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Abstract: Weak gaseous plume detection in hyperspectral imagery requires that
background clutter consisting of a mixture of components such as water, grass, and asphalt
be well characterized.  The appropriate characterization depends on analysis goals.
Although we almost never see clutter as a single-component multivariate Gaussian
(SCMG), alternatives such as various mixture distributions that have been proposed might
not be necessary for modeling clutter in the context of plume detection when the chemical
targets that could be present are known at least approximately. Our goal is to show to what
extent the generalized least squares (GLS) approach applied to real data to look for evidence
of known chemical targets leads to chemical concentration estimates and to chemical
probability estimates (arising from repeated application of the GLS approach) that are
similar to corresponding estimates arising from simulated SCMG data. In some cases,
approximations to decision thresholds or confidence estimates based on assuming the clutter
has a SCMG distribution will not be sufficiently accurate. Therefore, we also describe a
strategy that uses a scene-specific reference distribution to estimate decision thresholds for
plume detection and associated confidence measures.

Keywords: clutter, single-component multivariate Gaussian, mixture distribution,
generalized least squares, near infrared, central limit theorem

1. Introduction

Remote detection and identification of weak chemical plumes using passive hyperspectral sensors is
a challenging problem. Here we consider an airborne visible and near infrared (NIR) sensor (AVIRIS
[1,2]) having 224 spectral channels spanning a wavelength range of approximately 0.5 µm to 2.5 µm
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and wavelength resolution of approximately 10-8m. One challenge in weak gaseous plume detection is
that background clutter consisting of a mixture of components such as water, grass, and asphalt must
be well characterized.

There are many ways to characterize background clutter; the appropriate characterization depends
on analysis goals. We focus on ways that are most relevant for a particular method (generalized least
squares, GLS) of plume detection. Plume-like pixels are those thought to have a gas plume influencing
the signal; background pixels are those thought not to have a plume influencing the signal. One
common set of simplifying assumptions leads to a GLS problem [3] in which chemical concentration
estimates and associated decision thresholds are used in infer which if any pixels are plume-like. The
GLS solution is commonly also referred to as an adaptive matched filter.  This matched filter is
“adaptive” because it uses the scene to estimate the covariance matrix (described below) of the
background pixels.

When we look at real scenes, we tend to see them as a mixture of components, or “clutter,” rather
than as, for example, a single-component multivariate Gaussian (SCMG). Whether formal mixture
models are effective for analysis depends on the goals, and although modeling clutter as SCMG may
seem simplistic, it has proven to be surprisingly effective [3-11]. A SCMG refers to a Gaussian
distribution having a single mean vector and covariance matrix. Because real scenes typically have
several physical components such as asphalt, vegetation, and water, etc., one would not expect a
SCMG to be an effective model for clutter.  Not surprisingly, other distributions have been proposed
(such as mixtures of single-component multivariate Gaussians) for hyperspectral IR data, but either
there is no corresponding plume detection strategy, or the corresponding plume detection methods
have not yet consistently outperformed the GLS approach presented here [6,11,12-15].   Also, in
evaluations of machine learning approaches [16], in which synthetic plumes are added to real scenes,
again the GLS approach remains highly competitive.

It is not our purpose here to recommend a particular detection method, but because GLS has been
shown to be effective, we will compare GLS-based results from real scenes to those from simulated
SCMG scenes, in order to assess the adequacy of the SCMG approximation in this context. Therefore,
our main goal is to show to what extent the popular GLS approach applied to real data to look for
evidence of known chemical targets leads to chemical concentration estimates and to chemical
probability estimates (arising from repeated application of the GLS approach) that are similar to
corresponding estimates arising from simulated SCMG data.

In order to perform gas plume detection using GLS it is necessary to characterize the distribution of
GLS values in real scenes that do not contain plumes so that thresholds corresponding to false positive
rates can be estimated.  Recent results suggest that scalar-valued GLS estimates, which arise from a
linear transformation applied to scenes consisting of a mixture of background emissivities (but no or
negligible plumes) are surprisingly close to Gaussian in distribution [3].  The evaluations in [3]
considered how nearly Gaussian the scalar GLS estimates were from a particular scene, using random
target directions (not from a chemical library, but randomly generated). There were somewhat limited
checks for Gaussian behavior; for example, false positive rates based on GLS values from the real
scene were not considered nor compared to rates based on a simulated reference SCMG distribution.
Therefore, we extend the evaluation in [3] of the Gaussian approximation for GLS estimates, and also
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evaluate related Bayesian model averaging (BMA, see section 3) values that rely on repeated
application of the GLS approach to each of many candidate subsets of possible plume chemicals.

In some cases, approximations to decision thresholds or confidence estimates based on assuming
the clutter has a SCMG will not be sufficiently accurate. Therefore, we also describe a strategy that
uses a scene-specific reference distribution to estimate decision thresholds for plume detection and
associated confidence measures. To simplify the discussion, we will use the informal expressions
“more Gaussian” and “less Gaussian” to describe the extent to which a particular estimate based on a
cluttered scene is behaving like an estimate from a simulated SCMG scene.

Section 2 gives additional background. Section 3 describes the radiance data model and
simplifications leading to the GLS approach and/or to BMA approaches that rely on GLS. Section 4
describes tests to compare GLS-based results from real data to those from simulated SCMG data.
Because in many cases the GLS-based result applied to SCMG data will be Gaussian, the tests are
checks for Gaussian behavior, such as skewness, kurtosis, and quantiles.  Example results are also
presented in Section 4. Section 5 explores why the GLS transform improves the Gaussian
approximation. Section 6 describes the notion of a scene-specific reference distribution in cases where
approximation based on the SCMG assumption is not adequate. Section 7 is a summary.

2. Background

Our goal is to characterize clutter in the context of gas plume detection in cluttered scenes that
contain a mixture of background emissivities, such as water, vegetation, asphalt, concrete, buildings,
etc., for which various models and approaches have been proposed. A typical scene consists of
approximately 128 to 256 spectral channels in each of approximately 500 x 500 spatial pixels, where
the detected radiance at each pixel depends on the ground radiance, atmospheric transmission,
instrument noise, and whether a chemical plume lies between the ground and the detector.

Figure 1 is the broadband image (the average radiance over all 224 spectral channels in this case) of
an example scene (614 vertical by 512 horizontal pixels) which is cluttered because it contains
mountains, buildings, and water, but contains (to our knowledge) no plumes.

We will use data from this same scene throughout and refer to it as scene A. We assume that scene
A contains no plumes and will evaluate to what extent the collection of 224-dimensional radiance
vectors at each pixel behaves in the context of GLS-based plume detection as a collection of  224-
dimensional Gaussians having a single 224-dimensional mean and 224-by-224 dimensional covariance
matrix (described in Section 3). In practice, it is not known whether a real scene contains any plumes,
so there is typically an iterative procedure that first assumes there are no plumes, then looks for plumes
using the covariance estimate from the “off-plume” pixels, then removes “plume-like” pixels and re-
estimates the “off-plume” covariance matrix and mean vector. Because we focus entirely on
characterizing the background in cases having weak and rare plumes, we will not consider such an
iterative procedure. However, plume-detection performance is expected to degrade when on-plume
pixels are used to estimate the background covariance matrix. Performance also degrades if the
chemical target directions are similar to the clutter directions (as defined, for example, by the
eigenvector directions in the spectral decomposition of the background covariance matrix [5, 6, 14]).
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  In the scenes we consider, small (up to a few or a few tens of pixels) and weak (both in terms of
temperature difference between the ground and plume and  in terms of chemical strength, see section
3) plumes from a library of possible chemicals might be present. These chemicals have effects on the
measured at-sensor radiance that we refer to as “chemical signatures,” which are based on “known”
spectra (the spectral library values are not known perfectly) that must be transformed (introducing an
error source). Therefore, the “chemical signatures” are also not known perfectly. However, our focus
in on characterizing the background clutter in the context of this situation, so we will ignore errors in
the chemical signatures and deal strictly with real and simulated scenes that have (or are assumed to
have) no plume.

