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Abstract: This paper presents a technique for in-situ remote query monitoring of bacteria
growth utilizing a printed thin or thick-film sensor comprised of an inductor-capacitor (LC)
resonant circuit. The sensor, which is placed within the biological medium of interest and
remotely detected using a loop antenna, measures the complex permittivity of the medium.
Since bacteria growth increases the complex permittivity of a biological medium the LC
sensor can be used to determine bacteria concentration. This paper presents results on
monitoring of three different bacteria strains, Bacillus subtilis, Escherichia coli IM109, and
Pseudomonas putida, demonstrating application of the sensor for monitoring bacteria
growth in milk, meat, and beer. Due to its low unit cost and remote query detection, the
sensor is potentially useful for commercial scale monitoring of food quality.

Keywords: Sensor, Resonant circuit, Wireless, Remote query, Passive, Complex
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Introduction

Bacteria are a major source of contamination in water and food supplies resulting in both food
poisoning and disease outbreaks [1]. Although constant monitoring of bacteria concentrations can
reduce food-related illnesses, counting bacteria in a biological food medium is a time consuming and
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difficult task due to the complex nature of bacteria and the biological medium. Today most bacteria
counts are still determined by standard plate count (SPC) or psychrotrophic bacteria count (PBC) [2],
which are labor and time intensive. Microbiological impedance devices [3-8] provide a less labor
intensive way to estimate bacteria count in a biological medium. Microbiological impedance devices
measure the permittivity and/or impedance spectra of the biological medium by immersing two or
three electrodes into the medium and measuring the voltage at a constant current. The bacteria
concentration or even the strain of the bacteria can then be calculated from the measured permittivity
and/or impedance spectra [9-11].

One of the major applications of microbiological impedance devices is to determine the initial
bacteria count in a food medium through a technique called Impedance Detection Time (IDT) [12-16].
The initial bacteria count obtained from IDT is then used to estimate the useful shelf life of a food
product. However, the initial bacteria count does not always correlate well with the real shelf life due
to improper storage conditions or post packaging food contamination. Furthermore, direct
characterization of bacteria concentrations using impedance devices has some disadvantages such as
penetration of the test chamber which introduces the potential for contamination, polarization of the
probe electrode, and bubble formation at the electrode surface. An optimal way to monitor food quality
is to remotely measure the bacteria population just prior to food consumption.

In this paper, we present a wireless, passive remote-query sensor for in-vivo monitoring of bacteria
growth. The sensor, referred to as the LC sensor [17], is a series-connected interdigital capacitor and a
spiral inductor printed on a thin plastic or paper substrate (see Fig. 1). A thin polyurethane layer is
coated on the sensor to prevent the biological medium, which is electrical conductive, from shorting
the capacitor electrodes. The sensor is immersed in the biological medium of interest, and the
impedance spectrum of the sensor remotely detected by measuring the impedance across the terminals
of a loop antenna used to monitor the sensor, see Fig. 2. The impedance spectra of the antenna is
eliminated from the measurement by measuring the antenna impedance when the sensor is absent, and
then subtracting that value from the impedance measurement of interest. Fig. 3 is a background-
subtracted impedance spectrum of a sensor immersed in water. Two important parameters are
determined from the plot: the resonant frequency fy which is defined as the frequency at the maximum
of the real impedance (resistance), and the zero-reactance frequency f; which is at the frequency where

the imaginary impedance (reactance) goes to zero. From f) and f., the effective relative complex
permittivity of the biological medium and polyurethane layer, ¢,,'-je, ", is given as [18]:

, ! W AL S )

E.'= —-£ g, "=
A9 @rf)lke, ° T an? £ ke,

where g is the free space permittivity (&, = 8.854 X 10" Farads /meter ), & is the relative permittivity

of the electrically lossless substrate (that is & = &), K is the cell constant of the interdigital capacitor,

and L is the inductance of the spiral inductor in Henry’s. The cell constant x and inductance L are

calculated from the sensor geometry using [19, 20]:
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where a, b, ¢, OD, and ID are the dimensions of the sensor defined in Fig. 1, N, is the number of
electrode fingers in the capacitor, N is the number of the inductor turns, and K is the elliptic integral
of the first kind. For any given individual sensor, the thickness of the protective polyurethane coating
affects the measurement accuracy. Hence to eliminate effects due to variation in the polyurethane
coating thickness we first measure the complex permittivity of deionized water using the LC sensor

and a strip-line cavity [21]. A correction factor is then calculated by normalizing the LC sensor
measurement g,,'—j€,," to the strip-line measurement ¢,,'—je, ". The actual complex permittivity of

the biological medium, € '—-j€ ", is then calculated by multiplying the measured effective permittivity

by the correction factor:
& '= geﬂ ’gref '/gcal ' € = geff ngef "/8cal " (4)

