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Abstract: The limited energy supply of wireless sensor networks poses a great challenge 

for the deployment of wireless sensor nodes. In this paper, we focus on energy-efficient 

coverage with distributed particle swarm optimization and simulated annealing. First, the 

energy-efficient coverage problem is formulated with sensing coverage and energy 

consumption models. We consider the network composed of stationary and mobile nodes. 

Second, coverage and energy metrics are presented to evaluate the coverage rate and energy 

consumption of a wireless sensor network, where a grid exclusion algorithm extracts the 

coverage state and Dijkstra’s algorithm calculates the lowest cost path for communication. 

Then, a hybrid algorithm optimizes the energy consumption, in which particle swarm 

optimization and simulated annealing are combined to find the optimal deployment 

solution in a distributed manner. Simulated annealing is performed on multiple wireless 

sensor nodes, results of which are employed to correct the local and global best solution of 

particle swarm optimization. Simulations of wireless sensor node deployment verify that 

coverage performance can be guaranteed, energy consumption of communication is 

conserved after deployment optimization and the optimization performance is boosted by 

the distributed algorithm. Moreover, it is demonstrated that energy efficiency of wireless 

sensor networks is enhanced by the proposed optimization algorithm in target tracking 

applications. 

Keywords: Wireless sensor network, deployment optimization, energy efficiency, particle 

swarm optimization, simulated annealing. 
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1. Introduction 
 

Wireless sensor networks (WSNs) can implement various complicated tasks in the sensing field via 

a large number of smart wireless sensor nodes which have sensing, storage, processing and 

communication capabilities. All the wireless sensor nodes work collaboratively to leverage their 

individual efforts for the entire application. Since battery-powered wireless sensor nodes are greatly 

constrained with regards to energy supply, energy efficiency becomes a critical problem in WSNs. As 

an essential requirement, sensing coverage has been investigated in a few literature reports [1,2]. The 

coverage problem is defined from several points of view, including deterministic, statistical, worst and 

best case in [3]. In particular, efficient network deployment considering coverage as well as 

connectivity is discussed in [4,5]. Target tracking is a typical application for WSNs and poses a great 

challenge to achieve both high reliability and long lifetime [6]. For WSNs which implement target 

tracking applications, the efficiency of energy usage should be taken into account in the deployment. 

Generally, wireless communication spends much more energy than sensing and computation, so it 

should be the primary consideration [7]. In addition, the potential processing capability of multiple 

wireless sensor nodes may contribute to better optimization performance [8].  

Due to the above-mentioned requirements of deployment in WSNs, we propose distributed particle 

swarm optimization and simulated annealing (DPSOSA) for energy-efficient coverage. This method 

takes the energy consumption of target tracking into account to optimize the energy efficiency of WSN 

coverage with distributed computing. Sensing coverage and energy consumption models for WSNs are 

introduced first. The purpose of optimization is to find the best deployment of mobile wireless sensor 

nodes so that the sensing coverage requirement is satisfied and communication energy consumption 

can be minimized. Then the grid exclusion algorithm is exploited to calculate the coverage rate of 

specific network deployment, which has minimized computational cost and scalable granularity. We 

adopt Dijkstra’s algorithm to search the lowest cost paths for data collection, which will be regarded as 

packet transmission paths in target tracking applications. The sensing coverage rate and total energy 

consumption of data collection are defined as coverage and energy metrics, respectively. The DPSOSA 

algorithm is then employed to optimize the communication energy consumption under a given sensing 

coverage requirement. It is executed over a number of nodes, in which the particle swarm optimization 

(PSO) procedure is aided by the optimization results of simulated annealing (SA) for the global 

optimal solution. In DPSOSA, a number of particles are given a better view to search for better 

solutions in their vicinity, by which the PSO procedure can be corrected. Meanwhile, as multiple 

particles need to be optimized, the optimization task is assigned among wireless sensor nodes to boost 

up the computational capability. With simulations of deployment optimization and target tracking, the 

energy efficiency of the proposed distributed optimization algorithm is verified.  

The rest of this paper is organized as follows: section 2 formulates the energy-efficient coverage 

problem with stationary and mobile wireless sensor nodes in WSNs, where the sensing coverage and 

energy consumption models are presented. In Section 3, two important metrics, coverage and energy, 

are defined for network deployment evaluation according to the fundamental model, where the grid 

exclusion and Dijkstra’ algorithm are introduced. Then Section 4 presents the DPSOSA algorithm for 

energy-efficient coverage in WSNs. In Section 5, we simulate the deployment optimization algorithm 
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for target tracking application and analyze energy-efficiency of WSNs. We conclude the paper in 

Section 6.  