  We focus on the GLS values or BMA probability estimates and associated thresholds for deciding
whether a plume is present in a pixel in scenes having no plumes. This is an effective way to
characterize background clutter in the context of plume detection because decision thresholds impact
performance as defined by false positive and negative rates. Therefore, we compare thresholds
estimated from one real cluttered scene and from several simulated cluttered scenes to thresholds from
corresponding uncluttered, SCMG scenes. For completeness, we also compute other aspects of the
distribution of GLS and BMA values, such as kurtosis and skewness, so that the Gaussian
approximation can be more fully assessed.

  One caveat is that approaches other than GLS are necessary if we cannot assume we have an
exhaustive list of all possible chemical targets in the scene (“chemical target” is described Section 3);
in such cases, there might be more relevant ways to characterize the background clutter. In addition,
other approaches become available if the ground pixels are viewed twice or if other regions of the
spectrum are used. For example, mid-wave IR data might allow the opportunity to observe plume
effects as a shadow effect on ground pixels and also as we do here for NIR data, as a signal effect
when the plume lies in the line of sight between the sensor and the corresponding ground pixels.

 There are several implications of concluding that an SCMG model is effective in our context. First,
it is a simple model-based summary of complicated clutter.  Second, decision thresholds could be
based on SCMG data, and therefore could be computed analytically (analogous, for example, to
claiming that a decision threshold of 2±  standard deviations corresponds to a 5% false alarm
probability by appealing to a Gaussian approximation). Third, it would suggest that it might be
difficult to find robust methods that improve the GLS plume-detection performance (defined as the
false negative rate for a given small fixed positive rate).

3. Data Models and Associated GLS-based Plume Detection Methods

3.1. AVIRIS signals

The photons detected by a visible/NIR hyperspectral detector associated with background pixel i at
frequency νj (all terms depend on frequency νj) can be modeled as

                                              ,( (1 ) )g upb
i i i ii i

down
iS L L L Nε ε τ= + − ++         (1)
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where iε is the emissivity, g
iL  is the Planck function at ground temperature, τ is the atmospheric

transmission, up
iL is upwelling radiance, (1 )iε− down

iL is downwelling radiance reflected off the ground,
and iN includes unmodeled effects and instrument noise [3, 15].  Throughout we assume that context
can be used to distinguish scalars, vectors, and matrices.

Figure 1. (top) Broadband image of a scene A, which is cluttered because it includes mountains,
buildings, and water, but to our knowledge contains no plumes.

     The signal from plume pixel i is b
iS  plus terms to model the plume effect,

                                        [ ( ] ,(1 ) )   p p gb
i p i ii i i

down
iS S L L Lα ε ε τ= + − + −                (2)

where 1p pα τ= −  is the plume absorption and p
iL is the Planck function at plume temperature.

The iε terms (emissivities) depend on the properties of the background. Concrete, asphalt, buildings,
grass, dirt, water, and other common background features each have their characteristic emissivity.

     Using the approximation 
1

1 ,
cn

p p k k
k

Cα τ σ σβ
=

= − ≈ =∑ (assuming Beer’s law [3] for chemical

absorption, and a weak, optically thin plume, so that 1 xe x−− ≅ ), where Ck is the concentration of
chemical k integrated over the pathlength through the plume, 

c1 2 n( ... )σ σ σ σ= is the p x nc matrix of
chemical spectra with σk  the chemical spectra (cross section) for chemical k, 

c1 2 n( , ,..., )C C Cβ = is the
unknown gas concentration vector, nc is the number of chemicals in the plume, and defining iA   as

i [ ( ] } ,A  = { (1 ) )p g
i i i i

down
iL L Lε ε τ σ− + − we can rewrite Eq. (2) as
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                                                         . + p b
ii iS A Sβ=                                                                          (3).

If any of the estimated components in the β parameter is large, this is evidence of a plume at pixel i.
Typically the units for β are parts per million per meter per degree Kelvin temperature difference
between the plume and ground, and the radiance units are Watts/(cm2 sr). The temperature difference
term arises from evaluating Planck’s function at ground and plume temperature. Note that for iε values
near 1, i  A will be nearly zero if there is no temperature difference between the ground and plume,
making plume detection nearly impossible. Therefore, it is important to realize that a plume has a
stronger effect and is therefore more easily detected if its temperature difference (positive or negative)
with the ground is large.

  To summarize, we can write equation (3) generically as

                                                   r = Aiβ + z,                                    (4)

where r is the measured, calibrated radiation at pixel i,  β is the amount of the chemical “signature”
iA at pixel i which we want to estimate, and z is the background effect (z = b

iS ) [16]. We will refer to

i [ ( ]  , = (1 ) )  p g
i i i i

down
iL LA Lε ε τ σ− + − as the “chemical signature” or “target” in the task of distinguishing

background from background plus target.  In Eq. (4), we typically assume that r has been mean-
centered to have zero sample mean in the scene.

 A common alternative to Eq. (4) decomposes r as a linear superposition of background albedo
effects and signal effects plus white noise, which leads to fitting each pixel to the best combination of
background and target signatures. Again, the GLS approach has performed well compared to this and
all other alternatives attempted to date [14], although performance comparisons depend on specific
goals and contexts, including spectral library sizes.

   In Eq. (4), iA is the matrix of chemical signatures, defined as i [ ( ]  ,= (1 ) )  p g
i i i i

down
iL LA Lε ε τ σ− + − and

the factor [ ( ] ,  (1 ) )p g
i ii i

down
iS L L Lε ε τ= − + − which multiplies σ in i ,A can be estimated using an in-scene

method [17] and/or atmospheric models such as FASCODE [18] to estimate τ. In our examples, we
assumed a standard United States atmosphere and FASCODE to estimate τ. We also assumed that the
factor [ ( ](1 ) )p g

i i i i
down
iS L L Lε ε τ= − + −  is constant among pixels for the spectral channels of interest [19], so

we assume and write i  A = A, which is probably more correct in the long wave IR than in the visible or
NIR range. Future work will assess the impact of this assumption on estimates of β. Because the factor
S is estimated (by estimating τ and typically by assuming [ ( ](1 ) )p g

i ii i
down
iL L Lε ε− + −  is constant across

spectral channels although in reality it depends on pixel temperature via Planck’s function) and
because the spectral cross sections σ in the chemical library are measured with error, we have an
“errors in predictors” issue [20] in addition to the clutter issue.  Strategies to deal with these predictor
errors is the subject of ongoing work. However, a tentative finding is that more elaborate methods that
account for the error in A in Eq. (3) are difficult to implement (too many pixels for routine fitting) and
do not substantially outperform the GLS method that ignores errors in predictors [21-23]. In addition,
because we want to compare clutter-related AVIRIS results to corresponding results from long-wave
IR sensors, we used long-wave IR chemical signatures. Therefore, the signatures are realistic, but not
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real, and the major challenge we focus on is background clutter, rather than challenges related to
mispecifying the target signatures.

The approach considered here uses all of the image’s pixels to characterize the background by
computing Σ̂  (recall that there is no iteration to remove plume-like pixels).  For each frequency jν , the

mean response r (over all pixels) is subtracted from the responses so that the centered response r has
mean 0. We then assume that ˆ~ (0, )r N Σ  for the background pixels, where Σ̂  is the p-by-p sample
covariance matrix (with variances on the diagonal and covariances on the off-diagonal), and p is the
number of frequency channels. The symbol ˆ(0, )N Σ  denotes a multivariate (p = 224 for this paper)

Gaussian distribution having mean 0 and covariance matrix Σ̂ , which is the SCMG assumption.
Combining all these assumptions, the simplistic SCMG model for plume pixels is

                                        ˆr = A   + z ,  with ~ (0, )z Nβ Σ               (5)

and Σ̂  and  r  are estimated using all of the scene’s pixels.