Experimentally, using the calibration technique we found the LC sensors to have permittivity
measurement errors of less than 8% in comparison to stripline cavity measurments.
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Figure 1.The LC sensor is comprised of a series-connected LC circuit printed on a plastic
substrate. The sensor is covered with a layer of polyurethane to prevent the conductive
biological medium from shorting the capacitor and damping the resonance.

The complex permittivity of a biological medium increases with bacteria concentration causing a
change in the capacitance of the interdigital capacitor, and in turn shifting f7 and fy. The changes in f
and fy are used to calculate 8," and er” to determine the bacteria concentration in the biological
medium. In this paper we present the results on Bacillus subtilis, Escherichia coli JM109,
Pseudomonas putida grown in Luria Bertani medium. The results are compared to optical density
measurements at 600 nm.

Due to its low unit cost and wireless detection, the LC sensor is suitable for commercialized food
quality monitoring by measuring the bacteria concentration of the food before consumption. In this
work we demonstrate application of the LC sensor technology for monitoring the quality of milk, meat,
and beer. To measure bacteria concentration in a liquid such as milk or beer, the sensor is fully
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immersed in the medium, while to measure bacteria concentration in a solid medium such as meat, the
sensor is placed next to the object with the interdigital capacitor facing the object. Since the response
of the passive LC sensor is remotely measured through a loop antenna, placing an autoclaved sensor
within the food package prior to sealing would enable the quality of the food within the package to be
determined at any time. Since the sensor is powered by the query field generated by the antenna, it
does not require any internal batteries thus avoiding battery lifetime issues. The sensor is a simple
resonant circuit consisting of conductor lines printed on a paper or plastic substrate, which allows it to
be inexpensively fabricated and used on a disposable basis.

Impedance
Computer Analyzer

Loop Antenna
LC Sensor

Figure 2. The general experimental setup for bacteria monitoring. An impedance analyzer is
used to measure the response of the sensor. The coordinate system used to analyze sensor
performance with orientation and location is also shown.
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Figure 3. The impedance spectrum of the sensor after the antenna impedance is subtracted.
The resonant frequency f is defined as the maximum of the real impedance, while the zero-
reactance frequency f7 is the zero of the imaginary impedance. The complex permittivity of
the medium is calculated from the measured values of £ and f.
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Experiments and Results
Bacteria Growth Monitoring

The growth of three bacteria strains, Bacillus subtilis, Escherichia coli IM109, and Pseudomonas
putida, were monitored at room temperature (25 °C) as a function of time. The bacteria culture was
continuously stirred at a constant temperature using a water bath throughout the duration of the
experiment (see Fig. 4). The culture medium, sensor, and the container used for the experiment were
autoclaved at 120 °C for 15 min prior to the experiment. All three bacteria strains were grown in Luria
Bertani (LB) medium, obtained from Difco Laboratories (Detroit, MI), at a constant temperature of
25°C. The sensor was 4 cm X 4 cm and protected by 150 um thick polyurethane layer. The antenna
was a 6-turn loop antenna of 9 cm in diameter, placed at 8 cm away from the sensor with both the
sensor and antenna basal planes in parallel. The impedance of the sensor is measured with a HP 4192A
Impedance Analyzer.
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Figure 4. The experimental setup that provides a constant stirring and temperature for the
bacteria culture.

While the polyurethane coating protects the electrical integrity of the sensor, when immersing the
sensor in a liquid medium water molecules are initially absorbed into the polyurethane layer increasing
its complex permittivity. However, this absorption process stops within a few hours after the
polyurethane pores become saturated. Hence to eliminate the effect of water absorption on liquid
immersed sensor experiments the sensors were initially soaked in water for four hours prior to use.

