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Abstract: Fluorescent self assembled monolayers (SAMs) on glass were previously 

developed in our group as new sensing materials for metal ions. These fluorescent SAMs are 

comprised by fluorophores and small molecules sequentially deposited on a monolayer on 

glass. The preorganization provided by the surface avoids the need for complex receptor 

design, allowing for a combinatorial approach to sensing systems based on small molecules. 

Now we show the fabrication of an effective microarray for the screening of metal ions and 

the properties of the sensing SAMs. A collection of fluorescent sensing SAMs was 

generated by combinatorial methods and immobilized on the glass surfaces of a custom-

made 140 well microtiter-plate. The resulting libraries are easily measured and show varied 

responses to a series cations such as Cu2+, Co2+, Pb2+, Ca2+ and Zn2+. These surfaces are not 

designed to complex selectively a unique analyte but rather they are intended to produce 

fingerprint type responses to a range of analytes by less specific interactions. The unselective 

responses of the library to the presence of different cations generate a characteristic pattern 

for each analyte, a “finger print” response. 

Keywords: High throughput, fluorescence, SAMs, microtiter plate, differential sensing, 

sensor array, metal ions  
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1. Introduction  

Despite several decades of research in optical sensor technology, there is still a substantial need for 

new sensing materials that can be applied for environmental contaminants, food industry and medical 

analysis.[1] The conventional approach to chemical sensing, inspired by the “lock and key” paradigm of 

molecular recognition,[2] is to prepare a different sensor for each analyte of interest (one sensor–one 

analyte approach). This approach has many drawbacks. First, the need to create absolute selectivity for 

specific analytes is a difficult task. Significant rational design, computer modeling, and trial and error 

testing is required to optimize the ability of the receptor to recognize the guest analyte. Second, the 

number of sensors grows linearly with the number of analytes to be measured. An emerging different 

approach is the fabrication of cross-reactive sensor arrays,[3],[4],[5],[6]  inspired by the mammalian 

(natural) way of sensing. In the olfactory system a limited number of cross-reactive receptors that are 

not highly selective generate a response pattern that is perceived by the brain as a particular 

odor.[7],[8],[9] The large number of response pattern combinations leads to a broadly responsive system 

able to recognize and detect thousands of distinct odors, including complex mixtures.[10],[11] The 

number of odors that can be detected is limited only by the number of unique receptor patterns that can 

be generated and recognized. Artificial cross-reactive sensors are composed of arrays of sensing 

systems which are not highly selective, but the combined signal response from the array produce a 

characteristic picture (fingerprint) of the analyte. Identification of the analytes is achieved by a variety 

of chemometrics tools for pattern-recognition.[12],[13],[14] 

Since 1982, when Persaud and Dodd first reported chemical sensing based on arrays of cross-

reactive conductive polymer sensors,[15] a variety of arrays have been fabricated employing different 

chemical interaction, materials, and strategies such as the use of conductive polymers,[16] conductive 

polymer/carbon-black composites,[17] modified tin oxide sensors,[18],[19] polymer coated surface 

acoustic wave devices,[20],[21] quartz crystal microbalances[22] dye-doped polymer 

matrixes,[23],[24],[25],[26],[27] molecular imprinted polymers,[28] colorimetric vapor sensors with 

metalloporphyrins immobilized in thin layers of silicagel,[29],[30],[31] colorimetric and fluorescence 

changes of receptor and indicator molecules covalently attached to polymeric microspheres in micro 

machined cavities,[32],[33],[14] and many others.[34],[35],[36],[37],[38] Even an optical imaging fiber-based 

recombinant bacterial biosensor has been fabricated.[39] The potential of organic self-assembled 

monolayers (SAMs) as sensing interfaces for array fabrication was outlined by Crooks and Ricco in 

1998.[20] The synthetic flexibility of the organic monolayers implies that they can be tailored to exhibit 

a high level of chemical independence and structural order. Each individual type of monolayer in the 

array responds to an analyte or class of analytes in a distinct manner. Because of the inexpensive 

procedures to create these materials, families of substrates with a range of chemical properties for 

analyte recognition can be easily generated using simple combinatorial methods.[40],[41],[42],[43],[44],[45],[46] 

