metallated using *n*-butyl lithium and afterwards quenched with 2-bromo-5-isopropoxy-4-methoxybenzaldehyde (**6**) [13] to give the alcohol **7** in 72% yield. The use of the borane-*tert*.-butylamine complex/aluminum chloride reduction system for the deoxygenation of aryl ketones has been described [14]. We have now extended this method to the reduction of benzyl alcohols and thus obtained the dibenzyl substituted benzene derivative **8** in 82% yield. The cleavage of the isopropyl ethers was accomplished using boron trichloride and gave rise to the desired diphenol compound **9** in a yield of 70% (see Scheme 1).

4-Bromo-5-[4-(4-hydroxyphenyl)butyl]-2-methoxyphenol (**13**) was prepared from 1-(3-iodopropyl)-4-isopropoxybenzene (**10**) [15], via the corresponding triphenylphosphonium salt and 2-bromo4-methoxy-5-isopropoxybenzaldehyde (6) in the presence of KOtBu. The alkene **11**, isolated in 81% yield after purification by column chromatography, was hydrogenated over palladium on carbon to give the saturated compound **12**. Deprotection of the phenolic hydroxy groups using boron trichloride gave the target compound **13** in 93% yield (see Scheme 2).

Conclusions

We have presented facile and straightforward routes for the preparation of 4-bromo-5-[2-(4-hydroxybenzyl)benzyl]-2-methoxyphenol (9) and 4-bromo-5-[4-(4-hydroxyphenyl)butyl]2-methoxyphenol (13) employing isopropyl ethers as phenol protecting groups.

Experimental

General

Melting points were determined on a Kofler melting point apparatus. ¹H- and ¹³C-NMR spectra were recorded on a Bruker AC-200 (200 MHz) pulse Fourier-transform NMR spectrometer in CDCl₃ using tetramethylsilane as an internal standard. Thin layer chromatography (TLC) was performed on precoated plates (Merck TLC aluminum sheets silica 60 F_{254}) with detection by UV light or with phosphomolybdic acid in aqueous EtOH by heating. All reactions were magnetically stirred under an argon atmosphere. MPLC (medium pressure liquid chromatography) was performed using SiO₂ (Baker), a LC-8A pump (Shimadzu), a SPD-6AV UV-detector (Shimadzu) and Büchi glass columns.

(2-Bromophenyl)-(4-methoxyphenyl)methanone (2). 2-Bromobenzoyl chloride (1) (213.0 g, 970 mmol) in dry CHCl₃ (250 mL) was added at 15 °C to anhydrous aluminum chloride (138.67 g, 1.04 mol) in dry CHCl₃ (350 mL) and the resulting mixture stirred for 15 min at ambient temperature. Anisole (125.80 g, 1.16 mol) in dry CHCl₃ (100 mL) was then added dropwise, and the mixture was stirred for 12 h at ambient temperature. 2 N HCl (250 mL) was added, the layers were separated, and the aqueous layer was extracted with CHCl₃ (3 x 200 mL). The combined organic layer was washed with 2 N HCl (3 x

300 mL), satd. NaHCO₃ (2 x 300 mL) and brine (2 x 300 mL), dried over Na₂SO₄/charcoal, filtered and concentrated *in vacuo*. The residue was recrystallized from MeOH (500 mL) to afford the title compound as colorless crystals (256.3 g, 89%), mp. 94-96 °C (lit. [9] 95-95.5 °C). TLC: $R_f = 0.6$ (9:1 petroleum ether-EtOAc). ¹H-NMR (CDCl₃): δ 7.80 (dd, J = 12.7 Hz, J = 3.2 Hz, 2H), 7.60 (d, J = 6.4 Hz, 1H), 7.25 - 7.45 (m, 3H), 6.90 (dd, J = 3.2 Hz, J = 12.7 Hz, 2H), 3.80 (s, 3H); ¹³C-NMR (CDCl₃): δ 194.3 (s), 164.0 (s), 140.9 (s), 132.9 (d), 132.5 (d), 130.7 (d), 128.9 (s), 128.6 (d), 127.1 (d), 119.3 (s), 113.8 (d), 55.4 (q).