Optical density measurements were taken while the permittivity of the medium was measured.
Fig. 5 shows a linear correlation between the optical density and the change in the permittivity
magnitude |Ag,| for both E. coli and Pseudomonas cultures. The optical density measurements require
more than one hour between two consecutive measurements to detect any change. In contrast, the LC
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sensor can resolve changes in |g] of less than 0.01, corresponding to a resolvable continuous
monitoring time period of approximately 5 s.
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Figure 5. Correlation between LC sensor and optical density measurements of a bacteria
laden solution.
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Figure 6. The change in (a) & and (b) &~ of the Pseudomonas, E. coli and Bacillus cultures
grown at 25 °C as a function of time.

Fig. 6a and 6b plot the changes in medium complex permittivity, Ag,' and Ag", of E. coli,
Pseudomonas, and Bacillus cultures over a 48 hr period, with the upward trend in permittivity
indicating culture growth. The initial complex permittivities of the three bacteria are different, with €,’
ranging from 118 to 137 and €,” ranging from 19 to 37, and so for comparison starting values have
been normalized to zero. As can be seen from Fig. 6 E. coli has the fastest growth rate with an increase
of 13.1 in &' and 2.0 in &." over 48 hr, while Bacillus has the slowest growth rate with a 5.1 increase in
&' and 0.8 in &" over 48 hr. Also notice a well-defined growth step in the E. coli Ag,' spectral
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indicating synchronized growth, whereas the Ag' spectra of both Bacillus and Pseudomonas are

continuous.

Food Quality Monitoring

The LC sensor has been used for monitoring the quality of milk, meat, and beer by determining the
bacteria populations as a function of time. All sensors in our experiment were 4 X 4 X 0.05 cm in size
except the sensor used in the meat package, which was 2.5 x2.5x 0.05 cm. A polyurethane layer,
approximately 150 um-thick, was sprayed on the sensor, and the sensor baked at 120°C for 2 hrs.
Before starting the experiment, all sensors were autoclaved at 120 °C for 15 mins. The LC sensor
measurements were correlated with standard plate counts (SPC) for the milk and meat monitoring

experiments.

Milk Quality Monitoring

The milk sample used in our experiment was 1%-lowfat skim milk purchased from a local grocery
store. A portion of the milk (500 mL) was poured into a beaker and then autoclaved at 120 °C for
10 mins and used as a control sample. Another 500 mL of milk was poured into another beaker. A
sensor was inserted into each beaker; the autoclaved milk was aseptically sealed, and the regular milk
loosely covered with a plastic wrap. The experimental setup of the milk is similar to the one shown in
Fig. 2, except that two single-turn 8 cm-diameter loop antennas were used to simultaneously measure
both milk samples. Both samples were kept at room temperature and monitored for 24 hours. To
correlate the complex permittivity with the bacteria count samples were taken from the open milk
culture every 2 hrs with the bacteria population determined using standard plate count (SPC). The
autoclaved milk sample remained unopened until the termination of the experiment.
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Figure 7. (a) The complex permittivity of the sensor immersed in the regular milk increases
as the bacteria count increases, while the complex permittivity of the sensor immersed in the
autoclaved, bacteria-free milk remains constant over time. (b) The correlation between the
change in complex permittivity and bacteria plate count for the regular milk.
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Fig. 7a plots the change in complex permittivity over time for the sensors immersed in the
autoclaved milk and in the regular 1%-lowfat milk. As can be seen from the plot, both the real and
imaginary permittivity values of the sensor within the autoclaved milk are almost constant over time,
indicating no significant bacteria growth. Conversely, the real permittivity of the 1%-skim milk
increases by 16 in 24 hrs while the imaginary permittivity increases by 3. Fig. 7b plots the change in
the real and imaginary permittivity of the skim milk versus the bacteria count. Correlating Fig. 7a to
Fig. 7b, the complex permittivity can be readily used to indicate if the milk is spoiled. For example, if
a bacteria count of 1.2 x 10 cfu/ml is considered unsafe for human consumption, the milk in our
experiment should be discarded when the Ag,’ reaches 12 and Ag,” reaches 2.5, which is about 21 hrs
after the experiment began.
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Figure 8. The experimental setup for meat quality monitoring. The sensor is placed between
the meat and the wall of the Styrofoam package container.
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Figure 9. The experimental setup for meat quality monitoring. The sensor is placed between
the meat and the wall of the Styrofoam package container.
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Figure 10. (a) The change in the complex permittivity of the LB-meat culture increases over
time as the bacteria concentration increases. (b) The correlation between the change in
complex permittivity and the bacteria count in the LB-meat culture.