Thicker materials such as polymers provide a much larger quantity of receptors than SAMs. Thus, 

polymers-based optical sensors have an enhanced sensitivity compared to monolayer-based optical 

sensors.[47] However, they have a limiting factor in terms of response rate of the signaling process, 

which is the chemical and physical permeability of the material and they are commonly inappropriate 

for real time applications.[47] SAMs generally provide very fast responses since all the receptors are 

exposed to the surface liquid interface and they are only 1-3 nm thick. 
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 Here we use a combinatorial sensing methodology, earlier developed by us, for ion 

sensing[48],[40] which relies on the random sequential attachment of different fluorophores and small 

ligand molecules on a SAM formed on a glass substrate.[40] We report a new approach to high through 

put screening of the fluorescent SAMs metal ion sensing properties. A library of fluorescent SAMs on 

glass has been confined on a microtiter plate. The directional preorganization inherent in the SAM and 

the random lateral distribution brings the ligand groups and the fluorophores in close enough proximity 

that the ligand-analyte interaction is communicated to the fluorophore, resulting in a modulation of the 

fluorescence intensity. Generally, these SAMs-based sensing materials are not highly selective, which 

implies a need for cross-reactive array-based sensor devices. Depending on the interaction between the 

metal ion and the fluorescent SAM, the fluorescence emission of the functionalized surface might be 

enhanced or quenched. Therefore, modulation of the initial fluorescence will differ depending on the 

layer composition and the applied analyte.[49] 

The sensing array was prepared by the parallel synthesis of an amino-terminated SAMs 

functionalized with different fluorophore-ligand pairs in the bottom glass of different wells in a 

microtiter plate (MTP). The physical immobilization of the sensing layers on the wells of an MTP 

enables straightforward preparation of the arrays and it enables the rapid screening of large sets of 

libraries.[26] The result is a sensing array which is able to generate a characteristic fingerprint type of 

response with a single fluorescence “snapshot” allowing for the visual identification of different 

analytes.  

In this paper the power of this novel method is demonstrated for the analysis of different metal 

cations. The overall unselective responses of the array components in the presence of different cations 

generates a characteristic fluorescent pattern for each analyte. We believe that this approach for the 

generation of sensing materials based on fluorescent SAMs can be extended to a large number of 

different analytes such as small organic molecules.  

2. Results and Discussion  

A collection of 21 sensing self-assembled monolayers, generated by parallel combinatorial methods 

was immobilized on glass surfaces of the different wells of a custom-made microtiter plate (MTP) 

(Figure 1). The MTP was custom designed with dimensions of 75 x 25 mm2 to allow analysis of the 

array by commercial fluorescence microarray scanners. It contains 140 wells, of 3 mm diameter which 

can be filled with a volume up to 7 µL.[50]  

The general procedure for the fabrication of the sensing monolayers on the glass surface of the wells 

involves the functionalization of the MTP surface with the amino terminated SAM N-[3-

(trimethoxysilyl)propyl]ethylenediamine (TPEDA) and its sequential modification with a different 

fluorophore-ligand molecule pair in each well (Figure 2). Commercially available amino-reactive 

fluorescent probes (F) (λex= 500-550 nm, λem>550 nm) and ligands (R) were used, allowing the direct 

covalent attachment of the array building blocks to the MTP wells (Figure 2a). 
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Figure 1. a) Picture of the 140 well glass microtiter plate (MTP) with a schematic 

representation (enlargement) of the wells substitution). Schematic representation of b) 

one microtiter plate well with the corresponding dimensions and c) the self-assembled 

monolayers formed in each well of the MTP. 