1-Bromo-2-(4-methoxybenzyl)benzene (**3**). To anhydrous aluminum chloride (71.94 g, 541 mmol) in dry CH₂Cl₂ (1200 mL), borane-*tert*.-butylamine complex (92 g, 1.06 mmol) was added at 0°C and the mixture stirred for 1 h at this temperature. Compound **2** (102 g, 350 mmol) in dry CH₂Cl₂ (600 mL) was thenadded within 1 h and the resulting mixture was stirred for 1 h at 0 °C. 0.1 N HCl (1000 mL) was added dropwise, the layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (3 x 200 mL). The combined organic layer was washed with 2 N HCl (3 x 300 mL), satd. NaHCO₃ (2 x 300 mL) and brine (2 x 300 mL), dried over Na₂SO₄/charcoal, filtered and concentrated *in vacuo* to give **3** as a colorless oil. Yield: 75 g (77%). TLC: R_f = 0.8 (9:1 petroleum ether-EtOAc). ¹H-NMR (CDCl₃): δ 7.60 (d, *J* = 9.5 Hz, 1H), 7.05 - 7.30 (m, 5H), 6.85 (d, *J* = 9.5 Hz, 2H), 4.05 (s, 2H), 3.85 (s, 3H); ¹³C-NMR (CDCl₃): δ 158.0 (s), 140.7 (d), 132.8 (d), 131.5 (s), 130.9 (s), 129.9 (d), 127.7 (d), 127.4 (s), 124.8 (d), 113.9 (d), 55.2 (q), 40.8 (t).

4-(2-Bromobenzyl)phenol (**4**). To **3** (75 g, 271 mmol) in dry CH₂Cl₂ (600 mL), BBr₃ (48.5 g, 194 mmol) was added at – 80°C. The mixture was warmed up to ambient temperature and stirred for 12 h. 2 N HCl (200 mL) was added, the layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (3 x 200 mL). The combined organic layer was washed successively with 2 N HCl (4 x 150 mL), satd. NaHCO₃ (2 x 200 mL) and brine (2 x 200 mL), dried over Na₂SO₄/charcoal, filtered and concentrated *in vacuo*. The crude product was recrystallized from n-heptane (200 mL) to give colorless crystals of compound **4** (56.8 g, 80%), mp. 83 - 85 °C (Lit.: 85 - 85.5 °C). TLC: R_f = 0.4 (9:1 petroleum ether-EtOAc). ¹H-NMR (CDCl₃): δ 7.61 (dd, *J* = 7.0 Hz, *J* = 1.5 Hz, 1H), 7.36 - 7.04 (m, 5H), 6.82 (d, *J* = 8.3 Hz, 2H), 6.67 (b, 1H), 4.10 (s, 2H); ¹³C-NMR (CDCl₃): δ 153.6 (s), 140.6 (s), 132.7 (d), 131.8 (s), 130.9 (d), 130.1 (d), 127.7 (d), 127.4 (d), 124.7 (s), 115.3 (d), 40.8 (t).

1-Bromo-2-(4-isopropoxybenzyl)benzene (**5**). Compound **4** (56.8 g, 216 mmol), 2-bromopropane (79.75 g, 648 mmol), and freshly ground anhydrous K₂CO₃ (89.6 g, 648 mmol) were stirred in dry acetonitrile (400 mL) at 60 °C for 96 h. The mixture was filtered and evaporated *in vacuo*. The residue was dissolved in Et₂O (250 mL) and washed with water (250 mL). The aqueous layer was extracted with Et₂O (4 x 50 mL), the combined organic layer was washed with water (4 x 100 mL) and brine (1 x 300 mL), dried over Na₂SO₄, and evaporated under reduced pressure. The residue was purified by Kugelrohr distillation (115-125 °C/0.01 mbar) to afford **5** as a colorless oil (45.7 g, 70%). TLC: $R_f = 0.8$ (9:1 petroleum ether-EtOAc). Anal. Calcd for C₁₆H₁₇BrO: C, 62.96; H, 5.61. Found: C, 62.74; H,

5.49. ¹H-NMR (CDCl₃): δ 7.60 (d, J = 6.4 Hz, 1H), 7.05 - 7.30 (m, 5H), 6.85 (d, J = 6.4 Hz, 2H), 4.55 (septet, J = 6.4 Hz, 1H), 4.05 (s, 2H), 1.30 (d, J = 6.4 Hz, 6H); ¹³C-NMR (CDCl₃): δ 156.3 (s), 140.8 (d), 132.8 (s), 131.3 (s), 130.9 (d), 129.9 (d), 127.7 (s), 127.4 (d), 124.7 (d), 115.8 (d), 69.8 (d), 40.8 (t), 22.1 (q).

