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Abstract: Increasingly available and a virtually uninterrupted supply of satellite-estimated 
rainfall data is gradually becoming a cost-effective source of input for flood prediction 
under a variety of circumstances. However, most real-time and quasi-global satellite 
rainfall products are currently available at spatial scales ranging from 0.25o to 0.50o and 
hence, are considered somewhat coarse for dynamic hydrologic modeling of basin-scale 
flood events. This study assesses the question: what are the hydrologic implications of 
uncertainty of satellite rainfall data at the coarse scale? We investigated this question on 
the 970 km2 Upper Cumberland river basin of Kentucky. The satellite rainfall product 
assessed was NASA’s Tropical Rainfall Measuring Mission (TRMM) Multi-satellite 
Precipitation Analysis (TMPA) product called 3B41RT that is available in pseudo real 
time with a latency of 6-10 hours. We observed that bias adjustment of satellite rainfall 
data can improve application in flood prediction to some extent with the trade-off of more 
false alarms in peak flow. However, a more rational and regime-based adjustment 
procedure needs to be identified before the use of satellite data can be institutionalized 
among flood modelers.  
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1. Introduction 
 
 Although there are several sources of uncertainty that complicate our understanding of flood 
prediction accuracy, the principal source of uncertainty is, undoubtedly, rainfall (Kavetski et al., 2006; 
Krzyzstofowicz, 1999, 2001). Syed et al. (2004) has corroborated this further by demonstrating that 
70%-80% of the variability observed in the terrestrial hydrologic cycle is, in fact, attributed to rainfall. 
Considering that floods impact more people globally than any other type of natural disaster (World 
Disasters Report, 2003), it is critical to monitor rainfall effectively for mitigation purposes. Experience 
indicates that the most effective way to reduce the property damage and life loss is the development of 
flood early warning systems (Negri et al., 2004).  

However, given the systematic and global decline of in situ networks for hydrologic 
measurements (Stokstad, 1999; Shikhlomanov et al., 2002), hydrologists today are beginning to realize 
that rainfall data from the vantage of space has the potential to become a cost-effective source of input 
for flood prediction.  There are some particularly unique attributes of satellite rainfall data that must be 
recognized by end-users for the prediction of flood events. These are: i) easy availability on a global 
basis from the internet; the spatio-temporal frequency of sampling is expected to increase in future 
with the advent of Global Precipitation Measurement (GPM) mission (see http://gpm.gsfc.nasa.gov 
and Smith et al., 2007); ii) virtually uninterrupted supply of rainfall data for maintaining functionality 
of operational land-based systems during catastrophic situations that can temporarily shut down 
ground networks (e.g., overland effects of hurricanes/earthquakes/tsunamis); iii) the availability of 
basin-wide rainfall data in transboundary river basins where riparian nations lack treaties for real-time 
rainfall data sharing across political boundaries (Hossain et al., 2007; Hossain and Katiyar, 2006).  

The recognition of the global importance of satellite derived rainfall has led to the development 
of an increasing number of satellite-based rainfall products that are now available to meet the needs of 
various users (for a summary of currently available products refer to Ebert et al., 2007). However, 
most of these (real-time) products are available at spatial scales that may be considered somewhat 
coarse for hydrologic modeling of flood events. For example, satellite algorithms like Global 
Precipitation Climatology Project (GPCP; Huffman et al., 2001), PERSIANN (Sorooshian et al., 
2000), CMORPH (Joyce et al., 2004) and Tropical Rainfall Measuring Mission (TRMM) Multi-
satellite Precipitation Analysis (TMPA; Huffman et al., 2007) are currently available at scales of 0.25o 

or larger. In this study, we therefore address the question: what are the hydrologic implications of 
uncertainty of satellite rainfall data at the native (coarse) scale? The motivation is to understand the 
current level of predictability that can be achieved for flood prediction using global satellite rainfall 
datasets. 
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2. Study Area and Data  
 

Our study area is a 970 km2 basin of the Upper Cumberland River in southeastern Kentucky 
(KY) bordering with Virginia and Tennessee (Figure 1).  The area is primarily mountainous and  
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   Figure 1. Upper Cumberland basin location. 

 
forested, and it lies in the Eastern Coal Field physiographic region.  The underlying rock formations 
are primarily sandstone, shale, and siltstone.  The percentage distribution of major land use types is 
forest land (80.13%), urban (8.20%), cropland and pasture (11.15%), and lakes and reservoirs 
combined (0.52%).  The outlet of the basin is in the town of Loyall. Three high-gradient mountain 
streams, Martin’s Fork, Poor Fork, and Clover Fork, join to form the Cumberland River near Harlan 
(Figure 2).  The population of the four major towns totals approximately 6500. The Upper Cumberland 
region has been subject to periodic disastrous flooding.  In April 1977, record rainfall caused severe 
flooding and damage to Harlan County.  Other large and disastrous floods occurred in the years of 
1946, 1957, 1972, and 2002. 