3.2. GLS

The GLS solution to Eq. (5) for a given pixel is

                      1 1 1ˆ ˆˆ ( ) ,T TA A A rβ − − −= ∑ ∑                                               (6)

which is a vector consisting of k concentration estimates [24, 25]. We assume that real plumes contain
at most three chemicals, so 3k ≤ . However, in some contexts, we must evaluate all possible subsets of
1, 2, or 3 chemicals from a chemical library. Because the number of spectral channels is typically at
least p = 128, this approach restricts attention to the overdetermined case (p > k). As an aside, we
always have enough background pixels to estimate the p-by-p covariance matrix Σ̂ .  Issues concerning
the number of pixels required for Σ̂ to be a high-quality estimate will not concern us here because we
force all scenes being compared to have exactly the same sample covariance (Section 4). Our synthetic
background scenes will be generated from various mixtures, each compared to synthetic SCMG data.
   In Eq. (6), note three features of the multiplication by 1ˆ −Σ  prior to the multiplication by AT: (1) in
contrast to the often-used principal components, the transformation to 1ˆ r−∑  does not result in
uncorrelated coordinates, but instead the covariance matrix of  1ˆ r−∑  is 1ˆ −Σ ; (2) in the case that 1ˆ −Σ

has nonzero off-diagonal entries, note that 1ˆ r−∑  includes an axis rotation, which again differs from
the often-used principal component rotation, and (3) in the case that 1ˆ −Σ is diagonal (all off-diagonal

entries are zero), note that 1ˆ r−∑  can be expressed as 1 2
2 2 2
1 2

( , ,... )p

p

rr r
σ σ σ

, which very strongly emphasizes

the low variance directions, which contrasts to the more typical scaling which would divide each
variable ri by iσ .

     BMA involves repetitive application of the GLS for an exhaustive list of possible chemical subsets,
as described below.
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3.3. BMA

In order to decide which chemicals are present in a candidate plume, we apply the GLS to all
subsets of 1, 2, or 3 chemicals [3], and then Bayesian Model Averaging (BMA) [26] or a stepwise least
squares procedure is used to estimate the probability that each chemical from the library was present.
These probability estimates are impacted by nonGaussian behavior, as we show below. Here we
briefly describe BMA for subset selection.

For a given data set D and probability model for the data, it would be ideal if we could calculate the
exact probability of each subset. By Bayes theorem, 1 1 1 ,( | ) ( | ) ( )P M D P D M P M∝  where P(M1) is the

prior probability for model (subset) M1. This calculation requires calculation of the
expression 1 1 1 1 1 1,( | ) ( | , ) ( | )P D M P D M M dβ π β β= ∫ where 1β is the coefficient vector for the chemicals in
model M1. Such integrals are notoriously difficult in most real problems requiring either numerical
integration, analytical approximation, or Markov Chain Monte Carlo methods [27, 28].  Even if the
integral could be computed accurately, we would rarely know the exact subset probabilities because
real data never follows any probability model exactly. Therefore, various approximations are in
common usage, with the BIC (Bayesian Information Criterion) being perhaps the most common [26].

Following [26] and [29] we approximate ( | )jP M D using the approximate result that
/ 2( ) jBIC

jP M e−∝  where BIC ln(RSS / ) (  + 1)log( ),jj jp p n p= + nj is the number of predictor variables in

subset (model) j, 1/ 2 1/ 2 2
1

ˆ ˆˆRSS ( )
p

j i j
i

r Aβ− −

=
Σ= Σ −∑ is the residual sum of squares for subset j, p is the

number of spectral channels per pixel, and ˆ
jβ  is the GLS-based estimate of βj. The BIC expression is

derived using the Laplace method for approximating the integral required to calculate ( | )jP M D , and

assuming a flat prior (over the region where the integrand is nonnegligible) for the value of βj.

The probability that chemical C is present is P(C|D) ( ) ( | )
1

M
I C M P M Dj j

j
= ∈∑

=
, where ( )I ⋅ equals 1 if

its argument is true. That is, to estimate P(C|D), we simply sum the model probabilities for each subset
that includes chemical C. Although these probabilities have varying accuracy, depending on the data
(see section 4), BMA is one of the most effective strategies for chemical subset selection, particularly
when prior information such as some chemical combinations being highly likely or unlikely is
available [21].

4. Evaluation of the multivariate Gaussian assumption

Kurtosis and skewness are two of many measures used to gauge how close a distribution is to
Gaussian  [30]. Testing for univariate or multivariate normality is somewhat of an art because: (1)
there are many possible tests; (2) any test applied to real data is practically guaranteed to reject the
Gaussian hypothesis provided the sample size is large enough, and (3) some types of nonnormal
behavior can be present, yet the Gaussian approximation is still adequate for some goals.  Regarding
(2), the probability of detecting nonGaussian behavior approaches one as the sample size increases,
even if the departure from normality is very small. Therefore, in view of (3), it is often prudent, as we
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do below, to compare conclusions made using the real data to corresponding conclusions made from
simulated Gaussian data.

Here we will include the following comparisons of real data to corresponding Gaussian data: (a)
kurtosis; (b) skewness; (c) the quantiles of each element of β̂  (because these quantiles are used to
select decision thresholds to decide whether the corresponding chemical is present), and (d) BMA-
based estimates of the probability that a given chemical from a chemical library is present. We will do
so in the cases of both scalar-valued and vector-valued β̂  for each pixel.
     To simplify notation, we will continue to use r as the response and A as the predictor matrix, and
ignore measurement error in A. We will use a simulated Gaussian reference distribution (the SCMG)
that exactly follows Eq. (5) for comparison.

The next subsection describes mixture distributions and gives example quantiles from mixtures of
scalar-valued Gaussian distributions. The following two subsections define skewness and kurtosis, and
give examples with scalar mixtures.  Following subsections describe simulated scenes and give results
of our comparisons to SCMG data for a few cases.

4.1. Kurtosis and Skewness

 Kurtosis is defined as the ratio of the fourth moment to the square of the second moment,

4

1

2 2

1

( )

n

i
i
n

i
i

z

z

=

=

∑

∑
,

for a mean-centered variable z. The expected sample kurtosis is 3 for a Gaussian distribution. Often, as
we do throughout, the expected value of 3 is subtracted so that the expected value of the “kurtosis
excess” (which we will still refer to as kurtosis) is 0 for a Gaussian distribution. The scalar (k = 1 case)
GLS solution was evaluated in [3] and found to be much closer to Gaussian, as measured by kurtosis,
than ATr.

We will also evaluate skewness, a common measure of symmetry, defined as

3

1

2 3/ 2

1

( )

n

i
i

n

i
i

z

z

=

=

∑

∑
, which also

has an expected value of 0 for Gaussian data.
Throughout, we will use 1 1 1ˆ ˆˆ ( )T TA A A rβ − − −= ∑ ∑  to denote the GLS solution and 1ˆ ( )T TA A A rβ −=

to denote the classical least squares (CLS) solution [24]. The CLS solution is also called a standard
matched filter or a “white-noise filter.”  The CLS solution is almost guaranteed to perform worse (as
defined by the false negative rate in plume detection for a given small false positive rate) than the GLS
solution because the CLS solution does not use the variances and covariances to properly weight the
solution vector. Here, we focus on how the GLS (and CLS) estimates on real data compare to
corresponding estimates on simulated SCMG data.  However, in Section 4, we mention a few detection
probability comparisons that confirm that the GLS approach has higher plume detection probability
than the CLS when they have the same false positive probability. Perhaps surprisingly, the GLS
estimates do not always lead to “more Gaussian” behavior than the CLS estimates.
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4.2. Mixtures of Scalar-valued Gaussian Variables

Because real data r is a mixture of many physical components, in the important special case of
scalar-valued  1 1 1ˆ ˆˆ ( )T TA A A rβ − − −= ∑ ∑  at each pixel, we might expect β̂  values to fall in clusters
corresponding to the various physical components. Such clustering arises from mixtures of
distributions [11]. As we show below, this clustering is strongly mitigated (but not eliminated) by the
linear combinations of the components of r that are used in the calculation of β̂ . This subsection
defines mixtures of scalar-valued Gaussian variables and then briefly evaluates to what extent
Gaussian mixtures can have Gaussian-like quantiles.

