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Abstract: Ad-hoc networks of sensor nodes are in general semi-permanently deployed. 
However, the topology of such networks continuously changes over time, due to the power of 
some sensors wearing out to new sensors being inserted into the network, or even due to 
designers moving sensors around during a network re-design phase (for example, in response 
to a change in the requirements of the network). In this paper, we address the problem of 
covering a given path by a limited number of sensors — in our case to two, and show its 
relation to the well-studied matrix multiplication problem. 
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Introduction 

Ad-hoc sensor networks are emerging as a new sensing paradigm and have thus, received massive 
research interest recently. Usually sensor nodes are semi-permanently deployed, since the sensors 
themselves barely have any moving capacity. However, the topology of such networks continuously 
changes over time due to a variety of reasons: For example, a sensor node may wear out due to its very 
limited battery power, a new sensor node may be inserted into the network, or the layout of a sensor 
network may need to be changed in order to improve the quality of the network coverage in response to 
a change in the network requirements, which is accomplished by changing the placement of current (or 
inserting, deleting) sensors in network.  

In this paper, we address a problem of covering a path in the network using a limited number of 
sensors. In a sensor network, each sensor bears the ability to detect objects around it. The coverage of a 
sensor is limited by its energy level. Assume the sensor’s detecting ability is omnidirectional, then we 
can model the coverage of a sensor as a disk (under 2-norm on the Euclidean plane1) centered at the 
sensor. The radii of such disks are determined by the energy level of the sensors. The coverage area (or 
simply coverage) of the sensor network is the union of all such disks. 

A sensor network is often used to detect intruders. An intruder may start at a point S  on the plane, 
may follow an arbitrary trajectory (path), and may stop at some other point T  on the plane. In some 
applications, a sensor network may need to keep track of the intruder at all times, as it follows its 
trajectory; in some other applications, the network’s function may be simply to detect the presence of an 
intruder, in which case the network only needs to cover some part of the trajectory. Thus, given two 
points S  and T , two relevant types of trajectories are proposed [1]: The maximum breach path and the 
maximum support path (In [1], these paths are called maximal breach path and maximal support path, 
respectively). 

The maximum breach path measures the vulnerability of a sensor network by, as the name suggests, 
completely avoiding the coverage area of the sensor network: It is a trajectory between the start point S  
and the stop point T  that stays “as far away” from the sensors as possible. On the other hand, the 
maximum support path measures the efficiency of the network coverage: This path is a trajectory 
between S  and T , which stays “as close to the sensors” as possible. The distance of a point P  to the 
sensor network is defined as the smallest Euclidean distance from P  to one of the sensor nodes. A 
maximum breach path from S  to T  is a path from S  to T  such that the minimum distance from a point 
P  in the path to the sensor network is maximized: This distance is called the worst-case coverage 
distance of the network. Similarly, a maximum support path from S  to T  is a path such that the 
maximum distance of a point P  in the path to the sensor network is minimized: This distance is called 
the best-case coverage distance of the network.  

We consider this problem of covering an entire trajectory using two sensors only, where each of the 
sensors should be located on opposite sides of the trajectory. This problem is an extension of the 
well-studied two-center problem, which we describe in the next section "Two-sensor-problem". We 
                                                 
1A disk of radius r  centered at ( ),x y  under 2-norm in 2R  is the set of points ( ),p q  such that 

2 2( ) ( )− + − ≤p x q y r . 
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present an 2 688( ).O n  time algorithm for this problem, improving on the exhaustive search bound of 
3( )O n . The solution proposed is of interest on its own, since it establishes an interesting relation to the 

matrix multiplication problem. In the section "Two-sensor-problem" we define our problem formally 
and give an efficient solution for it. 