2-Bromo-5-isopropoxy-4-methoxyphenyl-[2-(4-isopropoxybenzyl]-phenylmethanol (7). To 5 (10.0 g, 32.76 mmol) in dry THF (100 mL) n-BuLi (21.09 mL, 33.74 mmol, 1.6 M in hexane) was added under argon at - 80 °C and the resukting mixture was stirred for 1 h at this temperature. 2-bromo-4-methoxy-5-isopropoxy-benzaldehyde (6) (9.04 g, 33.09 mmol) in dry THF (25 mL) was then added as fast as possible at - 90 °C and stirred for 2 h at ambient temperature. Satd. NH₄Cl (150 mL) was added, the mixture was concentrated to a volume of 150 mL under reduced pressure and extracted with Et₂O (5 x 50 mL). The combined organic layer was washed with satd. NH₄Cl (3 x 80 mL), water (2 x 80 mL) and brine (1 x 80 mL), dried over Na₂SO₄, and evaporated under reduced pressure. The residue was purified by MPLC (500 g SiO₂, 4:1 petroleum ether-Et₂O) to afford the title compound as a slightly yellow oil. Yield: 11.73 g (72%). TLC: R_f = 0.4 (4:1 petroleum ether-EtOAc). Anal. Calcd for C₂₇H₃₁BrO₄: C, 64.93; H, 6.26. Found: C, 64.63; H, 6.18. ¹H-NMR (CDCl₃): δ 7.10 - 7.35 (m, 3H), 7.05 (d, *J* = 6.4 Hz, 4H), 6.90 (s, 1H), 6.80 (d, *J* = 6.4 Hz, 2H), 6.25 (s, 1H), 4.25 - 4.60 (m, 2H), 4.05 (s, 1H), 4.00 (s, 1H), 3.90 (s, 3H), 1.95 (s, 1H), 1.15 - 1.40 (m, 12H); ¹³C-NMR (CDCl₃): δ 156.2 (s), 150.2 (s), 146.6 (s), 140.2 (s), 138.9 (s), 133.9 (s), 132.3 (s), 130.6 (d), 129.7 (d), 127.8 (d), 126.9 (d), 126.6 (d), 116.0 (d), 115.9 (s), 115.8 (d), 113.6 (d), 71.5 (d), 71.3 (d), 698. (d), 56.1 (q), 37.9 (t), 21.9 (q).

I-Bromo-4-isopropoxy-2-[2-(4-isopropoxybenzyl]-benzyl]-5-methoxybenzene (**8**). Borane-*tert*.-butylamine complex (11.80 g, 135.5 mmol) was added at 0 °C to anhydrous aluminum chloride (6.49 g, 48.80 mmol) in dry CH₂Cl₂ (160 mL) and the mixture stirred for 1 h at this temperature. Compound **7** (22.55 g, 45.15 mmol) in dry CH₂Cl₂ (100 mL) was then added within 1 h and stirred for 20 min at ambient temperature. 2 N HCl (150 mL) was added dropwise, the layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (3 x 100 mL). The combined organic layer was washed with 2 N HCl (3 x 150 mL), satd. NaHCO₃ (2 x 100 mL) and brine (1 x 100 mL), dried over Na₂SO₄/charcoal, filtered and concentrated *in vacuo*. The residue was purified by Kugelrohr distillation (170-180°C/0.005 mbar) to give **8** as a colorless oil. Yield: 16.95 g (82%). TLC: R_f = 0.5 (4:1 petroleum ether-EtOAc). ¹H-NMR (CDCl₃): δ 7.10 - 7.25 (m, 3H), 7.05 (d, *J* = 6.4 Hz, 2H), 6.98 (s, 2H), 6.80 (s, 1H), 6.78 (d, *J* = 12.7 Hz, 1H), 6.40 (s, 1H), 4.5 (septet, *J* = 12.7 Hz, 1H), 4.25 (septet, *J* = 12.7 Hz, 1H), 3.95 (s, 2H), 3.90 (s, 2H), 3.85 (s, 3H), 1.35 (d, *J* = 6.4 Hz, 6H), 1.25 (d, *J* = 6.4 Hz, 6H); ¹³C-NMR (CDCl₃): δ 156.1 (s), 149.4 (s), 146.5 (s), 139.4 (s), 137.9 (s), 132.1 (s), 131.7 (s), 130.3 (d), 129.7 (d), 126.5 (d), 117.9 (s), 116.0 (d), 115.1 (d), 71.5 (d), 69.8 (d), 56.2 (q), 38.3 (t), 21.9 (q).