 

 

 
 

 

Figure 2 depicts the three-step synthesis and distribution of the parallel combinatorial library of 

sensing monolayers in the MTP wells. First the amino terminated monolayer (TPEDA, Figure 2a) is 

formed by silanization of the well glass surface by immersion of the MTP in a solution of N-[3-

(trimethoxysilyl)propyl]ethylenediamine) in toluene. Sequentially three acetonitrile solutions each 

containing a different amino-reactive fluorophore (Figure 2b), TAMRA (5-(and-6)-

carboxytetramethylrhodamine, succinimidyl ester (5(6)-TAMRA, SE) *mixed isomers*) (TM), TRITC 

(tetramethylrhodamine-5-(and-6)-isothiocyanate (5(6)-TRITC) *mixed isomers*) (T), or Lissamine 

(Lissamine™ rhodamine B sulfonyl chloride *mixed isomers*) (L),  were pipetted on different 

columns of the MTP affording fluorescent monolayers TM0, T0, and L0. Six solutions, each 

containing a different amino-reactive ligating molecule (1-6), p-isopropyl phenyl isocyanate, hexyl 

isocyanate, phenyl isothiocyanate, hexanoyl chloride, p-propyl benzoyl chloride and phenyl isocyanate, 

were pipetted in different rows. The covalent attachment of the complexing groups onto the fluorescent 

monolayers results in an array of 21 different sensing monolayers[51] (TM0-TM6, T0-T6, L0-L6). On 

the top row, no complexing molecule was added; therefore the layers TM0, L0, T0, contain amino 

groups as ligating functionalities.  

To avoid contamination with unwanted fluorophores and ligating molecules from neighboring 

wells, the MTP was rinsed after each synthesis step with propylamine (0.1 M, acetonitrile) to remove 

the excess reactant. Figure 3 shows the fluorescence microscopy images of two neighboring wells, one 

functionalized with L0 SAM, and the other functionalized only with TPEDA SAM. The images clearly 

show that the fluorophores have not spread into neighboring wells after this rinsing procedure. 
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Figure 2. a) Synthetic scheme of the formation of the sensing SAMs on the plate wells. i) 
N-[3-(trimethoxysilyl)propyl]ethylenediamine, toluene, rt, 3.5 h, ii): Lissamine 
rhodamine B sulfonyl chloride, 5-(and-6)-carboxytetramethylrhodamine, succinimidyl 
ester (5(6)-TAMRA, SE) or tetramethylrhodamine-5-(and-6)- isothiocyanate (5(6)-
TRITC), acetonitrile, rt, 4 h and iii) isocyanates, thioisocyanates or acid chlorides (see 
text) used as ligands (R), acetonitrile, rt, 16 h. b) Schematic representation of the 
monolayer library synthesis (TM0-TM6, T0-T6, L0-L6) in a microtiter plate. Three 
different acetonitrile solutions containing each a different fluorophore, TAMRA (TM), 
TRITC (T), or Lissamine (L) are pipetted in the wells of three consecutive colunms of a 
MTP coated with TPEDA monolayer (A in this figure). Subsequently, six solutions (1-6) 
containing each a different ligand are pipetted in consecutive rows. No ligand solution is 
added on the top row (wells TM0, L0, T0). c) Chemical composition of the library of 
fluorescent SAMs (TM0-TM6, L0-L6, T0-T6) prepared on the MTP glass surface. 
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Figure 2 depicts the three-step synthesis and distribution of the parallel combinatorial library of 

sensing monolayers in the MTP wells. First the amino terminated monolayer (TPEDA, Figure 2a) is 

formed by silanization of the well glass surface by immersion of the MTP in a solution of N-[3-

(trimethoxysilyl)propyl]ethylenediamine) in toluene. Sequentially three acetonitrile solutions each 

containing a different amino-reactive fluorophore (Figure 2b), TAMRA (5-(and-6)-

carboxytetramethylrhodamine, succinimidyl ester (5(6)-TAMRA, SE) *mixed isomers*) (TM), TRITC 

(tetramethylrhodamine-5-(and-6)-isothiocyanate (5(6)-TRITC) *mixed isomers*) (T), or Lissamine 

(Lissamine™ rhodamine B sulfonyl chloride *mixed isomers*) (L),  were pipetted on different 

columns of the MTP affording fluorescent monolayers TM0, T0, and L0. Six solutions, each 

containing a different amino-reactive ligating molecule (1-6), p-isopropyl phenyl isocyanate, hexyl 

isocyanate, phenyl isothiocyanate, hexanoyl chloride, p-propyl benzoyl chloride and phenyl isocyanate, 

were pipetted in different rows. The covalent attachment of the complexing groups onto the fluorescent 

monolayers results in an array of 21 different sensing monolayers[51] (TM0-TM6, T0-T6, L0-L6). On 

the top row, no complexing molecule was added; therefore the layers TM0, L0, T0, contain amino 

groups as ligating functionalities.  