Meat Quality Monitoring

A 90%-lean 0.5 kg ground beef package was purchased from a local grocery store. The sensor was
inserted between the beef and the Styrofoam container, as shown in Fig. 8, with the package then
covered, but not hermetically sealed, with a plastic wrap. The complex permittivity of the meat, kept at
room temperature, was measured for 1.5 days with the results plotted in Fig. 9. Plate counts were not
performed on the meat sample due to an inadequate volume of liquid inside the meat package, instead
another experiment was conducted to correlate the changes in the meat permittivity to bacteria growth.
In this experiment, 100 mL of Luria Bertani (LB) media were inoculated with 30 uL of an overnight
bacterial culture grown from 2 g of meat. The LB-meat mixture was used to represent the bacteria
populations typically found in ground beef. The sensor was presoaked in the LB media for 8 hours
before the culture was added, and the complex permittivity of the LB culture monitored as a function
of time. Samples were taken from the LB culture every 4 hrs to perform SPC. Fig. 10a plots the
changes in the LB complex permittivity that had been inoculated with bacteria from a meat sample.
Fig 10b plots the correlation between the complex permittivity of the LB-meat medium and the plate
count of the medium, showing that the increasing trend of the complex permittivity in Fig. 10a is due
to bacteria growth in the medium.

Beer Fermentation Monitoring

The LC sensor can also be used to monitor the fermentation processes in-situ, without opening the
container, thus preventing unwanted contamination. Here, we demonstrate the monitoring of the
fermentation of a beer culture consisting of 1/2 cup of sugar, 1 cup of oatmeal, 2 cups of carbon-
filtered tap water, and 7g of Fleischman’s Rapidrise™ yeast. The beer container was sealed, and the
response of the sensor was monitored for 4 days. The complex permittivity of the yeast culture,
calculated from the sensor f) and f., was determined as a function of time and plotted in Fig. 11. The
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plot in Fig. 11 shows a step-wise change in Ag' and a continuous change in Ag,” due to the yeast

growth.
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Figure 11. The change in the measured complex permittivity of the beer culture as a function

of time, as measured with a LC sensor.

Performance and Limitations
Effects of Temperature and Coating Thickness

In our experiments the effects of the polyurethane coating were calibrated using Eq. (4), with the
calibration process specific to the polyurethane coating thickness. Temperature also has a significant
effect on the response of the sensor. The resonant frequency of a 4 cm square sensor made on a
polystyrene substrate shows a change of 6.4 kHz change in resonant frequency for every degree °C
change, which causes a decrease of about 0.7 —; 0.4 in the measured complex permittivity of LB
medium. Hence for practical applications the LC sensor has to be made upon a more thermally stable
substrate, or used in conjunction with a second LC sensor having a different temperature dependency
to enable elimination of temperature effects through cross-correlation.

Effects of Sensor Location

The frequency response of the sensor experiences a small shift when the location and orientation of
the sensor vary. However the sensor can operate with small error tolerance within a well-defined
region. To determine the sensor operating region the zero-reactance frequency fz of a 4 cm sensor
interrogated with an 8 cm-diameter loop antenna was measured as a function of the sensor
displacement in the x and z directions, and the tilt angle 0 between the basal planes of the sensor and
the antenna (see the coordinate system defined in Fig. 2). The results, shown in Fig. 12, indicate that
within a region (0 cm <x <3 cm, 3 cm <z <6 cm) the variation in f; was less than 5 kHz, or about
0.25% error in the measurement. To maintain the 5 kHz error tolerance, the tilt angle @ must also be
less than 30°. There is a minimum separation distance in the z direction between the sensor and the
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antenna due to the near-field inductance coupling between the sensor inductor and the antenna that
causes a change in f and f.. The maximum separation distance between the sensor and the antenna is
due to the errors from the electronic instrumental noise when the sensor signal becomes too small to be
detectable at large distance.