A random variable X arising from mixing Ncomp scalar-valued Gaussian random variables can be

expressed as
1

~
Ncomp

i i
i

X zπ
=
∑ , where iπ  is the probability that component i is chosen, and component i is

Gaussian with mean iµ and standard deviation iσ , denoted as ~ ( , )i i iz N µ σ .  Mixtures of vector-

valued Gaussian random variables are expressed similarly, and have been proposed to describe real IR
hyperspectral imagery [3, 11]. Mixtures of other vector-valued random variables have also been
proposed [7].

It is sufficient here to consider the case where the means iµ  differ among groups, but the standard
deviations iσ are the same in each group, denoted σ The mean and standard deviation of the mixture

are then mix
1

Ncomp

i i
i

µ π µ
=

= ∑  and 2 2 2 2
mix

1

Ncomp

i i mix
i

σ σ π µ µ
=

= + −∑ . Our main interest in the plume-detection

context is in the probabilities of exceeding specified thresholds. It can be shown by straightforward

calculation that
Ncomp

mix mix
mix mix i

1

(| | ) (1 ( )i

i i

P X k kµ µ σµ σ π ϕ
σ σ=

−
− > = − +∑ .

Perhaps surprisingly, for many mixtures, these probabilities are smaller than those of the
corresponding reference distribution, which is a single-component univariate Gaussian having the
same standard deviation ( mixσ ) as the mixture. Therefore, the commonly-observed tendency for GLS

values in hyperspectral IR image analysis to have fatter tails (higher probabilities of mean-centered
values exceeding kσ) is not necessarily expected. However, for many other mixtures, particularly those
having very unequal iπ , the tails are fatter than the reference Gaussian. For example, suppose the

random variable X arises a mixture consisting of 3 components, with rather unequal component
fractions 1 2 30.083,  0.83,  and 0.083π π π= = =  and component means 1 2 33,  0,  and 5µ µ µ= − = = , and
with σ = 1. Then it is easily shown that mix mix(| | )P X kµ σ− > = 0.079, 0.022, and 0.0006 for k = 2, 3,

and 4, respectively, and the kurtosis equals 2.76. The corresponding probabilities for the single-
component reference Gaussian are 0.046, 0.003, and 0.00006, which are significantly smaller,
indicating that this particular mixture has fatter-than-Gaussian tails. On the other hand, if the random
variable X arises a symmetric mixture consisting of 3 components having

1 2 30.25,  0.5,  and 0.25π π π= = =  and 1 2 33,  0,  and 3µ µ µ= − = =  with σ = 1, then

mix mix(| | )P X kµ σ− > = 0.023, 0.000014, and 4.4 x 10-11 for k = 2, 3, and 4, respectively, indicating that

this mixture has thinner-than-Gaussian tails. And, its kurtosis equals -0.67.
Although kurtosis measures tail behavior fairly well, it is possible for a distribution to have less-

than-Gaussian kurtosis, yet have higher probability of exceeding some of these thresholds, and vice
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versa. For example, one example 10-component Gaussian having very different component fractions
has kurtosis -0.333 but mix mix(| | )P X kµ σ− > = 0.0002. This is significantly larger than the

corresponding probability for a single-component Gaussian, which is 0.00006.

4.3. Simulated scenes to compare to SCMG scenes

The simulated mixture scenes will be motivated by real data examples such as shown in Figure 2
from scene A.  The top plot in Figure 2 is example spectra from selected pixels from Scene A. The
bottom plot in Figure 2 is the same, except the spectra have been mean-centered to zero mean by
subtracting the scene mean from each pixel’s spectrum. Note that the response varies considerably.
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Figure 2. (top) Example radiance from selected pixels from Scene A.; (bottom) Example mean-
centered radiance from selected pixels from Scene A.

Figure 3 is the coefficient of variation (COV) for each spectral channel for a random selection of
16,384 pixels from Scene A. The COV is the standard deviation (across pixels in this case) divided by
the mean. Except for the lowest-response channels, most COVs are approximately 20% to 50%. In
addition, simple cluster analyses of scene A and similar scenes suggest that the mixture components
are represented with widely varying percentages. For example, there is relatively little water in Scene
A, compared to dry land.  These observations suggest two features to include in simulated mixture
models for Scene A. First, the simulated data sets will each have the same COV as Scene A (this turns
out not to be important for our data, see below). Second, we randomly draw the mixture fractions πi
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from a lognormal distribution, which results in quite unequal fractions, such as those in Scene A (this
is important for our data). For example, there is a large fraction of mountainous vegetation in Scene A,
a moderate fraction of water, and a small amount of asphalt.
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Figure 3. Coefficient of variation of mean-centered spectra from selected pixels from Scene A.

  Figure 4 is a normal probability plot of CLS and GLS values for each of 2 example chemical
directions (the example chemical directions were randomly chosen from the library of 296 chemical
directions) from a subset consisting of 16,384 randomly-selected pixels from Scene A. A normal
probability plot plots the sorted data versus the expected values of sorted data from a simulated
reference Gaussian distribution. It is an effective qualitative tool for detecting nonnormality. Mixtures
typically exhibit sharp bends or jumps in normal probability plots. In large samples from a Gaussian
distribution (16,384 is large in this context, but small enough to carry out the many simulations
presented here), the normal probability plot will be very nearly a straight line. We see that the GLS
values are “more Gaussian” (more linear) than the CLS values, as noted by [3] using kurtosis
evaluations. And, the GLS and CLS values are both much closer to Gaussian on the basis of any
measure than are any of the individual 224 spectral channel values.
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Figure 4. Normal probability plots of F and GLS values in two different chemical directions (the top
row is one direction; the bottom row is another direction) from 16,384 randomly selected pixels from
scene A.

We will describe CLS and GLS results for several simulated scenes and for subsets of pixels from
scene A. The simulated scenes include a 7-component Gaussian mixture example with randomly
generated mean vectors; another 7-component Gaussian mixture example, but with the component
mean vectors mimicking those in Figure 2; a Gaussian mixture example with means given by
randomly chosen background albedos from an albedo spectral library; a multivariate t with 5 degrees
of freedom [12], and 3 sets of 16,384 randomly-selected pixels from scene A.  All simulations were
performed in Splus [31].

In all cases, we can arrange for the simulated reference SCMG to have either exactly or
approximately the same sample Σ̂ as the scene of interest. Because the ranked eigenvalues of Σ̂  from
real scenes typically decay to nearly zero after the largest 2 to 3 eigenvalues, we anticipated that
simulated reference scenes should have exactly the same Σ̂  (and eigenvalues) as the corresponding
scene of interest (real or simulated). Therefore, results reported here have forced the simulated
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reference Gaussian to have exactly the same (to within machine accuracy) Σ̂ as the corresponding
scene of interest. Also, in computing Σ̂  and/or 1ˆ −Σ it is sometimes advisable to discard very small
eigenvalues or use some other type of regularization. We do not report results here arising from any
type of regularization.  In our context of characterizing clutter by comparing results to a corresponding
simulated reference SCMG, it is important to do the same calculations on both data sources, but less
important to experiment with options to improve some type of performance.

A secondary consideration is whether the 224 channel variances should be equal. Recall from
Figure 3 that the COV is not constant across spectral channels; however, we have observed that
forcing a constant COV across channels gives similar results to choosing a COV similar to that in
Figure 3. Therefore, for brevity, all results shown here using simulated mixtures assume the same
COV across spectral channels as in a random selection of 16,384 pixels from real scene A, and also
assume the same lognormal distribution of component fractions.

