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Abstract: Image fusion is a useful tool in integrating a high-resolution panchromatic 
image (HRPI) with a low-resolution multispectral image (LRMI) to produce a high-
resolution multispectral image (HRMI). To date, many image fusion techniques have been 
developed to try to improve the spatial resolution of the LRMI to that of the HRPI with its 
spectral property reliably preserved. However, many studies have indicated that there 
exists a trade- off between the spatial resolution improvement and the spectral property 
preservation of the LRMI, and it is difficult for the existing methods to do the best in both 
aspects. Based on one minimization problem, this paper mathematically analyzes the 
tradeoff in fusing remote sensing images. In experiment, four fusion methods are evaluated 
through expanded spectral angle mapper (ESAM). Results clearly prove that all the tested 
methods have this property.  

Keywords: Image Fusion, Tradeoff Analysis, Spectral Preservation, Spatial Improvement, 
Expanded Spectral Angle Mapper (ESAM) 
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1. Introduction  

In optical remote sensing, with a combination of a set of observational constraints imposed by the 
acquisition system, detector specifications and satellite motion, among others, some satellite sensors 
supply low-resolution multispectral images (LRMIs) needed to identify features spectrally but not  
spatially, while other satellite sensors supply high-resolution panchromatic images (HRPIs) 
characterizing features spatially but not spectrally [1,2]. In addition, an increasing number of 
applications, such as urban mapping, feature detection and change identification, often demand the 
high resolution multispectral images (HRMIs). In general, there exist two types of approaches for 
acquiring such images. One is to increase the sensitivity of the photo detector of the satellite sensors, 
but the photons are expensive to collect, making long exposure multispectral observations unusual. 
Another comes from the field of image fusion [3]. 

To date, various remote sensing image fusion methods have been proposed in the literature [1,4,5]. 
These methods inject high frequency features from a HRPI into every LRMI trying to improve the 
spatial resolution of the LRMI to that of the HRPI with its spectral property reliably preserved. The 
objective is to obtain the HRMI that would be observed by a sensor with the same spectral response 
(i.e., spectral sensitivity and photon efficiency) as the multispectral sensors and the same spatial 
response (i.e., spatial detail and texture structure) as the panchromatic sensor [2]. However, it is 
difficult for the existing methods to do the best in both aspects. Some methods, such as  
intensity-hue-saturation (IHS) [6], provide superior HRMIs visually but inferior spectrally, while such 
HRMIs can not satisfy the requirement of most remote sensing applications based on spectral 
signatures, such as vegetation analysis [1,7]. On the contrary, some methods, such as orthogonal 
wavelet transform (OWT) [8], and à trous algorithm based wavelet transform (AWT) [9], produce 
better HRMIs spectrally but worse spatially. It was found that remote sensing image fusion is a 
tradeoff between the spectral information of the LRMI sensor and the spatial information of the HRPI 
sensor [1,2,5,8].  

However, no explicit theoretical analysis of the tradeoff property has been presented in the existing 
literature. In Section 2, we present a dissertation which does demonstrate the tradeoff in fusing remote 
sensing images. Furthermore, the analysis framework makes it convenient to compare and evaluate the 
current image fusion methods and it is also open to include new fusion methods in the future. In this 
Section, spectral angle mapper (SAM) is improved to expanded spectral angle mapper (ESAM) for 
evaluating the performance of fusion methods. 

To validate the theoretical analysis, the tradeoff property is tested by using ESAM to evaluate the 
spectral and spatial quality of the HRMIs produced from fusing QuickBird images using four fusion 
methods in Section 3. Finally, conclusions are given in Section 4. 