 
2. Preliminaries 
 

We assume a WSN composed of two types of wireless sensor nodes: stationary and mobile nodes. 

In the sensing field, the stationary nodes are deployed randomly, while the mobile ones can adjust their 

positions adaptively against the environment. With the mobile nodes located at their proper positions, 

WSN can implement target tracking applications. As shown in Figure 1, wireless sensor nodes which 

are close to the mobile target trajectory may acquire data. A sink node is located in the centre of 

sensing field, to which the observations will be forwarded hop by hop [9,10]. It is assumed that the 

positions of nodes can be obtained by global positioning system (GPS) [11]. In this section, we will 

describe the sensing coverage model for reliability detection. Considering the energy efficiency 

problem, energy consumption model of communication will be discussed.  

 

Figure 1. In the target tracking application of WSNs, the mobile target moves through the 

sensing field and wireless sensor nodes around it will report their data to the sink node in 

a multi-hop manner. 

 

 
 

2.1. Sensing coverage model 

 

Each wireless sensor node integrates three radar sensors with the same sensing radius R, oriented at 

120° intervals. Azimuth coverage of radar sensor is  –60° ~ +60° [12]. For each wireless sensor node, it 

is assumed that the strength of received detection signal varies exponentially with the distance from the 

target. If the coordinates of wireless sensor node i and a target are (xi,yi) and (xtarget,ytarget), respectively, 

the received signal strength reflected off the target is: 

,

0
target id

iG G e β−=                                                                  (1) 
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where G0 is a constant which denotes the strength of emission signal, β is the attenuation constant. And 

dtarget,i  is the Euclidean distance between the target and sensor: 

2 2
, ( ) ( )target i target i target id x x y y= − + −                                                     (2) 

According to the sensitivity and reliability of sensor, we can define a threshold of received signal 

strength Gth, and calculate the detection reliability as: 

0

0 <
=  ≥

i th
i

th

G G
r

r G G
                                                                    (3) 

where r0 is the reliability of sensor when the received signal strength exceeds Gth, 0 <r0<1. Thus, 

wireless sensor node i can physically cover a plate area with radius Ra, where the centre locates at 

(xi,yi) . The sensing radius Ra can be calculated as: 

0

1
ln= − thG

Ra
Gβ

                                                                     (4) 

Considering the inherent redundancy of WSNs, we discuss the k-coverage problem, that is, certain 

area is covered by k or more wireless sensor nodes at the same instant. In this case, synthesis detection 

reliability of the area is at least:  

1

1 (1 )
=

= − −∏
k

i
i

R r                                                                     (5) 

Therefore, we can acquire high synthesis detection reliability even though the detection reliability of 

individual wireless sensor node is limited.  

 

2.2. Energy consumption model 

 

During target tracking, wireless sensor nodes have the functions of data acquisition, processing and 

reporting. The related sensing, computation and communication operations will lead to energy 

depletion. Out of all the energy consumption sources in WSNs, wireless communication is the largest 

portion. Thereby, it is the main one taken into account here. As radio signal attenuation in the air is 

related with the propagation distance, we adopt the free space propagation model [13], which is 

expressed as:  
2

,4

 
=   
 

s
p

i j

L
d

λ
π

                                                                      (6) 

where Lp is the path loss, λs is the wavelength of signal, and di,j is the propagation distance. If radio 

signal propagates between wireless sensor node i and j, which are located at (xi,yi) and (xj,yj), the 

corresponding propagation distance can be calculated as: 

( ) ( )2 2

, = − + −i j i j i jd x x y y                                                           (7) 

Accordingly, a model of wireless communication is assumed to analyze energy consumption of 

communication. Here, the power consumption of data transmission between wireless sensor node i and 

j is calculated as [14]: 
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  2
1 2 ,Ψ = +d i j dr d rα α                                                                 (8) 

where rd denotes the data rate, α1 denotes the electronics energy expended in transmitting one bit of 

data, α2>0 is a constant related to the radio energy. Given the transmission tasks through the network, 

the energy consumption feature of WSNs can be obtained. 