To avoid contamination with unwanted fluorophores and ligating molecules from neighboring 

wells, the MTP was rinsed after each synthesis step with propylamine (0.1 M, acetonitrile) to remove 

the excess reactant. Figure 3 shows the fluorescence microscopy images of two neighboring wells, one 

functionalized with L0 SAM, and the other functionalized only with TPEDA SAM. The images clearly 

show that the fluorophores have not spread into neighboring wells after this rinsing procedure. 

Figure 3. a) Fluorescence microscope images of two neighboring wells functionalized 

with L0 SAM (left) and TPEDA SAM (right), after rinsing the MTP with propylamine. b) 

Schematic representation of the functionalized MTP showing two identical monolayer 

libraries (reference library and analysis library) in the MTP wells. Fluorophores (TM, T, 

and L) and complexing molecules (1-6) were distributed in the TPEDA functionalized 

MTP as indicated resulting in 21 different monolayers. 
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To control the reproducibility of the measurement and the quality of the data, every monolayer in 

the analysis library was made in triplicate (in consecutive wells) and in duplicate in the reference 

library (Figure 3b). To facilitate the data quantification the MTP was divided in two parts (Figure 3a). 

In both parts an identical monolayer library was made. The first part was used as a reference and the 

second part, the analysis library, was incubated with the corresponding analyte solutions. The 

fluorescence intensity of both libraries was subsequently measured. In total 105 wells were 

functionalized with 21 different sensing systems. Figure 4 shows the plot of the fluorescence intensity 

of each system (in triplicate). Analysis of the data indicated good inter-well reproducibility. 

Figure 4. Plot of the original fluorescence intensity of each sensing monolayer in air (L0-

L6, T0-T6, TM0-TM6), made in triplicate in consecutive wells. 
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To demonstrate the generality of this sensing scheme, the metal ions were chosen to represent a 

wide range of ionic species. The response of the above described sensor array to Ca2+, Cu2+, Co2+, 

Zn2+, or Pb2+ was studied. Depending on the interaction between metal ion and SAM, the fluorescence 

emission can be enhanced or quenched.[49] First, the MTP was incubated with a 10-4 M acetonitrile 

solution of the perchlorate salts of Ca2+, Cu2+, Co2+, Pb2+, and Zn2+, subsequently rinsed gently with 

dichloromethane and dried with a nitrogen stream. Afterwards, the fluorescence intensity of each well 

of the reference and of the analysis libraries was measured using a laser scanning confocal fluorescence 

microscope (LSCM).[52] Qualitative and quantitative analysis of the microtiter plate response in the 

presence of the analytes are both feasible. The fluorescence intensity of each well was measured by 

LSCM and one colored image was generated for each well.[53] The ratio of fluorescence intensities of 

the reference and the analysis library was calculated providing a quantitative measure of the analyte 

influence in each well (see experimental part for details).[54] The interaction of each metal ion with the 

different sensing wells results in an individual fluorescent signal for each well. The combination of the 

21 individual responses generates a characteristic pattern signature (fingerprint) for each analyte. 

Figure 5 shows the fluorescence intensity of each MTP well after incubation with the metal ion 

solutions. It can be clearly seen that each analyte in the array produces a unique fluorescent pattern. In 

this way each analyte is easily distinguished from the others.[55]  
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Figure 5. Fluorescence microscopy images of the MTP wells after each plate was 

incubated with Ca2+, Cu2+, Co2+, Zn2+ and Pb2+ (10-4 M, acetonitrile). Each square in 

every image represents an individual signal, and the collection of the individual signals 

constitutes the response pattern of the array, (for well composition see Figure 4). 

 

 
 

Figure 6 depicts the changes in fluorescence intensity of each sensing system of the MTP upon 

analyte complexation. Quantification of the data was done by analyzing the fluorescence intensity of 

each well before and after exposure to the analyte.  