2. The Tradeoff Analysis Based on RMSE 

Because the analytical model of image fusion does not exist, the difference between two images is 
employed to assess the tradeoff property. First, we define the root mean squared error (RMSE) 
between images U and V as: 
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where {u1, u2,···, un} and {v1, v2,···, vn} denote the spectral vectors of U and V, respectively. The 

greater the RMSEUV, the higher the difference between U and V will be. Before the analysis, the LRMI 
is first resampled to the same spatial resolution of the HRPI and HRMI. Let T, P, and F denote the 
LRMI, HRPI, and HRMI. Then based on RMSE, let us consider the following minimization problem: 

 
}min{ 22

FPTF RMSERMSE +                                                                (2) 

 
The terms RMSETF and RMSEFP are used to estimate the spectral and spatial quality of the HRMI, 

respectively. The subsequent result is:  
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where ti, pi, fi represent the pixel values of the LRMI, the HRPI and the HRMI. The solution for (2) 

is that the HRMI is equal to the (LRMI+HRPI)/2. 
From formula (3), we can see that for the HRMI obtained from any image fusion method, the value 

of 22
FPTF RMSERMSE +  is equal to or greater than 2/TPRMSE . It is impossible for fusion methods to sharp 

the spatial resolution of the LRMI to that of the HRPI with its spectral property completely preserved. 
Whenever the difference between the HRMI and HRPI is lower, the amount of the detail information 
of the HRMI is larger while its color distortion will be larger accordingly. On the contrary, whenever 
the difference between the HRMI and LRMI is lower, the color distortion of the HRMI is less whereas 
the amount of the detail information of the HRMI is less, either. As a result, a tradeoff occurs between 
the detail and color information of the HRMI. Therefore, we can draw a conclusion that any given 
fusion method cannot produce such image with the same amount of the detail information as the HRPI 
and the same color information as the LRMI. 

In order to quantitatively assess the performance of image fusion methods, many objective image 
quality indexes have been proposed in the literatures [5] for objective evaluation of the HRMIs. 
Among these quality indexes, correlation coefficient (CC) and SAM [9] are widely used for measuring 
spectral similarity between the HRMI and LRMI.  
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where μu and μv are the mean values of U and V. 
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However, CC is insensitive to a constant gain and bias between the two images and does not allow a 

subtle discrimination of possible fusion artifacts [10]. Similar limitations happen to SAM. ESAM is 
introduced to measure the similarity between two images: 
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Compared with the general used CC and SAM, ESAM is more sensitive to the difference between 

two images because the value of the ESAM is equal to 0 only for two identical images whereas the 
values of the SAM and CC can be equal to 0 for two similar images. As to the ESAM and SAM, for 
example, U={u, u,···, u}, V={v, v,···, v}, and u≠v, the value of the SAM is 1, but the value of the 
ESAM is less than 1; As to the CC and ESAM, for example, U={u+1, u-1,···, u+ (-1)n},  
V={v+1, v-1,···, v+(-1)n}, and u≠v, the value of the CC is 1, but the value of the ESAM is less than 1. 
Therefore, the ESAM is more informative than the SAM and CC in terms of measuring how close the 
pixel values of the two images are.  

The ESAM measures only information from isolated pixels, and does not consider the neighboring 
pixel relationships, which are more important for structures and textures. Therefore, it would be 
convenient to take into account the local pixel relationship during comparing two images. As image 
quality is often space dependent [11], the ESAM is computed using a sliding window approach. In this 
work, sliding windows with a size of 16×16, 32×32, 64×64, and 128×128 pixels are used. Considering 
that the ESAM can only be applied to monochromatic images, the average ESAM (AE) is used as an 
overall quality index for measuring the difference between the HRMI and the LRMI, HRPI. The 
higher the AE, the less the similarity of two images will be. 

3. Experiments 

The raw images are downloaded from http://studio.gge. unb.ca/UNB/images. These remote sensing 
images are taken by QuickBird satellite sensor which collects one panchromatic band (450-900 nm) of 
the 0.7 m resolution and blue (450-520 nm), green (520-600 nm), red (630-690 nm), near infrared 
(760-900 nm) bands of the 2.8 m resolution. The coverage of the images was over the Pyramid area of 
Egypt in 2002. Before the image fusion, the raw LRMIs were resampled to the same spatial resolution 
of the HRPI in order to perform image registration. The test images of size 1024 by 1024 at the 
resolution of 0.7 m are cut from the raw images. In order to save space, only the natural color LRMI 
(red-green-blue composite) is shown in Figure 1(a). The near infrared band and the corresponding 
HRMIs obtained using different methods are not shown but are processed and numerically evaluated. 
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The HRPI is shown in Figure 1(b). Obviously, more details can be found from the HRPI than the 
LRMIs because of its finer spatial resolution.  

