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Abstract: Lead Zirconate Titanate oxide (PZT) thick films with thicknesses of up to 10 µm 

were developed using a modified sol-gel technique.  Usually, the film thickness is less than 

1 µm by conventional sol-gel processing, while the electrical charge accumulation which 

reveals the direct effect of piezoelectricity is proportional to the film thickness and therefore 

restricted.  Two approaches were adopted to conventional sol-gel processing – precursor 

concentration modulation and rapid thermal annealing.  A 10 µm thick film was successfully 

fabricated by coating 16 times via this technique. The thickness of each coating layer was 

about 0.6 µm and the morphology of the film was dense with a crack-free area as large as 16 

mm2.  In addition, the structure, surface morphology and physical properties were 

characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic 

force microscopy (AFM) and electrical performance.  The dielectric constant and hysteresis 

loops were measured as electric characteristics.  This study investigates the actuation and 

sensing performance of the vibrating structures with the piezoelectric thick film.  The 

actuation tests demonstrated that a 4 mm x 4 mm x 6.5 µm PZT film drove a 40 mm x 7 mm 

x 0.5 mm silicon beam as an actuator.  Additionally, it generated an electrical signal of 60 

mVpp as a sensor, while vibration was input by a shaker.  The frequencies of the first two 

modes of the beam were compared with the theoretical values obtained by Euler-Bernoulli 

beam theory.  The linearity of the actuation and sensing tests were also examined. 
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1. Introduction  

Piezoelectric materials are extensively adopted owing to their many desirable characteristics.  First, 

they can transform electrical signals into mechanical deformation.  Hence, they can serve as actuators.  

They can also transform mechanical deformation into electrical signals, and so can serve as sensors.  

Additionally, some piezoelectric materials can be miniaturized to produce films or nano-wires for 

further applications. These films are important components of both actuators and sensors in MEMS 

and micro-optical devices such as micropumps, atomic force microscopes (AFM), ultrasonic 

micromotors [1], infrared (IR) detector arrays [2], micromixers [3], micromirrors, microrelaies [4], 

pressure microsensors [5, 6] and stress microsensors [7].  The applications of piezoelectric films are 

myriad.  Recently, piezoelectric materials with high remnant polarization have attracted much interest 

as they have great potential in the preparation of memory devices [8].  High-quality actuation and 

sensing materials are required for well-performing MEMS devices. 

PZT can generate a ten times larger force and 100 times larger acoustic power density than non-

ferroelectric materials such as ZnO (zinc oxide) [9], SiO2 (quartz) and AlN (aluminum nitride) [10].  

Three popular methods exist for fabricating PZT films - thick-film printing [11-13], sputtering [14, 15] 

and sol-gel processing [16-19].  The process of thick-film printing can easily form thick PZT films 

with thicknesses of between 10 and 100 µm.  Sintering temperatures of over 850oC are required to 

yield adequate PZT particles.  Sputtering is another familiar approach for synthesizing PZT films, 

which are typically less than 1 micron thick.  Post-deposition annealing of sputtered films is required to 

crystallize the ferroelectric structure of the material.  Sol-gel processing is a wet chemical method for 

synthesizing and processing inorganic hybrid materials.  This work is based on sol-gel processing 

because it has three advantages.  Firstly, it allows the convenient control of the stoichiometric chemical 

composition of lead zirconate titanate.  Secondly, sol-gel processing is inexpensive, because it uses 

100% of the precursors without expensive equipment.  Finally, it can be used for mass production. 

The sol-gel process is one of the most versatile and extensively employed techniques.  Nevertheless, 

the piezoelectric characteristics of sol-gel-derived PZT films tend to be inferior to those of bulk PZT, 

mainly because of the small grain size of the derived PZT films, which, in turn, results from the 

homogeneous nucleation of many crystalline PZT nuclei during crystallization.  The piezoelectric 

effects of the crystalline particles drop as the grain size declines.  Therefore, homogeneous nucleation 

must be prevented to ensure favorable ferroelectric properties.  The second reason for the inferior film 

properties is the limited film thickness.  The thickness of a film formed by conventional sol-gel 

processing typically does not reach 1 micron, while the charge accumulation associated with the 

material electric dipole is proportional to the film thickness. Restated, the finite thickness of the film 

restricts actuation strength and sensing performance. 

Two techniques were applied to increase the thickness of PZT films and reduce the duration of the 

fabrication process - precursor concentration modulation [20-21] and rapid thermal treatment [22].  