Two-sensor problem 

We consider the following problem: There are two groups of sensors A  and B  of total size n  
divided by a polygonal xy -monotone path P  containing n  edges, such that each group is located on 
opposite sides of P . A path 1 2 1+=< , , , >nP v v … v  is called xy -monotone if 1 2 1( ) ( ) ( )+≤ ≤ ≤ nx v x v … x v  
and 1 2 1( ) ( ) ( )+≤ ≤ ≤ ny v y v … y v . Each sensor is  has its covering area radius iR , so it can detect any 
object at a distance at most iR  from it. We are interested in determining whether there exists a sensor 

from group A  and a sensor from group B  that cover the entire path P . The path P  is playing role of a 
possible way for intruder penetration inside the sensors area and each group of sensors wants to catch the 
intruder while it is important to keep a visual guard of him all the time. We will refer to our problem as 
the two-sensor problem. Some similar problem has been considered by Huang and Tseng [2], who tried 
to cover a target area by k  sensors from a set consisting of n  sensors.  

Clearly, our task can be performed in 3( )O n  time by taking all possible pairs of sensors from A  and 
B  and checking for each edge of P  whether it is covered or not. We present an 2 688( ).O n  runtime 
algorithm based on matrix multiplication and Matoušek algorithm [3] for computing dominance in 
n -dimensional space.  

The two-sensor problem naturally extends a list of optimization problems related to the famous 
two-center problem. In the two-center problem, we want to cover a set S  of n  points on the plane by 
two disks of smallest possible common radius. Agarwal and Sharir give an 2( log )O n n -time algorithm 
in [4] for determining whether S  can be covered by two disks of radius r . Plugging this algorithm into 
the parametric search machinery, one obtains an 2 3( log )O n n -time algorithm for the two-center problem. 
The runtime of the decision algorithm of Agarwal and Sharir was improved by Hershberger [5] to 2( )O n . 
Jaromczyk and Kowaluk [6] use the algorithm by Hershberger [5] to obtain an 2( log )O n n  running time 
algorithm for the two-center problem. A major progress on this problem was recently made by Sharir [7], 
who presented an 9( log )O n n -time algorithm, by combining the parametric search technique with 
several additional techniques, including a variant of the matrix search algorithm of Frederickson and 
Johnson [8]. Eppstein [9] has simplified Sharir’s algorithm, using randomization and different data 
structures, obtaining an improved solution with expected runtime of 2( log )O n n .  

Recently, Agarwal et al. [10] have developed an 
4
3 5( log )O n n -time algorithm for the discrete 

two-center problem, where the disks should be centered at the input points. Shin et al. [11] considered 
the problem of covering convex polygons using two disks of smallest possible radius by giving two 
algorithms: The first algorithm runs in time 3( log )O n n  and assumes that the disks are constrained to be 
centered at the input points; the second algorithm runs in 2 3( log )O n n  time and assumes arbitrary disks 
location. Huang et al. [12] considered a variation of the two-center problem, where the distance between 
two solution disks should be below some given constant, providing a 2 2( log )O n n  runtime algorithm for 
this problem.  
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The two-sensor problem considered in this paper is harder than all of the related variations of the 
two-center problem in the literature. The hardness comes from two sources: First, we need to cover the 
entire path and not just a set of discrete points; second, in the solution obtained, an edge may be partially 
covered by each of the sensors, implying that the sets of edges covered by each sensor may overlap 
significantly and, therefore, a simple binary search can no longer be used. We follow the notation used 
by Matoušek [3]. Let X  be an ×n n  matrix of real numbers; we will use the notation ,∗ix  for the i -th 
row of X ; we say that ,∗jx  dominates ,∗ix , 1≤ , ≤ , ≠i j n i j , if , ,≤i k j kx x , for 1= , ,k … n . Matoušek [3] 
presents an algorithm for computing an ×n n  matrix C , whose element ,i jc  is: 

 { }, , ,=| : ≤ |i j i k j kc k x x  (1) 

In other words, , =i jc n  if and only if ,∗ix  is dominated by ,∗jx . The runtime of Matoušek’s algorithm is 
3 1
2 2( ( ) )O n M n , where ( )M n  denotes the time needed to multiply two ×n n  matrices. With the best 

known results on matrix multiplication we have 2 376( ) ( ).=M n O n [13], and the running time of 
Matoušek’s algorithm is 2 688( ).O n . 