4-bromo-5-[2-(4-hydroxybenzyl)benzyl]-2-methoxyphenol (9). To 8 (14.11 g, 29.2 mmol) in dry CH_2Cl_2 (50 mL), BCl₃ (150 mL, 150 mmol, 1 M in CH_2Cl_2) was added at -78°C and stirred for 1 h at ambient temperature. 2 N HCl (150 mL) was added dropwise, the layers were separated, and the aqueous layer

was extracted with CH₂Cl₂ (5 x 50 mL). The combined organic layer was washed with 2 N HCl (2 x 100 mL), water (2 x 100 mL) and brine (1 x 100 mL), dried over Na₂SO₄/charcoal, filtered and concentrated *in vacuo*. The residue was recrystallized from iPr₂O (50 mL) to give colorless crystals of **9** (7.81 g, 70%), mp. 119 - 123 °C. TLC: $R_f = 0.4$ (4:1 petroleum –EtOAc). Anal. Calcd for $C_{21}H_{19}BrO_3$: C, 63.17; H, 4.80. Found: C, 62.89; H, 4.79. ¹H-NMR (CDCl₃): δ 8.45 8 (s, 1H), 7.95 (s, 1H), 6.90 (d, *J* = 6.4 Hz, 3H), 6.60 - 6.80 (m, 4H), 6.50 (d, *J* = 6.4 Hz, 2H), 6.20 (s, 1H), 3.65 (s, 3H), 3.60 (s, 4H), 2.75 (s, 1H); ¹³C-NMR (CDCl₃): δ 154.9 (s), 146.0 (s), 145.2 (s), 139.5 (s), 137.7 (s), 132.0 (s), 130.8 (s), 130.8 (d), 129.6 (d), 129.5 (d), 126.3 (d), 126.2 (d), 116.7 (d), 115.2 (d), 115.1 (d), 112.9 (s), 56.0 (q), 38.1 (t), 37.9 (t).

1-Bromo-4-isopropoxy-2-[4-(4-isopropoxyphenyl)-but-1-enyl]-5-methoxybenzene (11). PPh₃ (7.13 g, 27.2 mmol) and 1-(3-iodopropyl)-4-isopropoxybenzene (10) (7.52 g, 24.7 mmol) in dry acetonitrile were stirred under reflux for 30 h. The mixture was concentrated in vacuo, the residue was crystallized from iPr₂O and triturated with Et₂O (3 x 50 mL) to yield the triphenylphosphonium salt as a colorless solid (13.8 g, 98.5%), mp. 159-161°C. This salt was suspended in dry THF (100 mL), treated with KOtBu (3.30 g, 29.4 mmol) at 5°C within 15 min and stirred for additional 15 min. 2-Bromo-5isopropoxy-4-methoxybenzaldehyde (6) (6.32 g, 23.1 mmol) was added within 15 min and stirred for 30 min at ambient temperature. The mixture was concentrated in vacuo, dissolved in iPr₂O (50 mL) and filtered. The filtrate was concentrated in vacuo, and the residue was purified by MPLC (200 g SiO₂, 95:5 petroleum ether-Et₂O) to afford compound 11 as a colorless oil (8.25 g, 82%). TLC: $R_f = 0.8$ (4:1 petroleum ether-EtOAc). ¹H-NMR (CDCl₃): δ 7.21 - 7.01 (m, 3H), 6.89 - 6.73 (m, 3H), 6.65 and 6.41 (d, J = 15.9 Hz and J = 11.4 Hz, 1H), 6.14 - 5.98 and 5.82 - 5.62 (m, 1H), 4.62 - 4.28 (m, 2H), 3.82 (s, 3H), 2.86 - 2.62 (m, 2H), 2.51 (quintet, J = 6.0 Hz, 2H), 1.48 - 1.27 (m, 12H); ¹³C-NMR (CDCl₃): δ 156.0 (s), 150.3 and 150.0 (s), 146.6 and 145.8 (s), 133.5 and 133.4 (s), 132.1 (s), 131.1 (d), 129.7 and 129.5 (d), 129.3 and 129.2 (d), 128.7 and 128.6 (s), 117.9 and 115.9 (d), 115.8 and 115.7 (d), 114.7 and 114.1 (d), 71.8 and 71.7 (d), 69.8 (d), 56.1 (q), 34.9 (t), 34.8 (t), 34.7 (t), 30.2 (t), 22.0 (q), 21.9 (q).