The precursor concentration was modulated by applying particles to the PZT sol.  Modulating the 

concentration of the sol increased the thickness of the film at each coating process.  Homogeneous 

nucleation was thus prevented, and the sizes of the PZT grains increased.  Rapid thermal treatment 

reduced the duration of heating and cooling, and thus reduced the overall duration of the fabrication 

process, increasing the convenience of batch processing for various applications.  In this work, a 
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modified sol-gel approach based on rapid thermal annealing and a high concentration of PZT sol is 

utilized to yield a film of thickness 10 µm with a crack-free area as large as 16 mm2.  The films were 

characterized.  Furthermore, the sensing and actuation capacities of the films were successfully 

demonstrated. 

2. Fabrication 

A 500 nm-thick silicon dioxide layer was first wet-thermally grown on a <100> silicon wafer that 

was 500 µm thick.  Then, a 200 nm-thick layer of silicon nitride was deposited on the top of the silicon 

dioxide film by LPCVD (low-pressure chemical vapor deposition).  An E-beam evaporator was then 

employed to grow the bottom electrode, with a 50 nm-thick layer of titanium and a 100 nm-thick layer 

of platinum.  The PZT sol was next spun on a Pt(111)/Ti/SiN4/SiO2/Si substrate and patterned by 

conventional photolithography, with BOE (buffered oxide etchant, HF (49％): NH4F (10%) = 6:1) and 

an AZ4620 mask [19].  A 50 nm-thick layer of titanium and a 100 nm-thick layer of platinum was 

deposited and patterned on the PZT film as the top electrode.  A lift-off process was applied to the top 

electrode to expose the PZT films and the bottom electrode for future measurements of electrical and 

mechanical characteristics.  Figure 1 schematically summarizes the overall preparation procedure.  

Finally, a poling process was performed by applying 28 V/µm to the PZT films at 100 oC for one hour. 

PZT sol was prepared using three precursors, Pb(CH3COO)2, Zr(C3H7O)4 and Ti((CH3)2CHO)4.  

0.01 wt% PZT powder was added to increase the viscosity and concentration of the PZT sol.  The sol 

was passed through a 0.22 µm in-line syringe filter directly before the film was prepared.  The 

supplementary particles acted as seeds during the PZT annealing process and homogeneous nucleation 

was prevented to promote the growth of the PZT grains of the films.  The sol was subsequently spin-

coated on the substrate at 1500 rpm for 32 s.  Each wet layer was initially dried at room temperature for 
15 minutes to evaporate the solvent.  It was then rapidly heated to 650 ℃ for 15 minutes to remove 

organics.  The layer was crystallized in this step.  Finally, PZT films of the desired thickness were 

formed by repeating the coating and heating procedures.  Appendix A presents a detailed recipe of PZT 

sol. 
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Figure 1.  Preparation of substrate. 

 

3. Characterization of PZT Thick Films 

3.1 Physical Characterization 

An XRD (X-ray diffraction, Rigaku D/MAX2500, Cu 40 kV 100 mA) study was performed on the 

PZT films with one, two, three and 16 coating layers, to prove that the sintered film had the correct 

chemical composition and was crystallized.  Based on the profile of the XRD spectra presented in Fig. 

2, the phase intensity of platinum was high when the number of PZT coating layers was under three.  

However, the effect of platinum on the phase becomes weaker as the number of PZT coating layers 

increases, probably because the effect of platinum is harder to be detected in thicker films.  Therefore, 

the platinum phase is absent when the film has up to 16 coats.  Additionally, the X-ray diffraction 

pattern reveals that the fabricated PZT film is perovskite phase with no pyrochlore phase.  The XRD 

graph shows that the texture of the film exhibited a (110) orientation preference.  The preparation of 

the sol solution, the spin-coating process and the heat treatment are effective for the phase development 

of PZT films. 
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Figure 2.  XRD spectra of PZT powder, Pt and PZT films with one, two, three and 16 coating layers. 

 

3.2 Observation of Morphology 

Figures 3 and 4 present the surface and cross-sectional images of 2 µm and 10 µm-thick films 

fabricated by modified sol-gel processing with precursor concentration modulation and rapid thermal 

annealing.  The 2 µm and 10 µm-thick films were fabricated with three and 16 coating layers. These 

micrographs were obtained using FE-SEM (Field Emission Scanning Electron Microscope, PHILIPS, 

XL-40FEG) and MSEM (Multipurpose Scanning Electron Microscopy, JEOL JXA-840).  According to 

the SEM images, the structure of the films is dense and crack-free.  The thickness of each coating is 

about 0.6 µm, which is much thicker than the PZT films fabricated by conventional sol-gel processing 

[23].  Therefore, the supplementary PZT powders did not exhibit homogeneous nucleation; the growth 

of the PZT grains in the films was promoted and the film thickness increased.  The surface roughness 

of the films was measured by AFM (Atomic Force Microscope, Veeco, CP П).  Over a surface area of 

5 µm x 5 µm, the average roughness was 2.2 nm. 

