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Abstract: In this paper, the relationship between typical circuit structures of gas sensor 
circuits and their output noise is analyzed. By using averaged segmenting periodical graph 
and improved histogram estimation methods, we estimated their noise power spectra and 
optimal probability distribution functions (pdf). The results were confirmed through 
experiment studies. 
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Introduction 

Electronic noses (e-noses) are more and more widely used in environmental monitoring, food 
production and medicine such as odour evaluation [1-4]. The response of all sensors in the e-nose 
together constitutes a unique profile that gives the “fingerprint” of odour. The noises from the sensor 
array comprised by several odorant gas sensors may result in inaccurate cluster analysis of the tested 
material [5]. In our experiments, it is observed that the noise of gas sensors cannot be ignored. In the 
worst case, the noise magnitude could become up to 20% of the signal magnitude of some sensors. The 
gas sensors of the e-nose have the following features: 

(1) The sensors in the array interfere with each other. 
(2) Different types of sensors are used, some of which have large heating current and power 

dissipation. 
(3) Some sensors require amplifiers with extremely high input impedance (e.g., higher than 

1011 Ohm) that makes them susceptible to interference. 
(4) Some sensors have large dynamic current that produces electromagnetic disturbances to the 

output of other sensors in the same array. 
 
The drawback of the gas sensors lies in: 
(1) The sensors are very sensitive to temperature and humidity. 
(2) The baseline of sensors shifts with time. 
(3) Large noise exists in sensor output. 

This paper is to study the noise features of several typical gas sensors used in the e-nose developed 
in our research laboratory (shown in Figure 1), including their probability distribution functions (pdf) 
and power spectrum estimation, which are essential in noise cancelling [6-8] and odour analyzing by 
noise power spectrum [9]. 

 

Figure 1. Photo of the electronic nose developed in our research laboratory. 
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Typical gas sensors and their noise 

Resistive gas sensors 
The resistive gas sensors we studied are of MOS (Metal-Oxide Semiconductor) such as tin dioxide. 

Figure 2 shows a typical sensor circuit and its interface diagram. Pins 2 and 5 are connected to the 
heater of the sensor, and the resistance between Pins 1 and 6 is designated as Rs. With pure air Rs is 
high. With the presence of detectable gases, Rs changes with the variation of gas concentration. Since 
VC is a fixed voltage, by measuring the voltage on the resistor RL, the change on Rs as well as the gas 
concentration can be calculated. 

This type of sensor features largely in its heater power dissipation ranging from several hundreds of 
milliwatt to 1 watt. The working temperature is as high as 400 oC. This will result in higher resistor 
thermo-noise. Besides, there exist typical semiconductor noises such as Schottky noise, flicker noise 
etc. As the output signal of the sensor is large enough, the interface circuit uses only a voltage follower 
as a buffer between the sensor output and the A/D converter, which makes the system less sensitive to 
external interferences. 

 

Figure 2. Resistive gas sensor and its interface circuit diagram. 

Gas sensors with electromotive output 

Figure 3 shows the circuit of a gas sensor with electromotive output and its interface diagram. There 
is a heater between Pins 1 and 6. A thermometer for temperature compensation is between Pins 2 and 5. 
The electromotive VEMF between Pins 3 and 4 reflects the concentration of detectable gas. Lower 
capability of payload is the main feature of this type of sensor. It requires a pre-amplifier with 
extremely high input impedance at a value over 1011 Ohm. As a result, it has the disadvantage of being 
vulnerable to external electromagnetic interferences in addition to the noise of the resistive gas sensor. 

 

Figure 3. Electromotive gas sensor and its interface circuit diagram. 
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Sensors with dynamic heating 

The above two types of sensors have a fixed voltage for their heaters, the current of which is 
constant, whereas the current of the sensor in Figure 4 is dynamic. The difference between this type of 
gas sensors and the one in Figure 2 lies in the voltage on the sensor heater. Here, the voltage on the 
heater is a pulse signal that results in a large dynamic current as well as electromagnetic interference to 
other sensors in the sensor array of the e-nose. The timing control circuit is used to control the voltage 
applied to the sensor heater and the sampling epoch. Figure 5 is an oscilloscope-recorded waveform 
about the interference before any noise cancelling measure is taken, where the upper channel is the 
voltage waveform of heater in Figure 4, which also indicates the current on the heater. The lower 
channel in Figure 5 is the output waveform of another electromotive gas sensor in pure air that should 
be a straight line without the interference. 