The storm event for this study took place on March 16-20, 2002, with the majority of the 
rainfall occurring on March 17th and 18th.  The total storm rainfall volume was 6.12 inches over the 
basin.  The observed streamflow was taken at the outlet of the basin in Loyall, Kentucky at the United 
States Geological Survey streamflow gage #03401000, which was operated in cooperation with the 
U.S. Army Corps of Engineers (USACE).  The peak flow for the storm was approximately 29,600 cfs 
(Figure 3).  

The reference rainfall dataset for calibrating hydrologic models comprised the WSR-88D Stage 
III data that were calibrated to the gages in and around the basin (Fulton et al., 1998). Using the gage-
adjusted WSR Stage-III radar rainfall data as reference for ground validation (GV) data, it was 
possible derive very accurate stream flow simulations for various model configurations (see Figure 4). 
Table 1 also summarizes the various error statistics in hydrograph simulation obtained with WSR-88D 
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rainfall estimates. Due to the very negligible difference observed between WSR-88D-simulated and 
observed stream flow (Table 1 and Figure 2), all subsequent assessment of satellite derived stream 
flow simulation was therefore performed with respect to the observed stream flow hydrograph. 

 

VIRGINIA

Lee
Bell

Scott

Clay

Wise

Harlan

Leslie

Hawkins

Letcher

Knox

Claiborne

Perry

Hancock Sullivan

Dickenson

Knott Pike

Washington
GreeneUnion Grainger

Norton

Owsley

Whitley

Laurel

Legend
Rivers
State Boundaries
County Boundaries
Subbasins
Satellite Pixels

-

0 4 8 12 16
Miles

KENTUCKY

TENNESSEE

 
Figure 2. River network of the Upper Cumberland basin. Gridboxes in yellow represent the location of 
3B41RT satellite rainfall pixels over the basin. 

 
For satellite rainfall data, we use the TRMM Multi-satellite Precipitation Analysis (TMPA) 

product. The TMPA provides a calibration-based sequential scheme for combining rainfall estimates 
from various satellites, at fine scales (0.25°x0.25° and 3-hourly) (Huffman et al., 2007). It is available 
both after and in real time, based on calibration by the TRMM Combined Instrument and TRMM 
Microwave Imager precipitation products, respectively. In this study we assessed the IR-based product 
known as 3B41RT (0.25o and hourly). The subscript ‘RT’ to each product name refers to real time, 
which in reality refers to a pseudo real time where data is available to the use via the internet with a 8- 
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 Figure 3. Rainfall and runoff for the March 2002 storm event. 
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16 hour latency for the end user. Because our analysis was intended for assessing the reliability of 
satellite products for now casting applications (such as flood forecasting and sequential data 
assimilation), we have chosen to use this ‘RT’ product. The 3B41RT data set covers the latitude band 
50°N-S for the period 2002 to the present. 
 
3. Hydrologic Model Configurations 
 

We selected the Hydrologic Engineering Center’s (HEC) Hydrologic Modeling System (HMS) 
to perform our assessment on three hydrologic model configurations. We also used the topographic 
index based model called TOPMODEL, first developed by Beven and Kirkby (1979), as our fourth 
model configuration. The use of multiple (four) conceptual model configurations thereby helped us to 
remove any potential bias of our findings for a particular model choice. USACE’s on-going work 
involving HEC-HMS over the Upper Cumberland basin allowed us access to various calibration and 
input databases that were found to be already quality-controlled. Each hydrologic model configuration 
concerned a particular infiltration scheme conceptualization to calculate excess rainfall (i.e., runoff 
generation) leading to surface runoff. Other components of the model such as base flow, river routing,  

 

        
Figure 4. Observed versus simulated stream flow for four hydrologic model configurations in the UC 
river basin (taken from Harris, 2007). Note: Other than TOPMODEL, all other configurations shown 
above can be set up in HEC-HMS. 