 

         

(a)                                                                 (b) 

Figure 3.  Surface morphology of PZT films (a) 2 µm-thick (b) 10 µm-thick. 
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(a)                                                                 (b) 

Figure 4.  Cross-sectional SEM image: (a) 2 µm-thick PZT film (scale bar represents 5 µm); (b) 10 

µm-thick PZT film (scale bar represents 20µm). 

 

3.3 Electrical Characterizations 

Table 1 presents the electric characteristics of the films which were evaluated by determining 

dielectric constants.  The dielectric constants were measured at 1 and 10 kHz for two kinds of thickness: 

2.19 and 7.29 µm.  The measuring area of three different electrode pads (pad #1, 2 and 3 in Table 1) 

was 4 mm x 4 mm.  The dielectric constants were from 142 to 148 for a thickness of 2.19 µm and from 

156 to 162 for a thickness of 7.29 µm, respectively.  The table reveals that thicker films had higher 

dielectric constants, and that the dielectric constants decreased as the frequency increased. 

Figure 5 displays the hysteresis loops of the 2.19 and 7.29 µm-thick PZT films.  A Sawyer-Tower 

electric circuit was assembled with an electric source from a function generator (Agilent 33220A) and 

a signal receiver (Tectronix TDX2014).  The loops were measured with a fixed ac electric field of 20 

V/µm and a reference capacitor with a capacitance of 1 µF.  The coercive field (Ec) and remnant 

polarization (Pr) obtained from the P-E hysteresis loop are 3.05 V/µm and 1.72 µC/cm2 for the 2.19 

µm-thick film, and 6.46 V/µm and 4.22 µC/cm2, for the 7.29 µm-thick film.  Figure 5 also shows two 

facts.  In the first place, the loop of the 7.29 µm-thick film is more symmetric about the origin while 

that of the 2.19 µm-thick film is shifted to the right.  This phenomenon is called “Imprinting”.  The 

shift results from a bias field inside the materials [16, 17] or the point defects in the crystal because of 

a loss of oxygen ions, which causes an imbalance in the crystal electricity, generating electric dipoles 

[18].  The bias field is proportional to the poling effects of the ferroelectrics, indicating that the PZT 

film exhibits a piezoelectric effect before poling.  Second, the thicker film has higher Pr and Ec values.  

These experimental measurements reveal that a thicker film has better ferroelectric characteristics. 
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Table 1. Capacitance and dielectric constant of PZT films with an area of 4 mm x 4 mm. 

 
 Frequency 

[KHz] 
Capacitance 
[nF] 

Dielectric 
constant 

 Frequency 
[KHz] 

Capacitance 
[nF] 

Dielectric 
constant 

1  9.633  148.984 1  3.065  156.645 Pad 
1 10  9.157  141.623 

Pad 
1 10  2.951  148.072 

1  9.232  142.783 1  3.005  156.713 Pad 
2 10  8.877  137.292 

Pad 
2 10  2.896  150.884 

1  9.577  148.119 1  3.178  162.49 

2.19 
µm  
 

Pad 
3 10  9.184  142.04 

7.29 
µm  

Pad 
3 10  3.05  155.946 

 

 

Figure 5.  Hysteresis loops of PZT films with thicknesses of 2.19 µm and 7.29 µm in applied electric 

fields of 20 V/µm. 
 

3.4 Dynamic Characterization 

Dynamics is concerned with bodies having accelerated motion.  Following physical characterization, 

morphological observation and electrical property measurement, the dynamic microstructure tests of 

the fabricated films was studied.  The tests comprise two parts: actuation and sensing tests.  The 

actuation tests demonstrate the dynamic performance of the structure when the piezoelectric film was 

applied by an electrical field.  Additionally, the sensing tests show the response of the piezoelectric 

film when the structure was excited by a shaker. 

The first step is to demonstrate that the PZT film has sufficient actuation strength to excite the 

silicon-based structure.  The specimen was cut into a beam with the dimensions 40 mm x 7 mm.  The 

top electrode was patterned with dimensions 4 mm x 4 mm.  One end of the beam was clamped and the 

other end was kept free as a cantilever beam.  Figure 6(b) presents the top view of the geometry of film 

and actuated/sensed beam while Fig. 6(a) is the schematic diagram of the experimental setup.  The 

setup consists of a function generator (Motech, FG 503), a power amplifier (Piezotronics, PCB790), a 

digital oscilloscope (Tektronix, TDS2014) and a fiber-optical measurement system (MTI Instruments, 

MTI 2000).  First, the function generator drove the PZT film with the help of the power amplifier.  
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Also, the photonic sensor monitored the vibration of the cantilever.  Meanwhile, all of the signals were 

recorded on a digital oscilloscope, as show in Fig. 7.  Figure 7 displays the vibration signals of the 

beam that was driven by a 6.5µm-thick PZT film with an actuation area of 4 mm by 4 mm.  The first 

trace is the voltage from the function generator which can provide ac voltage between 0 and 10 volts.  