Figure 6. Plot of the fluorescence emission intensity changes of each sensing system in 
the array upon Pb2+, Zn2+, Ca2+, Co2+ and Cu2+ complexation. Negative values indicate 
quenching of fluorescence while positive values indicate enhancement of fluorescence 
intensity. The data are normalized, the fluorescence intensity of the sensing systems in the 
reference layer has been set to 0, and compared with the fluorescence intensity of each 
system after analyte complexation.[56] 
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As mentioned before, the MTP used to form the monolayer array had the dimensions of a standard 

microscope slide (75 × 25 mm), suitable for measurements in commercial fluorescence microarray 

reader scanners. Therefore, a commercial scanner was used to read the microsensor array allowing 

imaging of the whole array in a shorter time. This compact bench-top scanner combines easy-to-use 

features with advanced optics and solid-state laser technology necessary to provide rapid scan times, 

image quality, and data reproducibility for accurate and reliable measurements. The simplicity of the 

analysis technology should enhance the performance of our sensing scheme, allowing fast and accurate 

measurements. To prove whether the sensing SAMs array can be measured using a standard 

fluorescence array scanner, sensing and recycling experiments were performed. First a microtiter plate 

was functionalized with the previously described sensitive SAMs library comprised of 21 different 

sensing monolayers (for library composition see Figure 2). The monolayers were arranged in the MTP 

according to the pattern given in Figure 3b (analysis library). Every monolayer was prepared in 

triplicate in three consecutive wells to evaluate the reproducibility of the measurements. The MTP was 

imaged before incubation with the analytes to register the initial fluorescence intensity of each well. 

Subsequently, the plate was incubated with Cu2+ (10-4 M, acetonitrile), and scanned again.[52] Figure 7 

shows the pictures of the plate functionalized with the SAM array before and after Cu2+ addition. The 

scanning of the microtiter plate takes less than 40 s.[57] The fluorescence intensity patterns of the 

functionalized MTP after exposure to the analyte provided a signature characteristic for the analyte 

comparable with that obtained previously using the confocal microscope. The fluorescence laser 

scanner allows imaging a sensing SAM array in a short time what constitutes an extra advantage in the 

screening methodologies for sensor arrays discussed in this paper. 

 Recycling of this MTP confined sensing array was also studied using the laser fluorescence 

scanner as imaging set up. A functionalized MTP containing the SAM library described in Figure 2, 

was incubated with Co2+ (10-4 M, acetonitrile) and produced the fluorescence pattern (Figure 7). 

Subsequently, the MTP was rinsed with a solution of the metal scavenger, EDTA 

(ethylenediaminetetraacetic acid, 0.01 M, in H2O solution). Upon rinsing with the EDTA solution the 

fluorescence intensity of each monolayer increased, indicating that almost all metal ions had been 

removed from the array. Subsequent exposure of the rinsed MTP to Co2+ resulted in almost the same 

fluorescent pattern found after the initial addition of Co2+. Thus, the complexation is reversible and the 

surface can be easily recycled for further analysis. 

In conclusion, arrays of 21 different fluorescent sensing monolayers have been directly generated by 

parallel combinatorial synthesis on the wells surface of glass microtiter plates. The collection of the 

unselective response of the twenty one different monolayers in the presence of the different metal 

cations generates a characteristic fluorescent pattern, a “fingerprint” of each analyte in the array. The 

array was reused after removal of the analytes by washing with EDTA. The monolayers responded 

extremely fast to the presence of the analytes, and the array could be easily screened by laser confocal 

microscopy and microarray reader fluorescence scanner.  
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Figure 7. a) Fluorescence scanner images of a functionalized microtiter plate with a 

library of 21 SAMs configured into an array (for library composition see Figure 2), before 

and after exposure to a 10-4 M acetonitrile solution of Cu(ClO4)2, respectively. b) 

Fluorescence scanner images of a microtier plate functionalized with the sensing array, 1) 

initial situation, 2) after exposure to Co2+ (10-4 M, acetonitrile), 3) after subsequent 

rinsing with EDTA (0.01 M, aqueous solution), and 4) after re-exposure to Co2+ (10-4 M, 

acetonitrile). 

