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Abstract: Full and unambiguous assignment of all 1H- and 13C-NMR resonances of the 
isomers due to restricted C-N amide bond rotation of N-formyl-o-toluidine and N,N�-bis-
formyl-o-tolidine in DMSO-d6 is reported. The cis-isomer predominates in the 
equilibrium mixture of both compounds as 1D-NOE difference experiments show. 
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Introduction 
 
    The Madelung indole synthesis is a method for producing these heterocycles via a base-catalyzed 
thermal cyclization of N-acyl-o-toluidides [1,2]. At the same time, it is one of the few known reactions 
by which an unsubstitued indole nucleus can be obtained [3-5]. Consequently, we decided to use this 
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reaction in order to obtain 5,5´-biindole as a starting material for the synthesis of indoloquinolizines 
with potential antitumor activity [6]. For our investigation we needed to synthesize N-formyl-o-
toluidine (2), starting from o-toluidine (1), as well as N,N�-bis-formyl-o-tolidine (5), starting from 
o-tolidine (4), in order to transform them into indole (3) and to 5,5´-biindole (6), respectively (Scheme 
1). 
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Figure 1. Aromatic part of the 1H-NMR spectrum of 2 (in DMSO-d6 solution) 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Aromatic part of the 1H-NMR spectrum of 5 (in DMSO-d6 solution) 
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Scheme 2 
 

 
 
 
 
 
    For example, in dimethylformamide (7, Scheme 2) the two methyl groups are non-equivalent due to 
the mentioned hindered rotation about the C-N bond. In the corresponding 1H-NMR spectrum two 
methyl signals are found at δ = 2.79 and 2.94, together with a singlet at δ = 8.0 for the formyl proton. 
If one saturates the methyl signal at δ = 2.94, the intensity of the formyl proton signal increases by 18 
%. When instead the other methyl signal is saturated, a decrease of 2 % is observed [18a]. In DMF the 
NOE experiments led to a correct assignment of the methyl signals. Since the signal of the isolated 
formyl proton is only enhanced when a particular one of the two methyl signals is saturated (the 
downfield one), this must correspond to the cis methyl group (trans to carbonyl group). Likewise, two 
signals for the methyl carbons are observed in the spectrum of 13C-NMR, at δ = 30 and 36, whereby 
the downfield signal corresponds to the methyl group, trans to the carbonyl group [19a]. 
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the isomers observed in DMSO-d6 solutions of N-formyl-o-toluidine (2) and N,N�-bis-formyl-o-
tolidine (5), by analyzing the spectra of 1H- and 13C-NMR, by running additional NOE experiments 
and using bidimensional spectra (COSY, HMQC, HMBC) for the full assignment of the signals. 
 
Results and Discussion 
 
    The preferred conformation solution of N-formyl-o-toluidine (2) in DMSO-d6 is the cis one, based 
on the fact that the 1H-NMR signals for the N-H and the formyl proton of the major isomer present 
appear as singlets at δ = 9.84 and 8.57 respectively, i.e. with a coupling constant J≈ 0, whereas the 
signals corresponding to the minor isomer are present as doublets at δ = 10.01 and 8.66 respectively, 
showing a coupling constant J ≈ 10.63 Hz, i.e. in the latter isomer a coupling constant of greater 
magnitude is observed, which is in accordance with the observation made for formamide (minor 
coupling constant for the cis NH-CH protons and major coupling constant for the corresponding trans 
protons) [20a, 21]. 
 

Scheme 4 
 
 
 
 
 
 
 
 
 
 
    The aforementioned observation is congruent with the one made in a series of N-monoalkyl 
substituted formamides 9 (Scheme 5) in which in their NMR spectra (mainly 13C) the cis isomer 
predominates up to 80% over the trans isomer [20b]. 
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    In the case of the N-methyl, N-ethyl- and N-tert-butylformamide signals for the formyl protons of 
the cis isomer (d, J = 0.3-2 Hz) as well as of trans isomer (d, J = 12 Hz) could be clearly observed in 
the 1H-NMR spectra (CDCl3) which coincides again with the observation made for formamide. When 
analyzing the 13C-NMR spectra of these ten monoalkylamides it can be seen that the signals of the 
carbonyl carbon and those of the first two carbons of the alkyl substituent of the trans isomer always 
appear downfield compared to the corresponding signals of the cis isomer. Additional information 
about the configuration of the isomers of 2 (and also of 5) can be obtained with help of NOE 
experiments. Figures 3-4 show the NOE experiments, in which the N-H signals of both isomers of 2 
and 5 are saturated. 
 