This electrical signal was amplified 30 times by the power amplifier.  The driving signal was divided 

by 20 before sending to the oscilloscope in order to prevent the damage resulting from the high voltage.  

The second trace is 1/20th of the driving voltage.  The final trace is the signal from the photonic sensor.  

The system was driven at 346 Hz which was the frequency of the first bending mode.   

The vibration amplitude at the tip of the specimen was 2.4 µm at a driving voltage of 196 Vpp.  

Furthermore, the frequencies of the vibration and the driving signals were identical to that of the source 

from the function generator, presented as the first trace.  The results displayed in Fig. 7 show that the 4 

mm x 4 mm x 6.5 µm PZT film is sufficiently effective as an actuator to drive a 40 mm x 7 mm x 0.5 

mm silicon beam with a vibration amplitude of as large as 2.4 µm. 

 

 

(a) 

 
(b) 

Figure 6.  (a) Schematic diagram of experimental setup for tests of PZT films and (b) top view of 

the clamped structure. 
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Figure 7.  Actuation tests of the 6.5 µm-thick PZT film in the first bending mode, using the 

oscilloscope (CH1: excitation from the function generator; CH2: driving voltage divided by 20; CH4: 

vibration signal detected by the photonic sensor). 

 

    An actuation linearity test was conducted to determine whether the reverse piezoelectric effect of 

the film can serve as an actuator.  The experimental setup is the same as that in Fig. 6(a), and the 

recording program LabView was used.  The vibration frequency controlled by the function generator 

was fixed in the first mode of the specimen with an electric field sweeping rate of 1.27 V/µm/s.  The 

applied electric field was from 0 to 12.7 V/µm.  The vibration amplitudes at the tip of the specimen 

were detected by the fiber-optic measure system.  Figure 8 presents the experimental results between 

the amplitude and the applied electric field to the piezoelectric film.  Figure 8 reveals that the vibration 

amplitude is proportional to the applied electric field.  Therefore, the film can serve as an actuation 

source for driving meso- or micro-structures. 
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Figure 8.  Actuation linearity testing of PZT films. 
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    The 6.5-µm thick PZT film adopted in the actuation tests was also used in the sensing tests.  The 

sensing tests were carried out by the function generator, the power amplifier, a shaker (PCB 

Piezotronics, Inc., AVC-712A01) and the photonic sensor.  The shaker served as a vibration source to 

excite the specimen with the help of the function generator and the power amplifier.  The photonic 

sensor measured the vibration of the specimen at the corner of the free end.  The digital oscilloscope 

recorded the electric signal generated by the PZT film in response to the vibration of the shaker.  Figure 

9 displays one of the testing results recorded by the oscilloscope.  The first trace is the driving voltage 

from the function generator, which is 10.4 Vpp at 347.7 Hz.  The second trace is the driving voltage 

from the amplifier into the shaker, divided by a factor of 20.  The third trace is the voltage generated by 

the PZT film in response to the vibration of the specimen.  The amplitude is 60 mVpp.  The response is 

sinusoidal and its frequency is identical to the driving frequency, indicating that the system is in the 

linear range, and that the PZT film can serve as an effective sensor for small structures.  Finally, the 

final trace is the vibration signal of the cantilever specimen measured by the photonic sensor for 

reference. It reveals that the photonic signal is 3.12 Vpp, which refers to a vibration amplitude of 7.8 

µm.  According to the experiments, the frequency of the PZT sensing signal equaled the driving 

frequency, and the amplitude was proportional to the excitation voltage.  

 

 

Figure 9.   Sensing tests of 6.5 µm-thick PZT film at 347 Hz recorded by the oscilloscope (CH1: 

excitation from the function generator; CH2: amplified driving signal; CH3: signal of the PZT film; 

CH4: reference signal from the photonic sensor). 