 
3. Evaluation Metrics of Energy-efficient Coverage 
 

To achieve reliable detection and energy conservation in target tracking application, WSNs should 

apply an energy-efficient coverage scheme. Coverage and energy performance is concerned in potential 

mobile node deployment. For specified detection reliability, sensing area needs to be covered by certain 

number of wireless sensor nodes. The area which can satisfy this reliability requirement in the whole 

sensing field can reflect the coverage performance. On the other hand, data packet transmission from 

wireless sensor nodes to the sink node results in energy consumption. An energy-efficient 

communication framework can be established by the lowest cost paths. This framework indicates the 

lowest energy consumption level which can be provided by different deployment of WSNs.  

It is assumed that there are n stationary nodes and m mobile nodes in a L x L square sensing field. 

The coordinates of sink node are (L/2, L/2). In a possible network deployment, the coordinates of all 

wireless sensor nodes (xi,yi) (i=1,2,..,n+m) can be obtained, where the indices of the stationary and 

mobile nodes are (i=1,2,..,n) and (i=n+1,n+2,..,n+m), respectively. Accordingly, coverage and energy 

metrics and related algorithms will be presented to evaluate the network deployment in this section. 

 

3.1. Coverage metrics 

 

Typically, certain detection reliability Rreq is required for specific target tracking application. Based 

on Equation (5), the required number of wireless sensor nodes, which can detect the target with 

reliability r0 at the same time, can be calculated as: 

01log (1 )−= −req req
rk R                                                                  (9) 

The area which is covered by kreq or more wireless sensor nodes is regarded as the reliable 

detection area. To provide integrated and continuous detection of targets in the sensing field, the 

reliable detection area should be as large as possible. Therefore, we define the proportion of reliable 

detection area in the whole sensing field as the coverage metric. 

As discussed in Section 2.1, each wireless sensor node covers a plate area with radius Ra. Due to 

the irregular network deployment, the coverage state problem is too complicated for geometric analysis. 

Thus, we exploit a numerical method, the grid exclusion algorithm, to extract the coverage state 

information. The pseudo-code for grid exclusion algorithm is outlined in Algorithm 1. 

 

Algorithm 1 

 

1. Initialization 
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Divide the square sensing field into lxl uniform grids.  Each grid is a (L/l)x(L/l) square area. 

Simplify the grids into points, then each grid can be denoted by its centre point. The coordinates of 

points are: 

{( , ) | , / 2 ,3 / 2 , , (2 1) / 2 }= −L
g g g gx y x y L l L l l L l                                             (10) 

Initialize the coverage state matrix {cov(i,j)}:  

cov( , ) 0   , 1,2, ,= = Li j i j l                                                         (11) 

Set the number of reliable detection point num = 0 and set the number of unreliable detection points 

nr=0. 

 

2. Coverage state for stationary nodes on the whole sensing field 

 

Check the detection reliability point by point. 

For xg = L/2l,3L/2l,…,(2l-1)L/2l 

For yg = L/2l,3L/2l,…,(2l-1)L/2l 

This point is related to the element cov(ig,jg) of the coverage state matrix: 

/ 1/ 2,  / 1/ 2g g g gi x l L j y l L= + = +                                                     (12) 

Check whether stationary node i covers this point. 

For i= 1, 2,…, n 

Calculate the distance between stationary node i and the point: 

2 2( ) ( )= − + −g g g
i id x x y y                                                         (13) 

Update the coverage state matrix as: 

cov( , ) 1
cov( , )

cov( , )

 + <
=  ≥

g g g
g g

g g g

i j d Ra
i j

i j d Ra
                                                   (14) 

End 

If  cov(ig,jg) > kreq 

Update the number of reliable detection point: 

1= +num num                                                                   (15) 

Else 

Record the unreliable detection point: 

1,  ( , ) ( , ),  ( , ) ( , )r r r r

g g g g
r r n n n nn n x y x y i j i j′ ′ ′ ′= + = =                                      (16) 

End 

End 

End 

The coverage state matrix of stationary nodes is obtained. 

 

3. Coverage state for mobile nodes on the unreliable detection area 
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Check the detection reliability excluding the reliable detection point. 

For j= 1, 2,…, nr 

Check whether mobile node i covers this point. 

For i=n+1, n+2,…, n+m 

Calculate the distance dg between (x′j,y′j) and (xi,yi). 

Update the coverage state matrix adopting Equation (14). 

End 

If  cov(i′j,j′j) > kreq  

Update the number of reliable detection points as Equation (15). 