Gaussian mixture 1 was generated by randomly selecting 7 components of 224 means to represent 7
mixture components, each having a randomly-generated mean for each of the 224 spectral channels.
The component fractions ( iπ as used above) were randomly generated from a lognormal distribution

and therefore varied considerably.  For example, to generate the first 2 of 224 radiance values, we first
randomly choose (with probability given by the component fractions iπ , for i = 1, 2,…, 7) a component

mean (component 1 might represent water,  component 2 might represent asphalt, etc.) Suppose the
randomly-generated mean vector is (5.2, -3.3). We then add Gaussian noise to simulate within-
component variation, resulting, for example in a simulated r value of (5.3, -3.2).  This is repeated
16,384 times, each time randomly choosing which component to generate and then adding Gaussian
noise to simulate within-component variation. The relative sizes of between-component and within-
component variance could be chosen from real scenes if the goal were to select a model that is most
characteristic of observed r values. Alternatively, as we did here, the relative sizes of between-
component and within-component variance can simply be varied empirically. Recall that in all cases,
we forced the simulated reference Gaussian to have exactly the same (to within machine accuracy)
Σ̂ as the corresponding scene of interest (simulated Gaussian mixture 1).  Probably largely because of
that constraint, there was not much variation in results among multiple realizations of this procedure.

 Recall from Figure 2 (bottom plot) that the real data is better described by a mixture in which the
224 channel means are either all positive or negative. Therefore, Gaussian mixture 2 was generated in
the same manner as Gaussian mixture 1, except the 7 component means were chosen by simulating one
random direction (positive or negative representing above or below the mean) for all 224 channels and
then choosing 224 random magnitudes. This resulted in simulated data that is more similar to that
arising from simply mixing together varying fractions (using the log-normal distribution to produce
quite different component fractions) of randomly-chosen r values from Scene A. Note that in this case
we would not have a mean vector such as in the Gaussian Mixture 1 case having first 2 components of
(5.2, -3.3), because we forced all components to have the same sign.

Gaussian mixture 3 was generated in the same manner as mixture 1, except the 7 component means
were randomly chosen from a library of 40 common background albedos.

The multivariate-t has been described [12] as a possible model for IR hyperspectral data, primarily
because of the heavier-than-Gaussian tail behavior. The degrees of freedom can be chosen on the basis
of fits to the various aspects of the data [12]; we chose df = 5 ([12] also found that df = 5 gave a
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relatively good fit) and followed [12] to generate data having the multivariate-t distribution with a
covariance equal to the covariance from 16,384 pixels randomly chosen from scene A. Note that the
multivariate-t is not a mixture distribution, but [12] also evaluated mixtures of the multivariate-t.

We also randomly-selected subsets of 16,384 pixels from real scene A are used for our real data
examples.

4.4. Scalar-valued β̂  for each pixel

The case that β̂  is scalar-valued for each pixel corresponds either to searching for a plume
containing one particular chemical in a scene, or to searching for a plume that contains only one
chemical, but the chemical could be any chemical in a library containing, say,  L chemicals.  In the
later case, it is necessary to consider the distribution of the maximum of L GLS values. Various types
of non-Gaussian behavior could manifest themselves differently when such an overall maximum is
evaluated.  We consider these two sub-cases separately and use a library of L = 296 chemicals, which
is one of several libraries we typically use in practice. Contact the first author for more detail about
this chemical library.

4.4.1 Searching for a plume containing one particular chemical

We will compute the scalar GLS values for one chemical at a time (and report average results over
all 296 chemicals) for simulated scenes, the real scene, and the corresponding simulated SCMG
scenes.

For each of these cases, Table 1 gives the fraction of pixels (16,384 pixels were used for each case)
for which the scaled CLS or GLS value (scaled to unit variance) exceeds 2, 3, 4, or 5, the kurtosis, and
the correlation in the normal probability plot. The correlation in the normal probability for any
distribution plot will be quite high because it is a plot of sorted values versus expected sorted values
computed as if the data were Gaussian. Evaluating the correlation in the normal probability plot is very
similar to the Shapiro-Wilks test for normality [30]. Here we rely on direct comparison to a value of
1.0 which is obtained in such large samples from a Gaussian distribution. Multiple repeats of each
simulated case allowed us to determine that any correlations of 0.99 or less are statistically
significantly less than 1.0, indicating a larger departure from the Gaussian distribution case (having a
correlation of 1.0 in such large samples) than can be explained by chance alone.

As an important aside, evaluation of detection probabilities for injected signals is beyond our scope
here because our focus is on the Gaussian approximation; however in all cases in Table 1, the GLS-
based DP values were significantly higher than the CLS-based DP values.

From Table 1 we note that Gaussian Mixture 1 is indistinguishable from its corresponding
simulated reference SCMG.  This is somewhat surprising, but indicates the power of the central limit
effect when each of the 224 mean values is generated randomly for each of the 7 mixture components.

The Gaussian Mixture 2 results are qualitatively more typical of those from real scenes: there is a
significantly larger fraction of large GLS values (exceeding 3, 4, or 5) than in the corresponding
reference scene. However, this particular mixture distribution appears to be “worse” than our real data
in terms of the corresponding GLS’s distance from normality (see the low correlations in the normal
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probability plot for example).  Interestingly, the CLS values often have large kurtosis, but mostly
because of the fraction of CLS values exceeding modest values such as 2 than because of CLS values
exceeding 3, 4, or 5.   Recall that kurtosis values should be near 0 for the Gaussian distribution. There
is also a tendency for the GLS values to have larger-than-Gaussian kurtosis, mostly due to the fraction
of values exceeding the larger thresholds such as 3, 4, and 5. Also, note that the GLS values have
larger kurtosis than do the CLS values for Gaussian Mixture 2; in this respect, the CLS values are
therefore more Gaussian than the GLS values in this case.  Although not shown here, there was a
tendency for the kurtosis of the GLS values to be more Gaussian for random directions than in actual
chemical directions randomly chosen from the library of 296 chemical spectra.

The multivariate-t with 5 degrees of freedom is somewhat like the real data, as was found in [10]
using different data than here. Other values for the degrees of freedom were examined; for example,
results for 3 degrees of freedom were considerably different than results for real data. Notice however,
that contrary to the general tendency, the GLS values are not closer to Gaussian than are the CLS
values.

In the three randomly-chosen subsets of pixels from real scene A, note that again the GLS values
are closer to Gaussian than are the CLS values. Also note that the fraction of GLS values exceeding 3,
4, or 5 are distinctly larger than the corresponding SCMG values. Therefore, while the GLS transform
is generally more Gaussian than is the CLS transform, it is not necessarily adequate to rely on
Gaussian approximations (see Section 6).

Finally, note that in all cases, the normal probability plots of the GLS values are more Gaussian
than those of the CLS values, as indicated by their significantly higher correlations (last column in
Table 1).

4.4.2 Searching for a plume containing one chemical from a library of L chemicals

In this subsection, we still consider a scalar value for each pixel, but the scalar is the value of the
maximum GLS value from the selected library of 296 chemicals. Table 2 gives results based on
choosing the maximum for the same cases as in Table 1. We have experimented with both random and
actual chemical directions; results shown here are for actual chemical directions. There is a tendency
for the GLS values in random directions to show somewhat lower kurtosis than the GLS values in
chemical directions. We believe that random directions are more typical of so-called “narrow-line
absorber” chemicals, but have not yet attempted a systematic evaluation by classes of target signatures.
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Table 1. Cell entries in columns 1 to 4 are 100 times the fraction of (CLS,GLS) values (averaged over
296 chemicals, each scaled-to-unit-variance), denoted Z, that exceed 2, 3, 4, or 5, and the kurtosis,
skewness, and correlation in the normal  probability plot. These (CLS, GLS) entries are given twice
per cell: once for the scene and once for a corresponding simulated Gaussian reference scene. Entries
for the 100 times the fractions exceeding thresholds are within approximately 0.05±  or less of results
in hypothetical repeats of the same procedure. Entries for skewness and kurtosis are within
approximately 0.01±  of results in hypothetical repeats of the same procedure. Zero entries are less
than 10-5.