 

A sensing linearity test was performed to understand whether the piezoelectric effect of the film 

enables it reliably to serve as a sensor.  When a force P is applied, a curvature κ is formed as shown in 

Fig. 10.   Theoretically, the curvature of the cantilever κ is defined as 
κ =  dθ/ ds       (1) 

Experimentally, we first denoted three positions along the top electrode as 1, 2 and 3 shown in Fig. 
6(b).  These points are evenly spaced with distance △x = 2 mm.  Then the photonic sensor measured 

the deflection (w1, w2 and w3) of the cantilever at position 1, 2 and 3.  According to Euler-Bernoulli 

beam theory, the curvature of the cantilever κ is approximated as 
κ2 ≈ (w1 -2 w2 +  w3) / (△x)

2
               (2) 

Moreover, the normal strain of the PZT film is ε = κ h/2, where h is the thickness of the cantilever.   

CH1 

CH2 

CH3 

CH4 
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Figure 10.  Curvature of a bending beam. 

 

Next, the electric voltage applied to the shaker was between 5 and 50 Vpp.  The electric signals 

generated by the film were measured. The mean and standard deviation of the electric signals were also 

calculated.  Figure 11 shows the relationship between the electric response and the normal strain of the 

PZT film.  The sensing response is proportional to the mechanical deformation of the beam.  However, 

the standard deviation increases with the normal strain.   

y = 10.307x - 0.0002

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

3.50E-02

4.00E-02

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035

Normal strain of PZT film

V
ol

t (
V

)

 

Figure 11.  Sensing linearity testing of PZT films. 

 

Table 2 summarizes the dynamic tests and theory results of the cantilever specimen.  In the 

actuation tests, the resonance frequencies were measured at the center of the tip and the corner of the 

beam to identify either a bending mode shown in Fig. 12(a), or torsional vibration mode shown in Fig. 

12(b).  The frequencies of the first two modes are compared with the theoretical results obtained by 

Euler-Bernoulli beam theory, suggesting that the experimental results are close to the theoretical values 

with an error of 5.19 % at the first resonance. 
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Table 2.  Experimental and theoretical results of the vibration of the cantilever specimen. 

 
 Actuator (excitation voltage into PZT film, Vpp= 

196 V) 
Sensor (excitation voltage into 
shaker, Vpp = 99 V) 

Theory 

Tip center Corner Mode 
Frequency Amplitude Frequency Amplitude 

Frequency  Amplitude Signal* Frequency 

1st 
bending 

346 2.4 345.8 2.2 347 7.8 60 364.39 

2nd 
bending 

2300 0.96 2303 0.66 - - -  2283.3 

Units: Frequency [Hz], Amplitude [µm] 

* The sensing response of the PZT film is in unit of mV. 

 

 

 
(a) 

 
(b) 

Figure 12.  (a) Bending mode and (b) torsional mode of a cantilever beam. 
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4. Conclusions 

PZT films with thicknesses of between 1 and 10 µm were successfully fabricated by the modified 

sol-gel method using two techniques - precursor concentration modulation and rapid thermal 

annealing.  The thickness of each coating layer was about 0.6 µm, and a 10 µm-thick film was formed 

by a 16-coating process.  The morphology of the films was dense over a crack-free area of as large as 

16 mm2.  The electrical characteristics were evaluated in terms of dielectric constants and hysteresis 

curves.  The experimental results indicated that the dielectric constant was around 160 at 1 kHz.  The 

remnant polarization and the coercive field of the PZT ferroelectric capacitors are 4.22 µC/cm2 and 

6.46 kV/cm, respectively.  The dynamic microstructure tests of the PZT films were characterized.  The 

actuation tests demonstrated that a 4 mm x 4 mm x 6.5 µm PZT film drove a 40 mm x 7 mm x 0.5 mm 

silicon beam as an actuator.  Furthermore, the film could generate an electric signal of 60 mVpp as a 

sensor while a vibration was input to a shaker.  The frequencies of the first two modes of the beam 

were compared with the theoretical values obtained by Euler-Bernoulli beam theory.  This comparison 

shows that the experimental results are similar to the theoretical results with an error of 5.19 % at the 

first resonance.  The results demonstrated the feasibility of using PZT films fabricated by the modified 

sol-gel method as actuators and sensors.  The next step will be to improve the quality of the films and 

then investigate the repeatability and reliability of this approach. 
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Appendix A. Recipe of PZT sol 

1. Dissolve 61.2 g Pb acetate in 38 ml acetic acid. 

2. Heat to 110 ◦C (5 min) and then cool to room temperature. 

3. Mix 36.9 g  Zr n-propoxide with 20.9 ml Ti-isopropoxide. 

4. Add to Pb solution the Zr + Ti mixture. 

5. Add 40 ml of deionized water. 

6. Add 8 ml lactic acid. 

7. Add 9 ml glycerol. 

8. Add 12 ml ethylene glycol. 
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