 

 
 

The results herein demonstrate the successful application of parallel combinatorial methods to 

generate different sensing SAMs covalently immobilized in the wells of a glass microtiter plate and its 

application to high through put screnning of sensing materials. We envision their potential for the 

fabrication of cross-reactive fluorescent sensor arrays. Using the array format and screening tools 

described in this paper, we are currently working on the continuous sensing of metal ions and the 

generation of universal arrays containing sensitive probes for identification of mixtures of analytes 

using chemometric tools.  

3. Experimental Section  

Monolayer microarray fabrication. All glassware used to prepare the layers was cleaned by 

sonicating for 15 minutes in a 2% v/v Hellmanex II solution in distilled water, rinsed four times with 

high purity (MilliQ, 18.2 MΩcm) water, and dried in an oven at 150º C. The substrates, custom made 

140 well glass microtiter plates (MTP) were cleaned for 15 minutes in piranha solution (concentrated 

H2SO4 and 33% aqueous H2O2 in a 3:1 ratio. Warning: Piranha solution should be handled with 
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caution: it has been reported to detonate unexpectedly). They were then rinsed several times with high 

purity (MilliQ) water, and dried in a nitrogen stream immediately prior to performing the formation of 

the monolayers. 

 

Synthesis of TPEDA monolayers in the MTP wells. Formation of the N-[3-

(trimethoxysilyl)propyl]ethylenediamine SAM TPEDA was achieved in a glovebox under an 

atmosphere of dry nitrogen. The freshly cleaned MTP was immersed in a 5 mM solution of N-[3-

(trimethoxysilyl)propyl]ethylenediamine, in dry toluene (freshly distilled over sodium) for 3.5 h. After 

the MTP was taken from the solution, it was rinsed twice with toluene (under nitrogen atmosphere) to 

remove excess silane and avoid polymerization. The MTP was then removed from the glovebox and 

rinsed with ethanol and dichloromethane to remove physisorbed material. The following protocol was 

repeated twice: stirring of the MTP in a beaker filled with EtOH, then rinsing with a stream of EtOH, 

followed by stirring in CH2Cl2, then rinsing with a stream of CH2Cl2. The MTP was then dried under 

an air stream. The result is the complete coating of the MTP surface with the TPEDA monolayer. 

 

Immobilization of the fluorophores: Synthesis of the TM0, L0, and T0 SAMs. The attachment of 

the fluorophores onto the TPEDA-functionalizaed MTP wells was achieved by pipetting in the 

corresponding wells a solution (5 µL, 0.1 mM, acetonitrile) of the fluorophore TAMRA (5-(and-6)-

carboxytetramethylrhodamine, succinimidyl ester (5(6)-TAMRA, SE) *mixed isomers)) (TM), 

fluorophore Lissamine (L) (Lissamine rhodamine B, sulfonyl chloride) and fluorophore TRITC (T) 

(tetramethylrhodamine-5-(and-6)-isothiocyanate(5(6)-TRITC), *mixed isomers) to yield layers TM0, 

L0 and T0, respectively. Triethylamine, 500 µL, was added in all the solutions to avoid protonation of 

the amine groups on the TPEDA SAM. The plate was kept for 3h in an acetonitrile saturated 

atmosphere to avoid evaporation. After reaction the plate was immersed in propylamine (0.1 M, 

acetonitrile). Subsequently, the plate was gently rinsed with CH2Cl2 and dried under an air stream.  

 

Immobilization of the ligands: Synthesis of the layers L1-L6, T1-T6, and TM1-TM6. The 

corresponding microtiter plate wells functionalized with the fluorescent monolayers T0, TM0, and L0 

were filled with 5 µL of a solution of 0.1 mL of p-isopropyl phenyl isocyanate, hexyl isocyanate, 

phenyl isothiocyanate, hexanoyl chloride, p-propyl benzoyl chloride and phenyl isocyanate in 20 mL of 

acetonitrile with 100 µL of triethyelamine, to afford layers T1-T6, TM1-TM6, and L1-L6, respectively. 