 

Figure 4. Schematic diagram of an odorant gas sensor with dynamic heating and its interface. 

 

Figure 5. Interference on an odorant gas sensor with electromotive output. 

Gas sensors with current output 

Figure 6 shows a typical electrochemical gas sensor and its interface diagram. The working current 
and voltage of the circuit are low and do not produce interference to other sensor’s output. Since the 
sensor’s output current is extremely weak (only several micro amps), it requires the gain of the 
amplifying circuit be up to several thousands. Thus, the whole circuit is more sensitive to external 
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disturbances from other sensors than that of sensors with a lower amplifier gain. The noise is also 
amplified by several thousand times and it has stricter requirement on the equivalent input noise of the 
amplifier. 

 

Figure 6. Gas sensor with current output and its interface circuit diagram. 

Probability distribution function (pdf) of noise 

The histogram method, which has been proved to be an unbiased estimation for a random variable, 
is used to estimate the pdf of noise. The estimation error decreases at a rate of 3/2−N  as a function of 
the total number N of the samples [10]. 

Let X1, X2, ..., XN be independent and identically distributed on [0,1] with N the total number of 
samples. Let m be an integer and h = 1/m. Define the bins as  

B1 = [0, h), B2 = [h, 2h), ... Bm = [(m-1)h, 1] (1) 

Let jp̂ = jv /N and let jv  be the number of observations in Bj. Then the histogram estimation of 
probability distribution function )(xf  is given as: 
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The following two questions should be answered when the histogram estimation method is used: 
1) How to measure the error between )(ˆ xfn  and the real probability distribution function )(xf ?, and  

2) What is the optimal h that makes the approximation of )(ˆ xfn  to )(xf  the best? 

For the first question, we use the risk function or mean integrated squared error )ˆ,( ffR  between 
the two functions to measure the error between )(ˆ xfn  and the real probability distribution function 

)(xf . The function )ˆ,( ffR  is given by: 

{ }∫ −= dxxfxfffR 2))(ˆ)(()ˆ,( Ε  (3) 

where }{⋅Ε  is to calculate the expected value (mean). For the second question, it is obvious that the 

smaller the )ˆ,( ffR , the more closer will be )(ˆ xfn  and )(xf  (with the exception of only some point 

sets with zero measure). When )ˆ,( ffR  reaches its minimum, the best approximation of )(ˆ xfn  to 
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)(xf  is obtained. Since )(xf  is unknown, )ˆ,( ffR  cannot be calculated directly, but its minimum 
can be reached by making )(ˆ hJ  the minimum [10]. The function )(ˆ hJ  is given by: 
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The optimal h that results in the minimum value of )(ˆ hJ  can be obtained by increasing the value of 
m from 1. Here, the corresponding formula in [10] is improved by changing its minus sign between the 
first and the second item into a plus sign according to our experiments. Otherwise, it cannot converge. 

Power spectrum estimation of noise 

The periodical graph and averaged segmenting periodical graph methods were used to obtain the 
power spectrum estimation of noise [11]. For a periodical graph, the power spectrum estimation is 
given as: 

2
)(ˆ1)( kX

N
kS =  k =0,1, ... 1−N  (5) 

where )(ˆ kX  is the modulus of the Discrete Fourier Transformation (DFT) of X1, X2, ..., XN, and N is 

the total number of data sets.  
To highlight the feature of noise, the mean value of data is removed before the DFT. Otherwise, the 

d.c. component (zero frequency) will be too large to show other components. The variance of 
periodical graph is bigger than that of the averaged segmenting periodical graph, but it is useful in 
observing the baseline shifting of sensors (it corresponds to the lower frequency components near zero 
frequency). 