 
evapo-transpiration were kept constant. The Muskingum-Cunge routing (Barry and Bajracharya, 1995) 
and ModClark transformation (Kull and Feldman, 1998) method was used across all model types in 
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HEC-HMS. Required parameters for surface runoff routing were length, energy slope, Manning’s n 
roughness coefficients, and station-elevation data. The reader is referred to the HEC-HMS Technical 
Reference Manual, March 2000 for more details on these methods.  The three infiltration schemes 
considered were: i) Deficit/Constant loss method; ii) Green-Ampt Infiltration; iii) NRCS Curve  
Table 1. Runoff error statistics for calibrated models based on WSR-88D Stage-III radar rainfall data. 
Error is defined as the difference in observed and modeled value and expressed as a % relative to the 

observed value. 
 Peak Flow 

Hydrologic 
Model 

Observed 
(cfs) 

Computed 
(cfs) 

Error 
(%) 

D/C 29600 29584 0.05 

Curve Number 29600 29574 0.09 

Green and Ampt 29600 29524 0.26 

TOPMODEL 29600 33258 12.4 

 
 Total Runoff Volume 

Hydrologic 
Model 

Observed 
(in) 

Computed 
(in) 

Error 
(%) 

D/C 4.43 3.49 21.2 

Curve Number 4.43 4.24 4.3 

Green and Ampt 4.43 4.22 4.7 

TOPMODEL 4.43 4.58 3.4 

 
 Time to Peak 

Hydrologic 
Model 

Observed 
(hr) 

Computed 
(hr) 

Error 
(%) 

D/C 53 49 7.6 

Curve Number 53 55 3.8 

Green and Ampt 53 49 7.6 

TOPMODEL 53 55 3.8 

 
Number Method. For TOPMODEL, the topographic index was derived from a 10-meter resolution 
Digital Elevation Model (DEM) for the Upper Cumberland watershed using a multiple flow direction 
algorithm by Quinn et al. (1995).  For the case of unsaturated zone drainage, a simple gravity-
controlled approach is adopted in the TOPMODEL version used in this study.  All model 
configurations were calibrated using WSR-88D radar rainfall data. The watershed was discretized into 
31 smaller sub-basins (Figure 2) to account for the hydrologic variability of the rainfall-runoff process 
within. Although complete details of the entire calibration process are not shown here due to the 
limitations on space, they may be accessed from the work of Harris (2007; unpublished thesis, 
available upon request). Figure 2 also shows the location of the 0.25o satellite gridboxes of the IR-
3B41RT product over the watershed. 
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4. Implications of Satellite Rainfall Uncertainty on Flood Prediction 
 

Generally, when applying actual satellite rainfall data to the models with parameters calibrated 
to WSR-88D radar rainfall data, our preliminary observation was that the 3B41RT algorithm suffered 
from systematic underestimation (negative bias) for the March 2002 storm event.  This resulted in an 
underestimated flood hydrograph (Figure 5).  Table 2 shows the error statistics for peak flow, runoff 
volume and time to peak.  Except for the time to peak, very high percentages of errors (> 50%) are 
observed for all three model configurations. Generally, such systematic underestimation of rainfall for 
IR-based algorithm is not uncommon (Huffman et al., 2007) given that IR sensors are capable of 
sensing only the cloud top radiation as a proxy for surface rainfall. A particular difficulty of IR 
algorithms is to detect rain during winter from shallow and warm clouds. Previous studies by Hossain 
and Anagnostou (2004) and Borga (2002) also confirm that a systematic effect in rainfall estimation 
can be propagated in a similarly systematic manner in streamflow simulation (as observed from Figure 
5). In a recent assessment of global satellite rainfall products, Ebert et al. (2007) also reported that IR 
algorithms tend to underestimate rainfall by 50% in eastern US during summer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Computed vs. Observed Hydrographs using actual satellite rainfall data (unadjusted) at the 
native scale of 0.25o. 

 
As a remedial step, the satellite data set was adjusted upward by a factor of 2.34, and the 

simulations were repeated.  The bias of 2.34 was derived from the WSR and satellite cumulative 
rainfall hyetographs shown in Figure 6 by dividing the WSR rainfall volume by 3B41RT rainfall 
volume.  With the bias adjustments, tangible improvement in the reduction of streamflow uncertainty 
was observed (Table 3). However, this simple bias adjustment also resulted in the simulation of a false 
stream flow peak prior to the true flood peak time (Figure 7). As a community, we now need to 

0

10000

20000

30000

0 50 100 150 200

Time  (hr)

Fl
ow

  (
cf

s)

Curve Number

0

10000

20000

30000

0 50 100 150 200

Time  (hr)

Fl
ow

  (
cf

s)

Deficit / Constant

0

10000

20000

30000

0 50 100 150 200

Time  (hr)