The tradeoff property is tested on these images obtained applying the following standard fusion 
methods: 

1) Intensity Hue Saturation transform (IHS) [1].  
2) OWD [8,12].  
3) Additive Wavelet-based method (AW) [13,14]. 
4) Multiresolution Analysis-Based Intensity Modulation (MAIM) [1]. 
The spatial resolution ratio between the QuickBird HRPI and the LRMIs is 1: 4. Therefore, in the 

OWT method, Daubechies ‘db4’ filter, a decomposition level of three, coefficient coefficiency based 
activity, and choose max scheme are used. In the AW and MAIM methods, à trous filter 2-1/2(1/16, 1/4, 
3/8, 1/4, 1/16), together with a decomposition level of two, is employed to abstract the high frequency 
information of the HRPI. Fused HRMIs using different algorithms are shown in Figures 1(c)-(f). 

In this experiment, the quality of the fused HRMIs is estimated both qualitatively and 
quantitatively. Visual inspection is used for qualitative estimation. Both ESAM and RMSE are used 
for quantitative evaluation. 

 

   
                   (a)                                                   (b)                                                    (c) 

   
                   (d)                                                   (e)                                                    (f) 

Figure 1. Fusion results of different methods. (a) the LRMIs as a colour composite; (b) 
The HRPI; (c) The HRMIs produced by the IHS method; (d) The HRMIs produced by the 
OWD method; (e) The HRMIs produced by the AW method; (f) The HRMIs produced by 
the MAIM method. 
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3.1. Visual inspection 

Visual inspection provides the analyst an overall impression of the HRMI with respect to the LRMI. 
Visually, some small spatial structure details, such as edges, lines, which are not discernible in the  
LR- MI (Figure 1(a)), can be identified individually in each of the HRMIs (Figures 1(c)-(f)). This 
means the spatial quality of the LRMI has been improved via the fusion process.  

It can be seen from Figures 1(c)-(f) that the HRMI produced by the IHS method shows the most 
obvious color distortion. The HRMI of the OWD method shows the second obvious color distortion. 
The MAIM and AW methods have slight color distortion. Conversely, from Figure 1(c) to Figure 1(f), 
the spatial resolution decreases. For the IHS, this is due to the fact the HRPI is directly substituted to 
the low resolution intensity component. The critically-sampled multiresolution analysis in the OWT 
method affects the spectral preservation and the spatial resolution improvement of the LRMI. The AW 
and MAIM methods produce slight color distortion because the additive methods have not considered 
the differences in high-frequency information between the HRPI and the LRMI. 

Therefore, we can draw a conclusion that the closer the spatial resolutions of the HRMI and HRPI, 
the larger the spectral distortion of the HRMI. When the higher the similarity of the HRMI and LRMI, 
the less the spectral distortion of the HRMI but the lower its spatial resolution. This result means that 
the tradeoff property exists in fact in terms of visual inspection. It is impossible for a fusion method to 
improve the spatial resolution of the LRMI to that of the HRPI without altering its spectral property. 

3.2. Quantitative analysis 

In addition to the visual inspection, the tradeoff property has been analyzed quantitatively using 
ESAM and RMSE. Tables 1 and 2 show the results.  

 
Table 1. ESAM values between the LRMIs, HRPI and HRMIs 

 
 IHS OWD AW MAIM 
AETF16×16 22.71° 13.34° 9.59° 13.28° 
AETF32×32 21.74° 13.28° 8.79° 12.33° 
AETF64×64 20.83° 13.29° 8.19° 11.57° 
AETF128×128 20.09° 13.41° 7.85° 10.97° 
AEFP16×16 4.99° 20.14° 17.84° 16.23° 
AEFP32×32 4.57° 19.00° 16.87° 15.63° 
AEFP64×64 4.21° 17.93° 15.92° 15.00° 
AEFP128×128 3.87° 16.95° 15.01° 14.29° 

 
From Table 1, it can be found that the IHS method has the highest AETF, followed by the OWD and 

MAIM methods, the AW method has the lowest AETF. On the other hand, the IHS method has the 
lowest AEFP, followed by the MAIM and AW methods, the OWD method has the highest AEFP. The 
higher the AE, the lower the similarity of two images is. Therefore, in terms of transferring details, the 
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performances of the IHS, MAIM, AW, and OWD methods decrease; in terms of preserving spectral 
property, the order is the AW, MAIM, OWD, and IHS methods. 
 