End 

End 

Finally, the coverage metric C can be calculated as: 

=
×

num
C

l l
                                                                      (17) 

 

Instead of calculating the coverage state of all wireless sensor nodes at one time, the coverage state 

matrix of stationary nodes is first extracted in the grid exclusion algorithm. Excluding the reliable area, 

the coverage state of mobile nodes is then calculated on the remaining area. In this way, only Step 3 of 

the algorithm needs to be implemented repeatedly when a different deployment of mobile nodes is 

evaluated, thereby computational costs could be reduced. Moreover, only the recorded information of 

unreliable detection area is necessary for multiple wireless sensor nodes in distributed optimization 

algorithms, such as DPSOSA, to be covered in Section 4, so that the distributed optimization structure 

can be simplified and its communication costs will be low. Notice that granularity of computation is 

scalable by easily adjusting the division parameter l. The tradeoff can be made between computational 

cost and coverage evaluation  

 

3.2. Energy metrics 

 

During target tracking in WSNs, wireless sensor nodes spend significant energy reporting their 

observations. With the model presented in Section 2.2, we analyze the energy consumption of wireless 

communication. 

According to Equation (8), the wireless sensor nodes which are far away from the sink node would 

spend too much energy when their data packets are transmitted directly. These nodes may find a 

number of other nodes for data forwarding and such a multi-hop manner will potentially conserve 

energy. Thus, the lowest cost path to sink node should be found for each wireless sensor node. 

Here, Dijkstra’s algorithm is introduced to solve this lowest path problem, which can accomplish 

breadth-first path search between one single destination vertex and all the other vertexes on the 

connected graph [15,16]. Since any vertex that has shorter path to the destination vertex is traversed, 

the optimal solution can always be found.  
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For any given WSN deployment, the sink node is regarded as the destination vertex and denoted by 
u0, while wireless sensor nodes are taken as all the other vertexes and denoted by 1 2{ , , , }+= L n mU u u u . 

The edge weight between vertex ui  and uj is defined according to Equations (7) and (8):  
2

, 1 2 ,   , 0,1,2, , ,  = + = + ≠Li j i jd i j n m i jω α α                                             (18) 

Then the pseudo-code for the lowest cost path search is outlined in Algorithm 2. 

 

Algorithm 2 

 

1. Initialization 

 

Adopt variable Di to represents estimate of the lowest cost from ui  to u0. It converges to the real value 

after iterations. Initialize the connected graph as: 

0 ,00,    1,2, ,= = = Li iD D i nω                                                        (19) 

The set of vertexes which have found the lowest cost paths is denoted by Q, set Q=Ø. 

 

2. Iteration 

 

While Q ≠ U 

Find the next vertex with the lowest cost path to u0. 
For any vertex ∉iu Q  

If Di satisfies: 

1
min

+

=
=

n m

i k
k

D D                                                                  (20) 

The lowest cost path from vertex ui  to u0  is found. 

Update Q: 

{ }= U iQ Q u                                                                 (21) 

Record the vertex ui, set i0=i . 

End 

End 
For any vertex ∉ju Q  

Update Dj:  

0 0,min{ , }= +j j j i iD D Dω                                                        (22) 

End 

End 

 

After iteration, Di denotes transmission energy consumption per bit from vertex ui  to u0 adopting 

the lowest cost path, where i = 1, 2,…, n+m.  

Thus, the lowest cost paths from all wireless sensor nodes to sink node are available, which form 

an energy-efficient communication framework. This framework reflects the lowest energy consumption 
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level which can be provide by the given network deployment. Since each wireless sensor node has the 

opportunity to detect a target and report its data, we can evaluate the energy consumption by the total 

cost of all the reporting paths. Therefore, the energy metric E of network deployment is calculated as: 

1

+

=
= ∑

n m

i
i

E D                                                                  (23) 

Generally, different deployment of mobile nodes corresponds to different energy metric values. The 

proposed coverage and energy metric will be used to evaluate different network deployment in the 

optimization algorithm. 

 
4. Distributed Optimization Algorithm for Energy-efficient Coverage 
 

When WSNs are initially organized, proper deployment of mobile nodes is desirable to achieve 

energy-efficient coverage. Also, the environment may cause changes in WSNs, such as the appearance 

of node failures. Therefore, position adjusting of mobile nodes is necessary for resource re-allocation. 

With the proposed coverage and energy metrics, deployment optimization should be implemented to 

provide adaptability for WSNs in these cases. Then, the optimization results are broadcasted over the 

network so that WSNs can be self-organized. 