Figure 3. NOE Experiment on 2. 
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Figure 4. NOE Experiment on 5. 
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    The presence of the conformations II of 2 seems to be confirmed by the NOE experiment shown in 
Figure 3. When irradiating in the signals of the N-H of the two isomers of 2 an increase in intensity of 
the signals of the methyl groups is observed, which confirms a spacial proximity of the protons under 
discussion. In the 13C-NMR spectrum it is possible to differentiate perfectly the signals of all carbons 
of both isomers of 2. In accordance with the expectations, the signals of the isomer in lower proportion 
(trans-2) are present at lower field compared to those corresponding to the isomer in higher proportion 
(cis-2). 

The definite assignment of the chemical shifts of protons and carbons of both isomers of 2 can be 
achieved by taking into account the bidimensional experiments H,H-COSY, HMQC, HMBC as well as 
DEPT 135.  These assignments are shown in Tables 1 and 2. 

 
Table 1. 1H(400 MHz) and 13C NMR (100MHz) Spectral Data for cis-2 in DMSO-d6 

 

Position δδδδH  , mult., J in Hz       δδδδC aDEPT 135 
COSY 1H-1H 
correlations  

bHMQC 
      1J CH 

 bHMBC (12Hz) 
3J CH 

H-C=O     8.57, s 160.18  (+) CH NH, 6-H Formyl-H  -------- 
NH     9.84, s NH   NH Formyl-H -------- -------- 
1     -------- 135.73  (0) Cq -------- --------    Formyl-H 

   3-H 
   5-H 

2     -------- 129.60  (0) Cq -------- --------    4-H 
   6-H 

2-CH3     2.47, s   17.96  (+) CH3 3-H CH3  
3  (7.45-7.33), m 130.62  (+) CH 4-H 3-H    5-H 
4   7.30, t, 7.34 124.98  (+) CH 3-H 4-H    6-H 
5  (7.45-7.33), m 126.33  (+) CH 6-H 5-H    3-H 
6   8.00, d, 7.88 123.14  (+) CH 5-H,   

Formyl-H 
6-H    4-H 

a) DEPT shows CH, CH2, CH3, Cq 
b) Correlation from C to the indicated hydrogens 

 
Table 2. 1H(400 MHz) and 13C-NMR (100MHz) Spectral Data for trans-2 in DMSO-d6 

 

Position δδδδH  , mult., J in Hz     δδδδC 
aDEPT 

135 
COSY 1H-1H 
correlations 

H-C=O 8.66, d, 10.63  163.95  (+) CH NH  
NH 10.01, d, 10.63  NH   NH Formyl-H 
1 -------- 136.03  (0) Cq -------- 
2 -------- 129.60  (0) Cq -------- 
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Position δδδδH  , mult., J in Hz     δδδδC 
aDEPT 

135 
COSY 1H-1H 
correlations 

2-CH3     2.49, s   17.82      (+) CH3 -------- 
3  (7.45-7.33), m 131.02  (+) CH -------- 
4  (7.45-7.33), m 125.63  (+) CH -------- 
5  (7.45-7.33), m 126.99  (+) CH -------- 
6  (7.45-7.33), m 122.09  (+) CH -------- 

a) DEPT shows CH, CH2, CH3, Cq 
b)  Correlation from C to the indicated hydrogens 

 
    In a similar way we found that in a solution of N,N�-bis-formyl-o-tolidine in DMSO-d6 the isomer 
with the cis/cis conformation (Scheme 7) predominates as NOE experiments are showing (see above, 
Figure 4). 
 

Scheme 7 
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  The assignment of the chemical shifts of protons and carbons of the two isomers of 5 are shown in 
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Table 3. 1H(400 MHz) and 13C NMR (100MHz) Spectral Data for 5-cis in DMSO-d6 
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Position  δδδδH  , mult., J in Hz       δδδδC  aDEPT 135 
COSY 1H-1H 
correlations  

bHMQC 
      1J CH 

 bHMBC (12Hz) 

        
3J CH              

3     7.52, s 128.22  (+) CH 2-CH3 3-H    5-H 
4     -------- 135.69  (0) Cq     --------     --------    6-H 
5     7.45, d, 8.06 124.00  (+) CH 6-H 5-H    3-H 
6     7.85, d, 8.30 122.86  (+) CH 5-H 6-H    NH 

a) DEPT shows CH, CH2, CH3, Cq 
b) Correlation from C to the indicated hydrogens 

 
Table 4. 1H(400 MHz) and 13C NMR (100MHz) Spectral Data for 5-trans in DMSO-d6 

   