1-Bromo-4-isopropoxy-2-[4-(4-isopropoxyphenyl)butyl]-5-methoxybenzene (**12**). Pd (2.5 g, 10% on carbon) in MeOH (25 mL) was prehydrogenated (15 min, rt, 70 psi) using a Parr apparatus. Compound **11** (5.0 g, 11.5 mmol) in MeOH (20 mL) was added and the mixture was hydrogenated at 75 psi and rt for 48 h. The mixture was filtered, the filtrate was concentrated *in vacuo*, and the residue was purified by MPLC (100 g SiO₂, 95:5 petroleum ether-Et₂O) to give **12** as a colorless oil (4.63 g, 93%). TLC: R_f = 0.3 (2:1 petroleum ether-Et₂O). ¹H-NMR (CDCl₃): δ 7.12 (d, *J* = 7.9 Hz, 2H), 6.99 - 6.71 (m, 4H), 4.68 - 4.42 (m, 2H), 3.87 (s, 3H), 2.80 - 2.50 (m, 4H), 2.86 - 2.57 (m, 4H), 1.55 - 1.29 (m, 12H), ¹³C-NMR (CDCl₃): δ 155.8 (s), 148.5 (s), 146.9 (s), 135.1 (s), 134.4 (s), 129.1 (d), 120.7 (s), 116.6 (d), 115.7 (d), 112.0 (d), 71.3 (d), 69.7 (d), 55.9 (q), 35.1 (t), 34.7 (t), 22.0 (q), 22.0 (q).

4-Bromo-5-[4-(4-hydroxyphenyl)butyl]-2-methoxyphenol (13). BCl₃ (15 mL, 1.6 M in CH₂Cl₂) was added at -78°C to 12 (4.0 g, 11.4 mmol) in dry CH₂Cl₂ (50 mL) and the resulting mixture was stirred

for 1 h at this temperature and then for an additional 2 h at ambient temperature. Water (100 mL) was added dropwise, and the mixture was concentrated to ca. 80 mL *in vacuo*. The precipitate formed was collected by filtration and triturated with water (6 x 100 mL) and iPr₂O (2 x 10 mL) to give colorless crystals of compound **13** (3.71 g, 93%), mp. 98 - 101 °C. TLC: $R_f = 0.8$ (2:1 petroleum ether-Et₂O). ¹H-NMR (CDCl₃): δ 8.22 (b, 1H), 7.08 - 6.81 (m, 2H), 6.80 - 6.60 (m, 4H), 6.59 - 6.44 (m, 1H), 3.76 (s, 3H), 2.48 (s, 4H), 1.57 (s, 4H); ¹³C-NMR (CDCl₃): δ 154.4 (s), 145.3 (s), 144.7 (s), 135.4 (s), 133.1 (s), 128.8 (d), 119.1 (s), 114.9 (d), 114.8 (d), 110.7 (d), 55.6 (q), 34.7 (t), 34.4 (t), 30.9 (t), 30.7 (t).