Case P(Z>2) P(Z>3) P(Z>4) P(Z>5) kurtosis skewness Correlation in
the normal
probability
plot

Gauss. Mix 1 2,2

2,2

0.08,0.1

0.1,0.1

0.01,3e-3

3e-3,3e-3

0,6e-5

4e-5,0

-0.13,-04e-3

0.004,-2e-3

-0.07,-0.01

0.1e-3,-2e-3

0.999,1

1,1

Gauss. Mix 2 4,3

2,2

4,1

0.09,0.01

1,1

8e-5,3e-3

0.03,0.3

0,2e-5

6.7,18.2

-0.07,-3e-3

2.48,-0.12

2e-3,3e-4

0.78,0.86

1,1

Gauss.Mix 3 3,2

2,2

0.2,0,3

0.2,0.1

0.02,0.4

3e-3,3e-3

0,0.01

2e-5,4e-5

-0.25,1.05

-0.017,0.01

0.33,-0.16

-5e-35,7e-3

0.984,0.991

1,1

Multi-t with 5
df.

2,2

2,2

0.1,0.4

0.1,0.1

4e-3,0.1

2e-3,2e-3

2e-4,2e-4

0,4e-5

0.02,2.25

0.02,2e-3

-0.02,0.02

-0.01,-0.01

1, 0.990

1,1

Scene A:

Pixelsubset 1

3,2

2,2

0.4,0.2

0.2,0.1

0.05,0.02

0.01,4e-3

0.02,6e-3

0,6e-5

1.81,0.47

0.01,2e-3

0.41,4e-3

0.02,-0.002

0.987,0.989

1,1

Scene A:

Pixelsubset 2

2,2

2,2

0.3,0.2

0.1,0.1

0.2,0.02

1e-3,e3-3

0.1,4e-3

0,0

16.1,0.43

-0.04,2e-3

1.26,7e-3

9e-4,-4e-3

0.95,0.999

1,1

Scene A:

Pixelsubset 3

0.5,2

2,2

0.1,0.2

0.2,0.1

0.03,0.02

4e-3,3e-3

0.01,5e-3

0,2e-5

4.4,0.49

-6e-3,-4e-3

-0.14,7e-3

0.03,2e-3

0.91,0.99

1,1

Again, Gaussian Mixture 1 is almost indistinguishable from its corresponding simulated reference
SCMG. There is a hint of the typical pattern in the extreme tails for P(Z>5): the mixture has slightly
heavier than Gaussian tails. This pattern is more pronounced for the other four cases (three simulated
and one real scene A with several subsets examined separately). And, that pattern is the key
observation from Table 2. That is, in all cases except Gaussian Mixture 1, the extreme tail behavior,
P(Z>3), P(Z>4), and P(Z>5), is quite different than its corresponding simulated Gaussian reference
distribution. As an aside, the maximum of 296 Gaussian values does not have a Gaussian distribution,
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so it is not obvious what the kurtosis should be. Regardless, results for each case can simply be
compared to corresponding results from the simulated reference SCMG distribution.

Table 2. Cell entries in columns 1 to 4 are 100 times the fraction of the maximum over 296
(CLS,GLS) values that exceed 2, 3, 4, or 5, and the kurtosis. These (CLS, GLS) entries are given twice
per cell: once for the scene and once for a corresponding simulated Gaussian reference scene. Entries
for the fractions exceeding thresholds are within approximately 0.05±  or less of results in hypothetical
repeats of the same procedure. Entries for kurtosis are within approximately 0.01±  of results in
hypothetical repeats of the same procedure. The boldface entries are the only two examples in which
the kurtosis of the GLS values was less Gaussian than the kurtosis of the CLS values.

Case P(Z>2) P(Z>3) P(Z>4) P(Z>5) kurtosis

Gauss.
Mixture 1

78,75

74,76

11,14

14,15

0.3,0.5

0.6,0.6

0,0.01

0.01,0

-0.16,-4e-3

0.01,0.03

Gauss.
Mixture 2

12,24

7,88

5,22

0.5,17

4,16

0.02,0.6

3,6

0,6e-3

-0.76,-0.57

-0.14,-1e-3

Gauss.

Mixture 3

89,89

72,69

40,36

12,11

4,10

0.4,0.5

0,4

6e-3,0.01

-0.46,1.33

-0.02,0.02

Multi-t with
5 df.

18,66

15,81

3,27

1,4

0.4,10

0.04,0.5

0.05,4

0,0.01

0.19,2.14

0.18,0.01

Scene A:

pixel subset 1

14,92

14,94

3,22

1,21

0.5,2

0.05,0.7

0,3,0.5

0,6e-3

1.59,0.24

-6e-3,-1e-3

Scene A:

pixel subset 2

11,91

14,94

1,22

1,20

0.5,2

0.04,0.8

0.4,0.5

0,0

21.6,0.54

-0.05,2e-3

Scene A:

pixel subset 3

4,89

10,94

1,23

0.9,21

0.4,2

0.03,0.7

0.3,0.6

0,6e-3

4.46,0.37

-5e-3,7e-3

4.5.  Vector-valued β̂  for each pixel
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In this section we consider the vector-valued GLS estimate. We consider the case where
1 1 1ˆ ˆˆ ( )T TA A A rβ − − −= ∑ ∑  is 2-dimensional. Results for the 3-dimensional case are very similar, and 3

is the largest number of dimensions considered in any of our fitted models. To summarize the
distribution of each entry in the β̂  vector, in Table 3 we report the fraction (times 100) of scaled-to-
unit variance values exceeding thresholds of T = 2, 3, and 4, and the kurtosis and skewness for three
cases, depending on whether the directions are randomly selected from the 296-chemical library,
selected from distinct chemical groups in the 296-chemical library (on the basis of simple clustering of
the 296 spectra), or purely random. Table 3 is based on 45 pairs of chemical directions for each of 10
random selections of 16,384 pixels from scene A.

It appears from Table 3 that the target direction (random or from the chemical library) does impact
the quantiles and the kurtosis.  A graphical summary of Table 3 is given by the hierarchical clustering
[31] result in Figure 5. Figure 5 is a typical hierarchical clustering that displays the Euclidean distance
between each pair of vector-valued results. Nearby results cluster into groups. It is clear that the
Gaussian (G) results are more similar to each other than to the CLS or GLS results; it is also clear that
the GLS results are closer than the CLS results to the Gaussian results. Distances in the left plot are
based on the probabilities of scaled values exceeding 2, 2.5, 3, 3.5, and 4. Distances in the right plot
are based on these same probabilities plus the skewness and kurtosis. Clustering results are typically
very sensitive to whether the variables being cluster are scaled to have the same variance. We
examined hierarchical clustering results for both scaled and unscaled variables, and in all cases, the
same pattern was clear. That is, Gaussian values are more similar to each other than to the CLS or GLS
values, and GLS values are closer than the CLS values to the Gaussian values. In addition, we
estimated the number of modes in the distribution (using smooth density estimates rather than
histograms to identify modes) and the GLS values were very much more likely than the CLS values to
have one mode, although both CLS and GLS showed multimodal behavior compared to the unimodal
Gaussian distribution. Finally, note that the random directions subcase (subcase 3) tends to be different
from the chemical directions subcases (subcases 1 and 2) for the GLS values and for the CLS values,
and that for the GLS, the random directions subcase is closer to Gaussian.

4.6. BMA-based estimates of the probability that a given chemical from the library is present

Although exact calculations can be made for the probability that a given chemical from the library
is present, these calculations rely strongly on all the assumptions made, including all the relevant
probability distributions. Therefore, it is common to use approximate calculations that are typically in
practice as effective as the “exact” calculations, as described in the BMA subsection. By “effective,” it
is meant that estimated chemical probabilities are well calibrated. For example, if one records the
estimated probability of chemical C in repeated experiments, then among all those instances in which
P(C) lies in, say, the interval (0.65,0.74), the fraction of instances in which chemical C is present is
approximately 0.70.
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Table 3. Results summary (averages over the results for 2 chemicals for multiple cases) for the
distribution of each entry in the β̂  vector. Cell entries are CLS, GLS, and G values, where G refers to
GLS results from the reference Gaussian. The Chemical* directions case is chemicals chosen from
distinct chemical groups rather than completely at random from the 296-chemical library.