Position  δδδδH  , mult., J in Hz       δδδδC  aDEPT 135 
COSY 1H-1H 
correlations  

 bHMBC (12Hz) 

        
3J CH              

H-C=O     8.46, d, 10.77 163.55  (+) CH NH     -------- 
NH     9.78, d, 10.77 NH   NH Formyl-H     -------- 
1     -------- 136.51  (0) Cq     --------    5-H 
2     -------- 130.61  (0) Cq     --------     -------- 
2-CH3     2.29, s   17.81  (+) CH3     --------     -------- 
3     7.52, s 128.68  (+) CH     --------     -------- 
4     -------- 134.96  (0) Cq     --------     -------- 
5     7.27, d, 8.08 124.56  (+) CH 6-H     -------- 
6     7.45, d, 8.06 122.03  (+) CH 5-H     -------- 

a) DEPT shows CH, CH2, CH3, Cq 
b) Correlation from C to the indicated hydrogens 

 
Conclusions 
 
    We have presented the complete 1H- and 13C-NMR chemical shifts of the cis and trans isomers of 
N-formyl-o-toluidine (2) and N,N�-bis-formyl-o-tolidine (5) in DMSO-d6. The two isomers are formed 
in solution due to restricted C-N-amide bond rotation and the cis-isomer predominates in the 
equilibrium mixture. 
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Experimental 
 
General  
 
    NMR spectra were recorded in DMSO-d6 at 25ºC on a Bruker DPX400 spectrometer operating at 
400.13 MHz for 1H, and 100.61 MHz for 13C, using the solvent signals as internal references. Thin 
layer chromatography (TLC) was performed on precoated plates (Aldrich TLC aluminium backed 
sheets coated with silica 60F254) with detection by UV light. FTIR spectra were taken on a Perkin-
Elmer spectrometer using potassium bromide pellets. Mass spectrometry was determined on a GC 
Perkin-Elmer Autosystem and a Perkin-Elmer Turbomass mass spectrometer. 
 
N-formyl-o-toluidine (2) [4]. o-Toluidine (43 g, 0.4 mol) and 90% (w/w) formic acid (15 mL, 0.4 mol) 
were mixed together in a 100 mL round-bottomed flask fitted with a reflux condenser, and the mixture 
was heated on a boiling water bath (96-98 ºC) for 3 hours. The reflux condenser was replaced by a 
Claissen still-head and an air condenser arranged for distillation under reduced pressure, and the 
product was distilled using a water pump. At 40 mm Hg and 42 ºC a first fraction consisting of a 
mixture of water and formic acid was collected,, then unreacted o-tolidine (130 ºC) and finally (199 
ºC) the N-formyl-o-toluidine was collected as a pale yellow oil, which solidified on cooling. The yield 
was 45.5 g (84 %). M.p. 53 ºC. TLC: Rf = 0.61 (Kieselgel; benzene-chloroform, 2:1). IR vmax: 3256, 
3208, 3045, 2880, 1667 (C=O), 1591, 1553, 752 (aromatic ring) cm-1; GC-MS: (Rt = 5.37 min) m/z 
135 [M]+,106 (100%) [M-29]+, 77 (calcd. for C8H9NO, 135.16). 
 
N,N�-bis-formyl-o-tolidine (5). o-Toluidine (5 g, 0.024 mol) and 90% (w/w) formic acid (25 mL, 0.65 
mol) were mixed together in a 50 mL round-bottomed flask fitted with a reflux condenser and the 
mixture was heated on a boiling water bath (96-98 ºC) for 1 hour. After cooling the precipitate formed 
was filtered off, washed with cold water and dried in a vacuum desiccator over CaCl2. The yield was 
4.87 g (77 %) of a white solid. M.p. 265-270 ºC; TLC: Rf = 0.44 (Kieselgel, benzene-acetone, 3:1); IR 
vmax: 3241, 3030, 2883, 1668 C=O), 1595, 1533, 765 (aromatic ring) cm-1; GC-MS: (Rt = 5.19) m/z 
253 [M-15]+, 135, 106 (100%), 77 (calcd. for C16H16N2O2, 268.31). 
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