The plate was kept for 3h at room temperature in a saturated acetonitrile atmosphere to avoid 

evaporation. The reactants were taken out of the wells to avoid spreading of the reactive species to 

other wells. Subsequently the plate was sonicated for 2 min in a 0.1 M acetonitrile solution of 

propylamine, for 2 min in CH3CN, for 2 min in EtOH, and for 2 min in CH2Cl2. Finally, the plate was 

dried under an air stream. 

 

Metal ion sensing with the microtiter plate. Ca2+, Co2+, Cu2+, Zn2+, and Pb2+ sensing with the 

confined monolayer array was measured using the following protocol: immersion of the analysis 

library of the plate in a beaker filled with a 10-4 M acetonitrile solution of the corresponding analyte for 

5 min followed by gentle rinsing of the plate first in a beaker filled with CH2Cl2 and subsequently with 
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a stream of fresh CH2Cl2, and final drying of the plate under an air stream. Subsequently, fluorescent 

images of the plate were recorded with laser confocal microscopy (LSCM) and fluorescence scanner 

(see details below). 

 

Imaging Instrumentation.  
Laser scanning confocal microscopy. Confocal microscopy images of the functionalized wells of the 

glass microtiter plate were taken on a Carl Zeiss LSM 510 microscope. Images were acquired using a 

confocal laser scanning microscope equipped with an argon laser module (Carl Zeiss Inc., Thornwood, 

NY) using a 10×0.25-na objective. The light was focused through the glass plate on the top side of 

each well. The image is collected using the focus that gives the maximum initial fluorescence intensity. 

All the fluorophores were excited at 543 nm with a HeNe laser. The following parameters were kept 

constant for all types of monolayers: pinhole (17.7 µm), image size (1024 x 1024 pixels), scanning 

speed (5) and data depth (12 bit). Depending on the initial intensity of the fluorescent monolayers and 

the expected response in the presence of the analytes (enhancement or quenching of the fluorescence 

intensity) the following settings were used: for sensing of Ca2+, Pb2+ and Zn2+, the detector gain was set 

to 774, 750 and 772 for TAMRA, TRITC, and Lissamine containing layers, respectively; the amplifier 

offset was set to -0.115, -0.136 and -0.057 for TAMRA, TRITC, and Lissamine containing layers, 

respectively; and the amplifier gain was set to 1, 1 and 1.17 for TAMRA, TRITC, and Lissamine 

containing layers, respectively. For sensing of Cu2+ and Co2+ the detector gain was set to 901, 849 and 

822 for TAMRA, TRITC, and Lissamine containing layers, respectively; the amplifier offset was set to 

-0.071, -0.136 and -0.057 for TAMRA, TRITC, and Lissamine containing layers, respectively; and the 

amplifier gain was set to 1, 1 and 1.17 for TAMRA, TRITC, and Lissamine containing layers, 

respectively. The fluorescence was collected on a PMT R6357. All the images were collected in air. 

For data evaluation, two sets of the same monolayer library were made in a MTP (reference library and 

analysis library). Only the analysis library was exposed to the analyte. After exposure, an image of each 

functionalized well of both sets was made and the mean fluorescence intensity of each image was 

extracted. The average value of the duplicate (in the reference library) and the triplicate (in the analysis 

library) wells in both libraries was calculated. For data evaluation, the fluorescence intensity of each 

system in the reference library was set to 0 and compared with the intensity of the corresponding well 

in the analysis library. The values given in the text are the average of two measurements from two 

different microtiter plates. 

  

Laser confocal fluorescence scanner. Fluorescence laser scanner images of the monolayer array were 

obtained with an Affymetrix 428 scanner (Affymetrix, High Wycombe, UK), and the Jaguar Software 

package (Affymetrix). Excitation light was in all the cases 532 nm. For data evaluation, the plate was 

scanned before and after analyte addition. The resulting images were analyzed with Imagine 5.0 

software (BioDiscovery Inc., El Segundo, CA). Data were further processed. The MTP was placed on 

the scanner upside down to focus on the bottom part of the wells. 
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