Effects of Water Absorption in the Sensor Surface

When the LC sensor is immersed in a liquid, water molecules are absorbed into the polyurethane
layer, decreasing fy and f, and causing a shift in measured complex permittivity. However, the
absorption process stops in a few hours after the polyurethane layer saturates. Fig. 13 shows f; of a
sensor coated with 150 um-thick polyurethane layer, subsequently baked at 120 °C for 2 hrs, and then
immersed in water. As can be seen from Fig. 13, the saturation time is = 4 hrs. The saturation time of
the water absorption process depends upon the polyurethane thickness, and the pore size which is a
function of the curing temperature. Experimentally we found that the saturation time increases to
15 hrs when the curing temperature is 80°C, and 28 hrs when the curing temperature is 60°C. The
saturation time also increases from 4 hrs to 14 hrs when the polyurethane thickness increases from
150 um to 400 um. In summary, the saturation time decreases with increasing baking time and
temperature, and decreasing coating thickness.
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Figure 12. (a) The shift in £, of the sensor in the x direction (solid line) when the sensor is
3 cm from the xy-plane, and the shift in f; in the z direction (dashed line) when the sensor is on
the z-axis. (b) The shift in sensor f; as a function of 8 when the sensor is on the z-axis, 4 cm
away from the origin.

Long-term exposure to a bacteria laden medium will damage the protective polyurethane coating.
The surface of an as-made sensor is shown in Fig 14(a), and the surface of a sensor immersed in
distilled water for 4 days is shown in Fig 14(b). Fig. 14(c) shows the sensor surface after immersion in
a bacteria culture for 2 days, and 14(d) the sensor surface after immersion in a bacteria for culture for 4
days. The lifetime of a polyurethane-coated sensor in bacteria laden solution is about one week, after
which the polyurethane layer peels away from the sensor.
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Figure 13. The change in f. of an LC sensor immersed in water, as a function of time, due to
water absorption in the 150 um thick polyurethane layer.
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Figure 14. SEM images of the polyurethane layer surfaces for (a) the sensor in air, (b) the
sensor in water for 4 days, (c) the sensor in a bacteria culture for 2 days, and (d) the sensor in
a bacteria culture for 4 days.
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Conclusions

A wireless, passive remote-query sensor technology is presented for monitoring bacteria growth.
The sensor is a planar, printed or photolithographically defined resonant circuit, the response of which
is remotely detected by a loop antenna. The substrates upon which the resonant circuits are defined can
be flexible (e.g. paper or plastic film) or rigid (e.g. ceramic, plastic, Plexiglas) depending upon the
desired application. The sensor is immersed in the medium of interest, and the complex permittivity of
the medium calculated from the electromagnetic response of the sensor. Our results show the sensor
can measure complex permittivity changes in bacteria cultures consisting of E. coli, Bacillus, and
Pseudomonas with greater discernable measurement sensitivity than optical density measurements.

The application of the LC sensor technology to monitoring milk, meat, and beer quality was
illustrated. Experimental results show the complex permittivity of the autoclaved milk was constant
over time, while the complex permittivity of the 1%-fat skim milk increased over time as the bacteria
population increased. The sensor technology was also used to measure the increase in complex
permittivity of a meat sample, with time, as the meat spoiled. By correlating the complex permittivity
shift with the bacteria count the sensor can be used to indicate if a food product is safe for human
consumption. In the case of a dry food product, such as cereal or grain, the presence of humidity due
to package failure would readily change the measured impedance of the sensor. Additionally, the LC
sensor was used to monitor the fermentation process of a beer culture during fermentation.

Since the LC-sensor monitoring electronics could be reduced to a relatively inexpensive small-scale
portable package, the LC sensor technology presented here shows promising potential for commercial
food quality monitoring in a grocery store or even at home. Each sensor costs a fraction of a penny, so
it can readily be used on a disposable basis. Furthermore the LC sensor is relatively insensitive to
location and orientation within its operation range so untrained users can operate it.
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