Table 2. RMSE values among the LRMIs, HRPI and HRMIs 
 
 RMSETF RMSEFP RMSETFP 2/RMSETP  

IHS 

B1 
B2 
B3 
B4 

49.82 
49.44 
48.56 
34.31 

13.52 
12.24 
17.38 
33.83 

63.34 
61.69 
65.94 
68.13 

34.77 
30.47 
28.28 
28.61 

OWD 

B1 
B2 
B3 
B4 

32.27 
31.65 
31.74 
21.62 

47.09 
41.32 
38.33 
36.78 

79.36 
72.97 
70.07 
58.40 

34.77 
30.47 
28.28 
28.61 

AW 

B1 
B2 
B3 
B4 

17.13 
17.43 
17.17 
14.86 

44.94 
37.98 
36.69 
31.24 

62.08 
55.40 
53.86 
46.10 

34.77 
30.47 
28.28 
28.61 

MAIM

B1 
B2 
B3 
B4 

19.93 
19.25 
18.51 
22.99 

45.87 
39.96 
37.52 
35.69 

65.79 
59.21 
56.03 
58.69 

34.77 
30.47 
28.28 
28.61 

 
Similar results can be found from Table 2. In Table 2, B1, B2, B3, and B4 denote the red, green, 

blue, and near infrared bands, respectively; the RMSETFP is the sum of the RMSETF and the RMSEFP; 
the 2/TPRMSE  is the minimum RMSE value for any fused HRMI. From the fifth and sixth columns, it 
can be found that all the RMSETFP values of the HRMIs exceed the corresponding 2/TPRMSE  values. 
Based on the RMSETF, the grade of the extent that the HRMI is close to the LRMI is the AW, MAIM, 
OWD, and IHS methods. Based on the RMSEFP, the order of the extent that the HRMI is close to the 
HRPI is the IHS, AW, MAIM, and OWD methods. This indicates that the tradeoff property exists in 
terms of the RMSE index.  

Based on Tables 1 and 2, the comprehensive analyses of the four fusion methods are shown in Table 
3. From Table 3, we can conclude that the AW method is the best among the four when considering 
both spatial enhancement and spectral preservation. Conversely, the OWD is the method to avoid 
because both the spatial and spectral qualities of the HRMIs obtained are worse. It will be very 
interesting to know this kind of information for the image fusion community or uses. 
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Table 3. The results obtained based on Tables 1 and 2 
 

 IHS OWD AW MAIM 
Spatial Improvement best worst better worse 
Spectral Preservation worst worse best better 

 
Based on Tables 1, 2 and 3, in addition to the conclusion that the tradeoff property exists during 

fusing remote sensing images, another is that a given fusion method can do better than another one in 
both aspects, but it could not do the best in both. For example, the AW method does better than the  
OWD method spectrally and spatially, however, it does worse than the IHS method spatially. 
Therefore, it could not obtain a HRMI that the multispectral sensor would capture at the spatial 
resolution of the panchromatic one through fusion methods. 

4. Conclusions 

Based on the minimization problem (formula (2)), this paper mathematically demonstrates the 
tradeoff property during fusing the remote sensing images. The analysis shows that the Euclidean 
distance sum between any fused HRMI and the LRMI, HRPI will exceed the value given by formula 
(3). Using the ESAM and RMSE indices, four existing image fusion methods, IHS, OWD, AW, and 
MAIM, are experimented on QuickBird images to test this conclusion.  

The experimental results show that some fusion methods can produce better the HRMI spectrally 
and spatially than other fusion methods. However, fusion methods often attend to one thing and lose 
another in terms of compromising the spatial and spectral properties of the HRMI. Therefore, they can 
be strong spectrally or spatially, but it is impossible for them to produce one HRMI with 
simultaneously high spatial and spectral resolution through fusion procedure. 
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