In what follows, we show how to apply Matoušek’s algorithm in order to get a solution to our 
problem. We start with the following observation, which is crucial for the solution of the 2-sensor 
problem.  

Observation 1. Given an ×n n  matrix of real numbers X  and ∈ nh R , we can determine whether there 
exists two rows in X , ,∗ix  and ,∗jx  such that , ,+ ≥i k j k kx x h , 1= , ,k … n  using Matoušek’s algorithm.  

1. We define a new, 2 2×n n  matrix ′X  as follows. The first n  rows of ′X  are the rows 
of X  followed by zeros in places 1 2+ , ,n … n . The next n  rows of ′X  are defined as 
follows. The element ,i kx  is defined as − ,−k i n kh x , if 1= , ,k … n , 1 2= + , ,i n … n  and 

0, =i kx , if 1 2= + , ,k n … n , 1 2= + , ,i n … n . Now, we apply Matoušek’s algorithm that 
computes an 2 2×n n  matrix C  such that , =i jc n  if and only if ,∗ix  is dominated by ,∗jx . 

We are interested in the quarter corresponding to C , i.e. in the submatrix 
[ 1 2 1 ]+ .. , ..C n n n . It is obvious that , =i jc n , 1 2= + , ,i n … n , 1= , ,j … n , if and only if 

, ,− ≤k i k j kh x x , 1= , ,k … n , or in other words, if and only if , ,+ ≥i k j k kx x h , 1= , ,k … n . 

The runtime remains as the runtime of Matoušek’s algorithm. 

We will use the above observation in order to solve the two-sensor problem. For each sensor 
∈ ∪is A B , we draw a disk of radius iR . Denote by 1+| |i iv v , 1= , ,i … n  the length of an edge 1( )+,i iv v  of 

P , we define an ×n n  matrix X  in the following way: 

 1

1

( )+
,

+

| ∩ , |
=

| |
i j j

i j
j j

R v v
x

v v
 (2) 

After we build the matrix X , we apply an algorithm for observation 1 with (1 1 1)= , , ,h … . We 
consider the submatrix [ 1 2 1 ]+ .. , ..C n n n . It is clear that if two sensors ∈ls A  and ∈ms B  with radii lR  
and mR  correspondingly cover the entire P  then 1, ,+ ≥l j m jx x , for 1= , ,j … n . On the other hand, if the 
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sum of row l  and row m  dominates (1 1), ,… , i.e. either ( )+ , =C n m l n  or ( )+ , =C n l m n  then, we first 
check whether sensors ls  and ms  belong to different groups. If the answer is negative, we reject this pair 

of sensors as a potential solution. If the answer is positive, it can still happen that P  is uncovered.  

Lemma 1. The only possible case, when P  is uncovered and row l  and row m  dominates (1 1), ,…  
( ls  and ms  belong to different groups), is when the first or the last edge of P  are uncovered.  

2. Consider some internal edge 1( ) 1+, , < <i iv v i n  of P . We need to show that it is covered 
by ls  and ms . If sensor, say ms , does not cover neither iv  nor 1+iv , then it follows that ls  
should cover the entire 1( )+,i iv v , since it is located on other side than ms  and the path P  
is monotone. Otherwise, assume that ms  covers, wlog iv , but not 1+iv . Then, if 1+iv  is also 
uncovered by ls , the following edge (which always exists because our choice of i ) is 
completely uncovered by two sensors, which violates condition of either ( )+ , =C n m l n  
or ( )+ , =C n l m n . Notice that in this case, since we know that either ( )+ , =C n m l n  or 

( )+ , =C n l m n , the edge 1( )+,i iv v  is covered. We can check in (1)O  time whether the 
first and the last edge of P  are covered by ∪l mR R .  

Thus, we proved the following Theorem. 

Theorem 1. The 2-sensor problem can be solved in 3 2 1 2( ( ) )/ /O n M n  time. 

Future work 

In this paper, we present an efficient algorithm for covering a given path by two sensors. A 
challenging vein for future work is to consider approximations for the k -sensor problem, where 2>k . 
The k -sensor problem, for general k , is NP-complete [14].  
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