Following the previous assumption, there are n stationary nodes and m mobile nodes available in 

the deployment problem. The coordinates of mobile nodes are taken as non-integral input vectors for 

optimization. As described in Section 3.1, certain coverage ratio C0, namely the optimized coverage 

metric, is demanded under the detection reliability requirement. Thus, the objective of optimization is 

to decrease the energy consumption level of WSNs in target tracking applications under the condition 

that the required coverage metric is satisfied. 

Kennedy et al. developed particle swarm optimization in 1995 based on the analogy of swarms of 

birds and fish schools. PSO is an efficient optimization tool for solving combinatorial optimization and 

dynamic optimization problems in multi-dimensional space, which implements fast convergence and 

good robustness [17]. Here, it is considered as a deployment optimization algorithm in WSNs. Like 

other evolutionary algorithms, PSO uses a fitness function as criterion to evolve the behavior of the 

solution population. In the algorithm, potential solutions, namely particles, fly through the search space. 

Each particle keeps track of the best position it has achieved so far, which represents a particle 

experiment. Another kind of experiment is the best position which has been achieved by the 

companion of particle so far. The particle velocity is constantly adjusted according to the two kinds of 

experiences.  

PSO has a strong ability for finding the most optimal result. However, it has a disadvantage in local 

minima. Thus, simulated annealing [18] which has a strong ability for finding the local optimal result 

is introduced to avoid the problem of local minima. SA mainly consists of the repeating of two steps: a 

generation mechanism and an acceptance criterion. It starts off at an initial random state with a high 

temperature, and then a sequence of iterations is generated. A perturbation mechanism transforms the 

current state into a next state selected from the neighborhood of the current state. If this neighboring 

state has better fitness, the neighboring state is accepted as the current state. If this neighboring state 

has worse fitness, the neighboring state is accepted with a certain probability determined by the 
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acceptance criterion [19]. After sufficient times of acceptance, the temperature is decreased. This 

process is repeated until the final temperature is reached. 

We propose distributed particle swarm optimization and simulated annealing here. SA is applied on 

the global best position of PSO. Then the vicinity of the global best position is searched to obtain a 

local optimal result. Thereby, the procedure of PSO is corrected by the result.  In the same way, the 

best position achieved by individual particle can be corrected by SA. Since SA maintains only one 

solution, this extended optimization tasks can be assigned simply to a number of wireless sensor nodes 

utilizing the distributed computing capacity of WSNs. The pseudo-code for DPSOSA is outlined in 

Algorithm 3. 

 

Algorithm 3 

 

The sink node performs main part of the algorithm. 

 

1. Initialization 

 

The population of particles is set as pop. 

For i = 1, 2,…, pop 

For particle i, Xi represents the current position, where the elements present the coordinates of all 

mobile nodes: 

1 1 2 2( , , , , , , ) { | 1,2, ,2 }i
i n n n n n m n m jX x y x y x y x j m+ + + + + += = =L L                                  (24) 

Vi represents the current velocity it has achieved so far: 

{ | 1,2, ,2 }= = L
i

i jV v j m                                                             (25) 

Pi represents the best position it has achieved so far: 

{ | 1,2, , 2 }= = L
i

i jP p j m                                                             (26) 

Initialize Xi as a random position Xi (1) in the search space.  

Initialize Vi as a random velocity Vi (1).  

Set the initial Pi as: 

(1) (1)=i iP X                                                                     (27) 

End 

According to the purpose of energy-efficient coverage in WSN, the minimization objective function 

f(X) is defined for the position X of any given particle as: 

0 0

0

( )
1

− <
=  − ≥

E C C C
f X

E C C

ρ
ρ

                                                          (28) 

where E and C are the metrics defined in Section 3.1 and 3.2 respectively. E0 is a constant which 

denotes the upper bound of energy metric, while C0 is the demanded coverage ratio. ρ is a constant for 

balancing the two metrics. 
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2. PSO iterations 

 

For t = 1, 2,…, PSO_ITER  

The global best position of particle is calculated as:  

1 2( ) min{ [ ( )], [ ( )], , [ ( )]} { | 1,2, ,2 }g
g pop jP t f P t f P t f P t p j m= = =L L                                   (29) 

For i = 1, 2,…, pop 

The velocity of particle is updated as: 
1 2

1 2( 1) ( ) ( ) [ ( ) ( )] [ ( ) ( )]i i i i g i
j j j j j j j jv t t v t c r p t x t c r p t x tη+ = + − + −                               (30) 