The averaged segmenting periodical graph is obtained by segmenting the data X1, X2, ..., XN into K 
small non-overlapping sections. The length of each small section is M with KM = N. First, the power 
spectrum is estimated for each small section (also remove the mean of the small section before the 
DFT). Then, the power spectrum estimation will be the average of the K small sections. The 
disadvantage of this method lies in its losing of information on sensor’s baseline shifting that is much 
smaller during the small section than that of the whole section. The advantage is its asymptotic 
consistent estimation of real power spectrum. With the increase of M, the variance of the averaged 
segmenting periodical graph approaches zero. By this manner, the power spectrum estimation of the 
small section j is given as: 

2
)(ˆ1)( kX

M
kS j = , k =0, 1, ..., 1−M  (6) 

where )(ˆ kX  is the DFT of X1, X2, ..., XM. The total power spectrum estimation is given as: 
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Experiment results 

Four types of sensors are used in the test: (1) resistive gas sensors (such as TGS813); (2) gas 
sensors with electromotive output (such as TGS4160); (3) gas sensors with dynamic heating (such as 
TGS2442); (4) gas sensors with current output (such as 3ETO). The first three types of sensors are 
MOS sensors produced by Figaro Ltd., while the forth ones are electrochemical gas sensors produced 
by City Technology Ltd. 

Figure 7 depicts the response of the above sixteen sensors, each of which is sampled by a 12-bit 
A/D converter at 6.4 Hz sampling frequency. A charcoal filter (which results in pure air input) was 
used from epoch A. Since no detectable gas appears, the output of sensors is noise only. A pump was 
used to intake the pure air into a chamber within which the sensor array lies. After epoch C, the 
chamber was opened which resulted in the temperature dropping. To get the feature of noise, the 
stabilized data (from epoch B to C) was used to compute the power spectrum and pdf estimation. The 
number of data sets for each sensor used in calculation is 30,000. In averaged segmenting periodical 
graph method, the data were segmented into K=6 small sections with the length of each one as 
M=5,000. In depicting the pdf curve, to highlight the non-zero part, without the loss of generality, we 
normalized the sensor’s output data into [0,1], i.e., let the maximum and minimum of sensor output 
data be Xmax and Xmin, respectively. Then the normalized data will be given as: 

X = (X - Xmin)/(Xmax - Xmin) (8) 

 

Figure 7. Power supply and response of the16 sensors in e-nose. 

Our experiments show that the sensors can be categorized into three types according to their noise 
power spectrum and pdf estimation (see Table 1). Here, a white noise means that its power spectrum 
magnitude keeps almost constant in the whole frequency range except the d.c. and its nearby 
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component, while a coloured noise contains considerable low frequency components besides that of 
the white noise. 

Table 1. Category of sensors according to their power spectra and pdf. 

pdf 

Power spectra 
Single peak Double peaks 

Coloured noise (1) TGS813 etc. (3) TGS830 etc. 
White noise (2) 3ETO etc. N/A 

(1) For the case of coloured noise with a single peak pdf, Figures 8(a) and 8(b) show the time-
domain curve and the power-spectrum estimation curve, respectively. It shows that the power 
spectrum of noise mainly consists of two parts: one is the almost constant-magnitude part filling the 
whole frequency band, and the other is composed of some lower frequency components that may be 
caused by some inherent feature of the sensor and its circuit. Some of them have the same frequency as 
signal; it cannot be filtered out by just a simple low-pass filter.  

 
 (a) (b) 

Figure 8. The noise (a) and its power spectrum estimation (b) of the first type of sensors in Table 1. 

Figure 9 shows the curve of )(ˆ hJ  from equation (4) with h = 1/m. It can be seen that when m = 10, 

i.e., h = 0.1, )(ˆ hJ  reaches its minimum that makes the risk function )ˆ,( ffR  minimum. The h value at 
h = 0.1 makes the estimation of pdf to be optimal. Figure 10 gives the pdf estimation under this h value. 
It is close to a Gaussian distribution. 