Direction P(Z>2) x 100 P(Z>3) x 100 P(Z>4) x 100 kurtosis skewness

Chemical* 1.9,2.3,2.2 0.3,0.2,0.1 0.09,0,03,2e-3 1.82,0.77,-5e-3 0.46,4e-3,5e-3

Chemical 2.2,2.3,2.3 0.3,0.2,0.2 0.1,0.03,0.03 14.7,0.47,0.47 1.0,0.02,0.02

Random 2.8,2.3,2.3 0.5,0.2,0.1 0.1,5e-3,3e-3 17.3,4e-3,-1e-3 1.46,0.02,2e-3
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Figure 5.   Hierarchical clustering result showing that the GLS values are closer to Gaussian (G) than
are the CLS values. The subcases are denoted 1, 2, and 3. Subcase 1 is in chemical directions chosen
from the library of 296 chemicals to be mutually distinct. Subcase 2 is randomly chosen chemical
directions from the library of 296 chemicals.  Subcase 3 is in random directions. The plot depicts the



Sensors 2006, 6         1607

average result of 45 pairs of chemical directions for each of 10 randomly chosen sets of 16,384 pixels
per set.

It has been shown [25] that BMA applied to simulated SCMG data is well calibrated, although the
quality of the agreement between estimated and observed chemical probabilities depends on the
dimension and condition (how close to singular) of the X matrix. If instead we apply BMA to a real
scene such as scene A, then we expect some performance differences due to the departure from the
SCMG modeling assumption. For example, we randomly selected 16,384 pixels and applied BMA to
each pixel. After using the 16,384 pixels to estimate Σ, random amounts of 0, 1, 2, or 3 chemical were
injected on a per-pixel basis following Equation (3).  Because [3] considered only random chemical
directions (rather than using chemical cross sections from a library), we again consider both random
directions and actual chemical directions randomly chosen from the same library of 296 chemicals. We
repeated this experiment 10 times, each time choosing 16,384 random pixels. Results are summarized
in Table 4.

Table 4. The average absolute difference (and the R2 describing the fit) between the estimated and
observed probability of a chemical being present, for each of four chemicals, denoted as chemical 1, 2,
3, and 4. The first entry in each cell is for the case of four randomly-selected chemicals from the
chemical library. The second entry is for the case of four random directions simulated from a Gaussian
distribution. There are two simulated reference distributions. The first has the same mean and Σ as the
real data, but is a SCMG; the second has a diagonal Σ with equal variances on the diagonal. Simulated
data entries are within approximately 0.01 of a repeat of the 10 sets of 16,384 pixels. Real data entries
would not vary if the 10 sets of 16,384 were analyzed again.

                                     ChemicalData Source Agreement
Measure

          1       2       3       4

Avg Abs
Diff

0.50, 0.07 0.20, 0.08 0.19, 0.08 0.43, 0.07Real Data: 10 random
subsets of 16,384
pixels from scene A R2 0.09, 0.80 0.60, 0.78 0.46, 0.78 0.54, 0.79

Avg Abs
Diff

0.46, 0.07 0.20, 0.07 0.20, 0.07 0.43, 0.07Reference Gaussian
Data having same Σ
as Scene A R2 0.06, 0.78 0.57, 0.78 0.45, 0.78 0.57, 0.77

Avg Abs
Diff

0.11, 0.04 0.04, 0.04 0.04, 0.04 0.06, 0.04Reference Gaussian
Data having Diagonal
Σ R2 0.91, 0.93 0.96, 0.94 0.92, 0.94 0.79, 0.94

Because all entries are repeatable to within approximated 0.01, Table 4 demonstrates a slight
tendency for lower agreement (higher average absolute difference) between the estimated and
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observed chemical probabilities in the real compared to in the corresponding simulated one-component
Gaussian data.  Similarly, if the agreement between estimated and observed chemical probabilities is
defined on the basis of the quality of a fitted line using R2 (which measures the percent of variance in
the response that is explained by a linear fit to the predictor) as in Table 4 (as in [25]), then again, there
is a slight tendency for worse agreement in the real data than in the corresponding simulated data.

  To summarize Table 4, the three paired-average (over the four chemicals) absolute differences are
(0.33, 0.08), (0.32, 0.07), and (0.06, 0.04) for the real scene, for the simulated SCMG  having the same
Σ as the real scene, and for the simulated SCMG with Σ being diagonal with equal variances (the off-
diagonal values are 0, in strong contrast to Σs from real scenes, which have strongly correlated spectral
channels, as can be anticipated from Figure 2), respectively. The first entry in each pair is for four
randomly-selected target directions from the chemical library. The second entry is for four random
target directions. The corresponding pairs for the R2 measure are (0.42, 0.79), (0.41, 0.78), and (0.90,
0.94). We empirically verified that these average results are repeatable to within approximately 0.01±
or less. Thus, when averaged over the four chemicals, there is a slight tendency toward lower
agreement in the real data both for the average absolute difference and for the R2 measure.

This is consistent with earlier findings using a different sensor (SEBASS, which has 128 spectral
channels) [3,32] that led to a scene-specific reference distribution approach; however, in this AVIRIS
case with 224 channels, the difference between the real data and the Gaussian data having the same Σ
as the real scene is considerably smaller.  Notice also that Gaussian data having a diagonal Σ with
equal variances exhibits much better agreement between observed and estimated probabilities. This is
also consistent with [25] which showed that the BIC-based BMA approximation tends to be better
when Σ is more nearly diagonal.

5. Exploring why the GLS values are closer than CLS values to Gaussian

  We have demonstrated that GLS values are generally but not always closer to Gaussian than are
CLS values using real and simulated data. This has also been demonstrated for a long-wave IR sensor
having 128 channels [32].

  Both the CLS and GLS transforms involve linear combinations of 224 variables, each of which has
a mixture distribution in real scenes. The central limit theorem (CLT) suggests that, provided no terms
dominate, a linear combination will be more Gaussian than any of the individual variables. There are
many versions of the CLT [33], some of which allow various forms of dependence among the
variables. And, there are various results for rates of convergence to the Gaussian distribution as the
number of summands increases. All of our examples combine 224 correlated variables, and it is clear
that both the CLS and GLS transforms, which both combine the 224 variables, are more Gaussian than
any particular variable (spectral channel).