Fl
ow

  (
cf

s)

Green and Ampt

Observed Hydrograph Computed Hydrograph 

0

10000

20000

30000

0 50 100 150 200

Time  (hr)

Fl
ow

  (
cf

s)

TOPMODEL



Sensors 2007, 7                            
 

 

3423

question the practicality and utility of simple bias adjustment of satellite rainfall for flood prediction. 
As has been reported in the past (see Hossain and Anagnostou, 2004), bias adjustment is not a 
complete remedy on its own as certain residual error in the form of false detected rain/no-rain remains 
unaccounted for. We have clearly seen herein that while the runoff volume simulation accuracy may 
increase with bias adjustment, the tendency to produce false alarms of flood peaks also increases.  
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Figure 6. Cumulative satellite rainfall hyetographs for deriving bias adjustment. 

 
Table 2. Streamflow error statistics using actual (unadjusted) satellite rainfall data.  

 
 Peak Flow 

Loss Method Observed (cfs) Computed (cfs) Error (%) 
D/C 29600 4823 83.7 

Curve Number 29600 6848 76.9 

Green and 

Ampt 

29600 
8360 71.8 

 
 Total Volume 

Loss Method Observed (in) Computed (in) Error (%) 
D/C 4.43 0.85 80.8 

Curve Number 4.43 1.63 63.2 

Green and 

Ampt 

4.43 
1.75 60.5 

 
 Time to Peak 

Loss Method Observed (hr) Computed (hr) Error (%) 
D/C 53 60 13.2 

Curve Number 53 60 13.2 

Green and 

Ampt 
53 35 34.0 
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  Table 3. Streamflow error statistics using bias-adjusted satellite rainfall data. 
 

 Peak Flow 
Loss Method Observed (cfs) Computed (cfs) Error (%) 

D/C 29600 25348 14.4 

Curve Number 29600 28580 3.4 

Green and 

Ampt 

29600 
38406 29.8 

 
 Total Volume 

Loss Method Observed (in) Computed (in) Error (%) 
D/C 4.43 3.63 18.1 

Curve Number 4.43 4.27 3.6 

Green and 

Ampt 

4.43 
4.73 6.8 

 
 Time to Peak 

Loss Method Observed (hr) Computed (hr) Error (%) 
D/C 53 59 11.3 

Curve Number 53 60 13.2 

Green and 

Ampt 
53 35 34.0 

 

Figure 5 also represents a rather humbling picture of current reliability of satellite data products 
from the TMPA algorithm of 3B41RT. In its original form, these products were developed by data 
producers to facilitate large-scale climatologic and meteorological inquiries (such as understanding the 
global energy and water budget). Hence, we should not generalize the negative bias of 3B41 product.  
This TMPA product has also been observed to have insignificant (positive) bias in many 
regimes/seasons (see Ebert et al., 2007) where the flood prediction accuracy would potentially be more 
accurate (different) than what is reported herein. The more critical question that we should ask 
ourselves is how can we generalize the procedure for error adjustment of satellite data as a function of 
regime and season? Another follow-up question is what should be the nature of this error adjustment 
(is simple bias adjustment adequate)? As reported by Hossain and Anagnostou (2006) multi-
dimensional error adjustment can significantly improve cumulative rainfall observation of satellite. 
However, the efficacy of such a technique is yet to be tested on terrestrial hydrologic modeling. 
Nevertheless, given the work already accomplished on global classification of precipitation systems 
and finding similarities in regions with benchmark (validation) rainfall data (Petersen and Rutledge, 
2002), we are hopeful that satellite rainfall data adjustment will eventually evolve to something useful 
for ungauged regions.   



Sensors 2007, 7                            
 

 

3425

  

              
 
Figure 7. Computed vs. Observed Hydrographs using actual satellite rainfall data (adjusted) at the 
native scale of 0.25o. 
 
5. Conclusion 
 

Our findings indicate that the current level of uncertainty in satellite rainfall warrants caution 
before institutionalizing its use in operational flood forecasting systems at the basin scale. Also, we 
need to find ways to generalize error adjustment schemes for satellite data as a function of regime, 
season and location. Although it is not clear at this stage how complex this adjustment should be, it is 
obvious that the adjustment needs to go beyond simple bias adjustment to minimize the model’s 
propensity to produce false peaks in flow or to miss true peaks. A more comprehensive investigation 
involving a greater number of watersheds as a function of region and season now needs to be carried 
out in order to generalize rules for hydrologic application of satellite rainfall in anticipation of GPM.  
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