Γ1={ r1
j} and  Γ2={ r2

j} are two separate random sequences, where  j = 1, 2,…, 2m, c1 and c2 are 

acceleration constants, representing the weight of acceleration terms that pull each particle toward the 

local best position and global best position and η(t) is the inertia weight for balancing the global and 

local search ability. It is defined as: 

( ) 0.9 0.5
_

t
t

PSO ITER
η = − ×                                                     (31) 

The position of particle is updated as: 

( 1) ( ) ( 1)+ = + +i i i
j j jx t x t v t                                                                           (32) 

The best position of particle is calculated as:  

( ) [ ( 1)] [ ( )]
( 1)

( 1) [ ( 1)] [ ( )]

+ ≥
+ =  + + <

i i i
i

i i i

P t f X t f P t
P t

X t f X t f P t
                                              (33) 

End 

 

The sink node sorts Pi(t+1) by their fitness. Select the best SA_NUM positions {Pi
s│i = 1, 2,…, SA-

NUM},  which are to be optimized with SA. The optimization of global best position will be performed 

by the sink node, while SA_NUM –1 wireless sensor nodes are randomly selected to optimize the other 

positions. 

The sink node transmits each particle to the related node. Then sink node and these nodes perform 

parallel SA optimization. 

For i = 1, 2,…, SA-NUM 

Perform SA iterations taking the initial state as: 

{ | 1,2, ,2 }= = = L
s

i jA P a j m                                                                    (34) 

Set an initial temperature T. 

For k = 1, 2,…, SA-ITER 

The cooling condition is that the best state remains unchanged for K times. 

While the cooling condition is not satisfied 

Use a perturbation mechanism to generate a new state A′: 

_A A rand norm′ = + ⋅ ∆                                                                             (35) 
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where rand_norm is a normally distributed random number, ∆ =  {δj│j = 1, 2,…, 2m} and 
{ | 1,2, ,2 }∆ = = Lj j mδ  and δj is defined with a random integer j0 in [1, 2m]: 

0

0

1

0

=
=  ≠

j

j j

j j
δ                                                                                (36) 

The decrease of fitness is: 

( ) ( )′= −df f A f A                                                                            (37) 

Check whether the new state should be accepted according to Metropolis criteria. 

If df < 0 

Accept the new state: A = A′. 

Else if e–df/(γT) > rand, where γ  is Boltzmann constant and rand is a random number in [0,1] 

Accept the new state: A = A′. 

Else 

The new state A′ cannot be accepted. 

End 

End 

Cool down with a parameter λ: 

=T Tλ                                                                                  (38) 

End 

End 

If any result is better the initial state, the wireless sensor node sends it back to the sink node, where 

the former position will be replaced. 

End 

Finally, the global best position presents the optimized deployment of WSN. 

 

In PSOSA, the sink node performs PSO_ITER iterations of PSO, where the inertia weight η(t)  

linearly decreases through the course of the run. A large inertia weight facilitates a global search while 

a small inertia weight facilitates a local search. Accordingly, the optimization process can converge to 

the neighborhood of the global optimal solution smoothly at the prophase and converge to the global 

optimal solution quickly at the anaphase. SA_NUM local best positions are optimized by SA on the 

sink node and SA_NUM –1 other wireless sensor nodes. After SA_ITER iterations of SA, the optimized 

results are utilized to correct the former positions. In this way, the algorithms have good potential to 

obtain the optimal deployment of WSNs. 

 
5. Simulation Experiments 
 

In this section, we will analyze the efficiency of DPSOSA algorithm with simulation experiments. 

The simulation environment will be specified. Then the simulation and comparison of algorithms will 

be given. Finally, the network simulations will be present for target tracking application. 
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5.1. Simulation environment 

 

The fundamental parameters of WSN are presented in Table 1. The stationary nodes are placed 

randomly in the square sensing field as shown in Figure 2(a). With the specified sensing radius of 

wireless sensor node, we can calculate the initial coverage state of stationary nodes according to 

Section 3.1. Figure 2(b) shows the initial coverage state, and the area with darker grey levels means 

that there is coverage by more nodes.  

 

Table 1. Fundamental parameters of WSN. 