References and Notes

- 1. Node, M.; Kodama, S.; Hamashima, Y.; Baba, T.; Hamamichi, N.; Nishide, K. An efficient synthesis of (±)-narwedine and (±)-galanthamine by an improved phenolic oxidative coupling. *Angew. Chem., Int. Ed.*, **2001**, *40*, 3060 3062.
- 2. Giacobini, E. Cholinesterase inhibitors for Alzheimer's disease therapy: from tacrine to future applications. *Neurochem. Int.* **1998**, *32*, 413 419.
- 3. Arisawa, M.; Tohma, H.; Kita, Y. Development of intramolecular oxidative phenolic coupling reactions using hypervalent iodine (III) reagents and their application to the synthesis of Amaryllidaceae alkaloids. *Yakugaki Zasshi, J. Pharm. Soc. Japan* **2000**, *120*, 1061 1073.
- 4. Franck, B.; Dunkelmann, G.; Lubs, H. J. Alkaloid syntheses by oxidative condensation under biogenetic conditions. IX. Synthesis of a morphinan derivative by oxidative ring closure. *Angew. Chem., Int. Ed. Engl.* **1967**, *6*, 1075 1076.
- 5. Schwartz, M. A.; Holton, R. A. Intramolecular oxidative phenol coupling. II. Biogenetic-type synthesis of (±)-maritidine. *J. Amer. Chem. Soc.* **1970**, *92*, 1090 1092.
- 6. Kametani, T.; Yamaki, K.; Yagi, H.; Fukumoto, K. Studies on the syntheses of heterocyclic compounds. CCCXV. Modified total synthesis of (-)-galanthamine through phenol oxidation. *J. Chem. Soc. C* **1969**, 2602 2605.
- Barton, D. H. R.; Kirby, G. W. Phenol oxidation and biosynthesis. V. Synthesis of galanthamine. *J. Chem. Soc.* 1962, 806 - 817.
- Kametani, T.; Seino, C.; Yamaki, K.; Shibuya, S.; Fukumoto, K.; Kigasawa, K.; Satoh, F.; Hiiragi, M.; Hayasaka, T. Syntheses of heterocyclic compounds. CCCLXXXVI. Alternative total syntheses of galanthamine and N-benzylgalanthamine iodide. *J. Chem. Soc. C* 1971, 1043 - 1047.
- 9. (a) 1,3-Dihydrospiro(isobenzofuran)ene. NL 7416115, 1975 [*Chem. Abstr.*: 84:164641]. (b) Heidenreich, J. Ueber Indoxazene. *Chem. Ber.* 1894, 27, 1452 1456.
- Munakata, K.; Tanaka, S.; Toyoshima, S. Therapy for urolithiasis with hydroxamic acids. I. Synthesis of new N-(aroyl)glycinohydroxamic acid derivatives and related compounds. *Chem. Pharm. Bull.* **1980**, 28, 2045 – 2051.
- 11. Martin, L. L.; Klioze, S. S.; Worm, M.; Crichlow, C. A.; Geyer, H. M., III; Kruse, H. Synthesis of spiro[isobenzofuran-1(3H),4'-piperidines] as potential central nervous system agents. 5.

Conformationally mobile analogs derived by furan ring opening. J. Med. Chem. 1979, 22, 1347 - 1354.

- 12. Williams, D. L. and Ronzio, A. R. A Contribution to the Total Synthesis of Alizarin. Synthesis of 1,2-Dihydroxy-9,10-anthraquinone-9-C¹⁴. *J. Org. Chem.* **1953**, *18*, 489 492.
- 13. Treu, M.; Jordis, U.; Mereiter, K. 12*H*-[2]-Benzothiepino[6,5a,5-bc]benzofuran: Synthesis of a Sulfur-Analog of Galanthamine. *Heterocycles*, **2001**, *55*, 1727 1735.
- 14. Lau, C. K.; Tardif, S.; Dufresne, C.; Scheigetz, J. Reductive deoxygenation of aryl aldehydes and ketones by tert-butylamine-borane and aluminum chloride. *J. Org. Chem.* **1989**, *54*, 491 494.
- 15. Unpublished results

Sample Availability: Samples of compounds 2, 4, 5, 9 and 13 are available from MDPI.

© 2002 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.