  The term 1ˆ −Σ that appears in the GLS transform but not in the CLS transform typically has
approximately 50% of its 224 entries greater than zero in a given row, with some terms being
considerably larger than the others. These large terms have the potential to dominate the sum,
mitigating the central limit effect. Therefore, we do not anticipate providing a theoretical result but
will rely on the following additional evidence.
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 Figure 6 (top left) is a plot of a 2-component Gaussian (a mixture) characterized by 2 small circular
point clouds. Although it is simulated, it is similar to scatter plots of some pairs of spectral channels
from scene A. The two long thin horizontal elliptical point clouds are the transformed coordinates
corresponding to multiplication by 1.ˆ −Σ  The top center (right) plot is a histogram of the first (second)
transformed coordinate values. Notice that the low variance directions in the top left plot have become
the high variance directions in new coordinates (the middle plot has a much wider range than the right
plot). Also notice that the two components still appear, in the right plot, but that their separation is less
than in the left plot. The three bottom plots are the same, except there is no multiplication by 1ˆ −Σ . In
the bottom left plot, the 2-component Gaussian is identical to that in the corresponding top plot, but
because the scale is smaller, both components are long and thin bivariate Gaussians. The bottom center
plot shows the first coordinate (without a transform) and the bottom right plot shows the second
coordinate (without a transform). The bottom right plot is more spread out than the corresponding top
right plot, by a factor of approximately 2. Multiplication by 1ˆ −Σ tends to reduce the spread among
component distributions; this makes the central limit effect have less work to do to approach Gaussian
behavior.
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Figure 6. (top left) A 2-component Gaussian (a mixture) characterized by two small circular point
clouds; (top center) the first component of the GLS transform; (top right) the second component of the
GLS transform. The bottom left plot is the same as the top left plot except the horizontal axis is scaled
differently. The bottom center and right plots are the same as the corresponding plots in the top row,
except are for the CLS transform.
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Figure 7 (top left) shows the 224-channel response from each of 4 pixels selected from scene A
because they were well-separated, staying in order from lowest to highest across most channels. The 4
sets of 224 corresponding values that result from multiplication by 1ˆ −Σ are shown in the top right plot.
For each of the 224 channels, multiplication by 1ˆ −Σ has resulted in bringing the mixture components
much closer, to the extent that the ordering of the 4 component values varies much more across
channels. This behavior is present even if we use only 2 channels, and has occurred for any number of
channels that we have experimented with to date (2, 3, 4, 16, 32, 64, 128, and 224).
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Figure 7. (top left) The well-separated 224-channel response from each of 4 pixels; (top right) The
response in the top left plot, multiplied by 1ˆ −Σ  and then scaled to unit variance, corresponding to the
GLS operation; (bottom left) normal probability plot of corresponding CLS values in a random
chemical direction using a random mixture of the 4 pixels in the top left plot; (bottom right) same as
bottom left, except for GLS values.

The bottom plots are corresponding normal probability plots that should be very nearly linear if the
CLS (bottom left) or the GLS (bottom right) values are Gaussian. The CLS and the GLS values are
computed by first generating a synthetic scene consisting of 16,438 observations from a 4-component
mixture, using the 224-channel response for each of the 4 pixels shown in the top left plot as the
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component means. The lognormal-generated mixture fractions were 0.07, 0.25, 0.60, and 0.08,
respectively for the four components. Random noise having 10% COV was added to each observation.
Then, the CLS and GLS transforms were computed in a randomly-chosen chemical direction from the
296-chemical library. We see that the CLS values are not close to Gaussian (the correlation in the
normal probability plot is 0.910), but the GLS values are very close to Gaussian (the correlation in the
normal probability plot is 0.998) except for the extreme tails. The rapid rise in the normal probability
plot of the CLS values near 0 indicates a mixture of two components; although the data was generated
from a four-component mixture plus noise, only two components remain recognizable after the CLS
transform.

6. Scene-specific reference distribution

As seen here and in [3], the GLS values in scenes consisting of mixtures is often well approximated
by a SCMG. It is well known that GLS provides the best linear unbiased estimator of β (the BLUE,
which is the minimum variance unbiased estimator), so regardless of whether the data is approximately
Gaussian, GLS should be competitive [24], and has been shown to be competitive [14,16].  Therefore,
its performance is likely to be competitive, although the accuracy of confidence statements that rely on
the Gauusian approximation is unknown. In addition, the performance measure of interest here is in
the context of predicting which chemicals are in a given plume, and the BLUE property is not
customized for this goal, so it is an open question whether other estimators can perform better at
chemical selection.

Regardless of whether other estimators will outperform the GLS, it is important to assess the
confidence in each prediction. If the Gaussian approximation were sufficiently accurate, then in the
case of using BMA to predict which chemicals are present in a given plume, the estimated chemical
probabilities could be used directly in the natural fashion.  We then select a tunable threshold, such as
T = 0.99 and predict, for example, that chemical C is present if P(C) exceeds T.  Conditional on
observed data D, the false positive probability for detecting chemical C is estimated to be 1 - T. The
actual false positive probability is likely to differ from 1 – T because the real data is nonGaussian.
Even if the data were Gaussian, because of using the approximate result / 2( ) jBIC

jP M e−∝ and because

of choosing the maximum or top few chemical probabilities from the entire chemical library, the actual
false positive probability will differ from 1 – T [25]. Therefore, we have developed a scene-specific
reference distribution for selecting thresholds, as described next.
     To characterize the behavior of estimated chemical probabilities, [4] reports results for the BMA
strategy applied to real scenes in which there is no true plume. Custom software allows the user to: (1)
select some number of connected pixels (typically 20 to 100); (2) apply the BMA algorithm to fit the
null model and all single-chemical models to each of thousands of randomly chosen connected-pixel
regions, and (3) record the highest probability of any chemical for each of the regions. This generates a
reference distribution for comparison to BMA probabilities for a pixel-region that is thought to be a
plume containing chemicals of interest. This is a scene-specific reference distribution used to select
decision thresholds (such as if P(C) > 0.9 then predict that chemical C is present in the plume) that
attempts to account for real-data features.
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 An example of the reference distribution using BMA for a real scene, using a library of L =10
chemicals (and, to avoid other issues, using a pixel region of only one “connected” pixel) was given in
[21].  The fraction of pixels that exceed 0.9 for example, is approximately 3%, which is a higher
fraction than we observe in corresponding simulated data from the simulated reference SCMG
distribution. Although there is the potential for random variation due to how the pixels are partitioned,
we have observed essentially the same result for all random partitions analyzed.  However, if we select
a different set of 10 chemicals, we usually observe nonnegligible variation between the BMA
probabilities for the first set of 10 and the second set of 10 chemicals. For example, a second set of 10
chemicals led to 3.5% of BMA probabilities exceeding 0.9 (versus 3% with the first set of 10). Using
library sizes of L = 4 and L = 35, we find approximately 2% to 5%, or 1% to 3%, respectively, of pixel
regions having BMA-based probabilities exceeding 0.9.  We expected smaller probabilities in the “no
chemicals present” case (the candidate plume region is in fact not a plume) as L increases, but we have
not observed a clear trend as L increases, although in this example there was a trend as L increased
from  4 to 10 to 35.

7. Summary

We have demonstrated that the GLS transform using either random or chemical directions applied
to real and simulated data leads to surprisingly close-to-Gaussian values, in agreement with [3] which
used random directions in real and synthetic scenes to generate GLS values. Reference [3] noted that
fatter-than-Gaussian tails in GLS values have been reported by multiple authors analyzing IR images,
and conjectured that the reasons might be that target directions are not random, perhaps related in a
systematic way to the ground emissivities, or that image artifacts such as problematic spectral bands
lead to fat tails. However, specific quantiles were not investigated, and the plotted kurtosis values,
although close to those for Gaussian, tended to be slightly larger than those for Gaussian.  Therefore,
our findings agree qualitatively with [3] (although we demonstrated that in some cases the CLS
transform was closer to Gaussian than the GLS transform), and indicate a tendency for the GLS
transform to be more Gaussian in random than in chemical directions. We also showed that GLS-based
BMA chemical probability estimates in one real and several synthetic scenes were fairly close to those
in corresponding simulated SCMG data.

If GLS-related and/or BMA-related results for simulated SCMG data are not sufficiently accurate
for a scene of interest, we described a computationally demanding scene-specific reference distribution
approach. Using the scene-specific reference distribution avoids the SCMG-based approximation
which we have shown has good, but varying accuracy.

Performance (false negative rate in plume detection for a given false positive rate) comparisons
were beyond our scope; we note however, that GLS-based approaches have remained competitive
among the several other options reported [3-11] in the context we considered (ignoring errors in
predictors, which are the chemical signatures here, and assuming we have an exhaustive list of all
possible chemical targets).  In addition, the approximate Gaussian behavior of the GLS values suggests
a computational advantage in some cases involving Gaussian-based analytical approximations rather
than scene-specific reference distribution approximations to decision thresholds for desired false
positive rates, Also, we note that an elliptically contoured model (such as the multivariate-t
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distribution) does not appear to explain our real scenes as well as a mixture model.  The fact that real
scenes are a mixture of backgrounds is motivating some efforts to collect multiple scans of the same
scene so that pre and post scans can be compared on a per-pixel basis. This approach requires some
level of image registration, but offers the potential to improve performance.
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