Parameter Value 

Sensing field dimension LxL 240 240m m×  

Stationary node number n 108 

Mobile node number m 20 

Sink node coordinates (120,120) 

Sensing radius Ra 30m 

Sensor reliability r0 0.6 

In the energy consumption model, we set α1 = 50nJ/bit and α2 = 100pJ/bit/m2. When we calculate 

the coverage metric, the sensing field is divided into 100 x 100 uniform grids. Accordingly, the initial 

coverage metric of k-coverage area is presented in Table 2, where k changes from 1 to 6. As more 

covering nodes are required to satisfy the reliability, the initial coverage metric turns lower rapidly. 

Based on Equation (5), Figure 3 illustrates the detection reliability with different covering node number. 

The detection reliability grows exponentially and exceeds 0.99 when the covering node number is 6. 

 

Figure 2. Initial deployment and coverage state of WSN: (a) Placement of sink node and 

stationary nodes; (b) Coverage state of stationary nodes in the sensing field. 
 

 
(a) 
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(b) 

In the DPSOSA algorithm, the particle number pop is set as 30, the acceleration constants c1=c2=1, 

and the PSO iteration number PSO_ITER is specified as 40. During each SA optimization, we set 

initial temperature T as 0.0001 according to the fitness function. Parameter K is 4 in the cooling 

condition, while the cooling parameter λ is 0.6. Besides, Boltzmann constant γ = 1, and the PSO iteration 

number SA_ITER is specified as 5. 

 

Table 2. The initial coverage metric of k-coverage area. 

k 1 2 3 4 5 6 

Coverage metric (%) 98.00 91.45 83.17 70.80 54.03 37.25 

 
Figure 3. Detection reliability as a function of covering node number. 

 

 

Target tracking application of the optimized WSN will be simulated on a modeling platform, Opnet 

Modeler, which is developed for communication network and distribution system. It is assumed that 

the sampling period of WSN is 0.5 s. Without loss of generality, a mobile target moves randomly in the 

sensing area for 120 s. Wireless channel model is bpsk, the free space propagation model is utilized 

and data rate is 1 Mbps. 
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5.2. Simulations of deployment optimization 

 

With the stated simulation environment, the DPSOSA algorithm can be adopted to achieve energy-

efficient coverage. First, we should define the coverage requirement, which is given by two parameters, 

detection reliability Rreq and coverage ratio C0. Considering the initial coverage state, we discuss two 

kind of coverage requirement to analyze the performance of algorithm against different conditions: (1) 

Rreq = 0.8, C0 = 95%; (2) Rreq = 0.9, C0 = 95%. The required covering node numbers kreq are 2 and 3 

respectively. According to Table 2, the latter coverage requirement is much stricter than the former one.  

Second, the constant E0 which denotes the upper bound of energy metric should be specified for the 

fitness calculation. Here, we search the lowest cost paths of the station nodes without any mobile node. 

Assume the related path cost is {Ds
i │ i = 1, 2,…, n}, then E0 is defined as: 

0
1 1

max( )
n n

s s
i i

i i
E D m D

= =
= ⋅ +∑                                                                             (39) 

In this case, E0 is 7.26 x 10–5 J/bit, and ρ is set as 105. 

Then, we implement DPSOSA to optimize the deployment of WSN with a different computing 

node number SA_NUM, which varies from 1 to 9. Specially, the algorithm is accomplished by the sink 

node when SA_NUM is set as 1. Since each wireless sensor node has little information to exchange 

with the sink node and the computing node number is limited during DPSOSA, its communication cost 

can be ignored. As shown in Figure 4, the optimization results of DPSOSA are obtained under the two 

kinds of coverage requirement. We can find that all the optimized coverage metrics exceed 95%, while 

the energy metric trends to be lower as the computing node number becomes larger. Hence, the 

performance of DPSOSA benefits from the computation capacity of multiple wireless sensor nodes. 

 

Figure 4. Optimization results of DPSOSA utilizing different computing node numbers 

under two kinds of coverage requirement: (a) Rreq = 0.8, C0 = 95%; (b) Rreq = 0.9,          

C0 = 95%. 
 

 
(a) 
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(b) 

 

Figure 5. Convergence curves of the metrics under two kinds of coverage requirement 

during DPSOSA: (a) Coverage metric; (b) Energy metric. 
 