(2) In the case of white noise with single peak, the noise in time domain and its power-spectrum 
estimation curve are shown in Figures 11(a) and 11(b), respectively. The pdf estimation is shown in 
Figure 11(c) with the optimal value at h = 1/75. It is similar to a Gaussian distribution. The envelop of 
the noise power spectrum is almost constant in the whole band. Thus, it is reasonable to consider this 
type of noise as normal white noise. For the sensors 3SH (current output) and TGS4160 
(electromotive), their output signals are too weak and the gain of amplifier has to be large enough 
(about 6,000), or the input impedance is too high (more than 1011 Ohm). The noise energy of these 
sensors is much bigger than that of the first type in Table 1, which implies that the noise in this type of 
sensor cannot be ignored. 



Sensors 2005, 5  
 

93

 

Figure 9. )(ˆ hJ  as a function of m. Figure 10. Histogram under the optimal value of h. 

 
 (a) (b) 

(c) 
Figure 11. The noise (a), its power spectrum (b) and pdf estimation (c) of the second type of sensors in 
Table 1. 

(3) For the coloured noise with double peak pdf, Figures 12(a) and 12(b) show the noise in time 
domain and its power spectrum estimation of sensor, respectively. Figure 12(c) is the estimation of pdf 
with the optimal value at h = 1/29. In comparison to the first type of sensors in Table 1, both have 
similar coloured noise power spectrum and many of their low frequency components have the same 
location in the frequency domain. This implies that the inherent features of the sensors are similar, as 
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they are produced by the same manufacturer. The only obvious difference here is that its pdf has 
double peaks, while the first type has only one. The double peaks in its pdf imply the high appearance 
frequency of these two types of noise magnitude.  

 
 (a) (b) 

(c) 

Figure 12. The noise (a), its power spectrum (b) and pdf estimation (c) of the third type of sensors in 
Table 1. 

(4) For some sensors such as TGS830, TGS2600, the remarkable difference exists in their zero 
frequency component of noise power spectrum between the periodical graphs and averaged 
segmenting periodical graph methods. This can be observed when comparing Figure 12(b) and Figure 
13. No peak appears in the nearby zero frequency of the averaged segmenting periodical graph in 
Figure 12(b), which is opposite to its counterpart in Figure 13. It is due to the fact that the sensor 
baseline shifts slowly within the whole time period (the total 30,000 data sets), although in both 
methods the mean is removed. Whereas in each small section (5,000 data sets) the baseline changes 
little and results in almost no nearby zero frequency component. That indicates, of all sensors tested, 
the three types of sensors can work more stably and have much smaller baseline shift than other 
sensors. 
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Figure 13. Power spectrum by periodical graph. 

Conclusions 

The sensor and its interface circuit of four types of odorant gas sensors of an electronic nose are 
investigated and their noise features are analyzed. Several points are worth to be mentioned: 
1.  Since the sensors only work with its corresponding circuits as a whole, the sensor noise here means 

the whole noise from the sensor and its amplifying circuit. The noise is related to the art of 
manufacture, the input impedance of amplifier and its gain. In our experiment, the optimal 
operating circuits and devices recommended by the manufacturers are adopted. So it is reasonable 
to believe those e-noses which use the same type of sensors have similar circuit structure and noise 
feature as we give here. 

2.  The noise in the sensors of the e-nose can be categorized into coloured or white noise according to 
its power spectrum. The coloured noise can be regarded as the white noise plus some stronger low 
frequency components. The pdf of noise is of either single peak or double peaks. 

3.  The noise of resistive gas sensor is coloured one. 

4.  The white noise lies in either electromotive sensor or sensor with current output, which is due to 
either the weak signal or the high input impedance. 

5.  To estimate the pdf of noise, we have used the optimal width (h) for bins in histogram that results in 
the closest estimation to the real pdf in the sense of smallest integrated mean squared error. The 
averaged segmenting periodical graph estimation of noise power spectrum is an asymptotic 
consistent estimator of the real power spectrum. The error of estimation is expected to be small 
enough considering the huge number of data sets. 

6.  The baseline shift of sensor can be observed through comparing the periodical graph and the 
averaged segmenting periodical graph of noise. Of all the sensors tested, the three sensors TGS830, 
TGS2600, TGS2602 can work more stably and have smaller baseline shift than others. They almost 
have no baseline shift in each small section of 5,000 data sets (corresponding to 13 minutes or so). 
But in the whole period of 30,000 data (corresponding to 1.5 hours), there is still baseline shift.  
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