 
(a) 

 
(b) 
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To obtain ideal optimization results, the computing node number is fixed as 9 in the following 

discussion. Then, Figure 5 shows the convergence curves of the metrics under the two kinds of 

coverage requirement. Rather than the coverage requirement that Rreq = 0.8 and C0 = 95%, it is more 

difficult to achieve the coverage requirement that Rreq = 0.9 and C0 = 95%. Therefore, the former 

coverage requirement is satisfied at the beginning, while the latter one is satisfied after 8 iterations in 

the optimization procedure, which is shown in Figure 5(a). In Figure 5(b), the algorithm can make 

more effort to achieve improved energy metric with the former coverage accordingly. Meanwhile, the 

former coverage requirement provides more adjustability for mobile node deployment to achieve lower 

energy metric.  

 

Figure 6. Convergence curves of the metrics during DPSOSA and PSO under the 

coverage requirement that Rreq = 0.9 and C0 = 95%: (a) Coverage metric; (b) Energy 

metric. 
 

 
(a) 

 
(b) 

Furthermore, we will compare the performance of DPSOSA and general PSO algorithms. Here, 

only the coverage requirement that Rreq = 0.9 and C0 = 95% is considered. The same scenario and 

fitness function is employed in PSO. In Figure 6, the convergence curves of coverage and energy 
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metrics are presented during DPSOSA and PSO. From Figure 6(a), we can find that PSO spends much 

more iterations than DPSOSA to satisfy the coverage requirement though it has a better initial coverage 

of mobile nodes. And the energy metric is significantly improved by DPSOSA compared to the 

optimization result of PSO as shown in Figure 6(b). 

According to the optimization results of PSO and DPSOSA, we can obtain optimized deployment 

and communication paths of WSN as shown in Figure 7. The coverage ratio of the WSN in Figure 7(a) 

and (b) is 95.13% and 95.31%, respectively. It can be seen that the data paths obtained by DPSOSA 

tend to provide more potential for multi-hop communication instead of using longer distance data 

transmission, although both algorithms attempt to achieve energy efficiency. As a result, the energy 

metrics obtained by PSO and DPSOSA are 5.83 x 10–5 J/bit and 5.57 x 10–5 J/bit, respectively. 

 

Figure 7. Optimized WSN deployment and communication paths adopting two 

algorithms: (a) PSO; (b) DPSOSA. 
 

 
(a) 

 
(b) 
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Finally, scenarios of WSN are set up according to Figure 7(a) and (b) for target tracking simulations. 

Besides, we discuss a coverage-only deployment, which is optimized by DPSOSA taking only 

coverage metric into account. In each sensing period, the closest wireless sensor node to the mobile 

target is chosen via negotiation. It then acquires information and sends a 2KB data packet to the sink 

node along the optimized path. The total energy consumption over time is extracted from the 

simulations, as shown in Figure 8. We find that the WSN optimized by DPSOSA has a lower energy 

consumption than the one optimized by PSO. Moreover, target tracking is a long term task, so more 

energy could be saved during the lifetime of WSNs. Compared to the coverage-only deployment, 

DPSOSA achieves an energy conservation of 4.68%.  

 

Figure 8. Energy consumption comparison of WSNs optimized by PSO and DPSOSA in 

target tracking application 
 

 

From the experiments, the efficiency of multiple computing nodes is verified and it is shown that 

DPSOSA can applied under different coverage requirements. Then, the improved energy efficiency of 

DPSOSA is demonstrated by algorithm simulations and target tracking application compared with 

general PSO. 

 
6. Conclusions 
 

Focusing on the energy-efficient coverage problem of WSNs, this paper has proposed distributed 

particle swarm optimization and simulated annealing to optimize the network deployment. In a 

network composed of stationary and mobile wireless sensor nodes, the proper placement of mobile 

nodes is discussed, considering sensing coverage and energy consumption. Then, the coverage metric 

is defined utilizing a grid exclusion algorithm, while the energy metric is calculated by Dijkstra’s 

algorithm, which provides the optimal communication paths for data reporting. Particle swarm 

optimization and simulated annealing are combined to find the global optimal solution, where the 

fitness function is designed to minimize the energy metric guaranteeing specified coverage ratio. 

Besides, computation capability of multiple wireless sensor nodes is adopted to enhance the 

optimization capacity. Experimental results represent that significant energy conservation can be 
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achieved by the proposed optimization algorithm compared to general PSO, and energy efficiency of 

WSN is boosted up in target tracking application. This paper presents an evaluation method for energy-

efficiency of coverage problem in WSNs. The application-oriented property is realized by target 

tracking. Still, further investigation should be made on adaptive routing schemes and scalable network 

topologic.  
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