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Abstract: On the basis of the radiative transfer theory, this paper addressed the estimate of 
Land Surface Temperature (LST) from the Chinese first operational geostationary 
meteorological satellite-FengYun-2C (FY-2C) data in two thermal infrared channels (IR1, 
10.3-11.3 m mμ  and IR2, 11.5-12.5 μ ), using the Generalized Split-Window (GSW) 
algorithm proposed by Wan and Dozier (1996). The coefficients in the GSW algorithm 
corresponding to a series of overlapping ranging of the mean emissivity, the atmospheric 
Water Vapor Content (WVC), and the LST were derived using a statistical regression 
method from the numerical values simulated with an accurate atmospheric radiative 
transfer model MODTRAN 4 over a wide range of atmospheric and surface conditions. 
The simulation analysis showed that the LST could be estimated by the GSW algorithm 
with the Root Mean Square Error (RMSE) less than 1 K for the sub-ranges with the 
Viewing Zenith Angle (VZA) less than 30° or for the sub-rangs with VZA less than 60° 
and the atmospheric WVC less than 3.5 g/cm2 provided that the Land Surface Emissivities 
(LSEs) are known. In order to determine the range for the optimum coefficients of the 
GSW algorithm, the LSEs could be derived from the data in MODIS channels 31 and 32 
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provided by MODIS/Terra LST product MOD11B1, or be estimated either according to 
the land surface classification or using the method proposed by Jiang et al. (2006); and the 
WVC could be obtained from MODIS total precipitable water product MOD05, or be 
retrieved using Li et al.’ method (2003). The sensitivity and error analyses in term of the 
uncertainty of the LSE and WVC as well as the instrumental noise were performed. In 
addition, in order to compare the different formulations of the split-window algorithms, 
several recently proposed split-window algorithms were used to estimate the LST with the 
same simulated FY-2C data. The result of the intercomparsion showed that most of the 
algorithms give comparable results. 

Keywords: Land surface temperature, FY-2C data, Split-window algorithm. 
 

1. Introduction  

Land Surface Temperature (LST) is not only a good indicator of both the energy equilibrium of the 
Earth’s surface and greenhouse effects, but also one of the key variables controlling fundamental 
biospheric and geospheric interactions between the Earth’s surface and its atmosphere. It can play 
either a direct role such as when estimating longwave fluxes, or indirectly as when estimating latent 
and sensible heat fluxes [1, 2]. Moreover, many other applications, such as evaportranspiration 
modeling [3, 4], estimating soil moisture [5], and climatic, hydrological, ecological and 
biogeochemical studying [6, 7] and so on, rely on the knowledge of LST. Consequently, it is crucial to 
have access to reliable estimates of surface temperature over large spatial and temporal scales. It is 
practically impossible to obtain such information from ground based measurements, whereas the 
satellite observations in the Thermal Infra-Red (TIR) appears to be very attractive since it can give 
access to global and temporal estimates of LST. 

However, the retrieval of the LST from satellite data is a very difficult task because, besides the 
radiometric calibration and the cloud screening procedures, three types of corrections have to be made. 
They are emissivity corrections, atmospheric corrections and topography corrections [8]. Up to now, 
many algorithms for estimating the LST from satellite observations have been proposed. They may be 
roughly grouped into three categories: the single channel algorithm [9, 10], the split window algorithm 
[11, 12] and the triple window algorithm [13].  

The single channel method is a simple inversion of the radiative transfer equation providing that the 
Land Surface Emissivities (LSEs) and the atmospheric profiles are known in advance. The triple 
window method combines two thermal window channels and one middle infrared channel to estimate 
the LST for nighttime satellite observations. The split window method is used to retrieve the LST 
based on the differential water vapor absorption in two adjacent infrared channels. This method was 
firstly proposed by McMillin (1975) [11] to estimate sea surface temperature from satellite 
measurements. Since then, a variety of split window algorithms have been developed and modified to 
retrieve LST, and, currently, most of them have been successfully applied to the LST retrieval from the 
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data observed by the AVHRR, MODIS, and Spinning Enhanced Visible and Infrared Imager (SEVIRI) 
instruments [8, 14-22].  

The FengYun-2C (FY-2C), a geostationary meteorological satellite developed by Shanghai 
Academy of Space Flight Technology (SAST, also known as 8th Space Academy) and China Academy 
of Space Technology (CAST, also know as 5th Space Academy) and operated by China Meteorological 
Administration (CMA), was launched on 19 October 2004 and is becoming fully operational in 2006. 
The FY-2C is the Chinese first operational meteorological satellite, which is also the fourth satellite of 
the FY series and is located above the Equator at longitude 105° E, and some 35,800 km away. The 
objective of the mission is to monitor the temperature and the clouds above China and neighboring 
areas and also to provide meteorological information for the Asia-Pacific region. The upgraded 
Stretched-Visible and Infrared Spin-Scan Radiometer (S-VISSR) is one of the major payloads onboard 
the FY-2C. This optical imaging radiometer consists of one visible channel and four infrared channels. 
The characteristics of the instrument are shown in Table 1. It can acquire one full disc image covering 
the Earth surface from 60° N to 60° S in latitude and from 45° E to 165° E in longitude per hour and 
30 min per acquisition for flood season. 

The work presented in this paper aims to retrieve LST from the FY-2C satellite data in two thermal 
infrared channels (IR1, 10.3-11.3 mμ  and IR2, 11.5-12.5 μ ), using the Generalized Split-Window 
(GSW) algorithm proposed by Wan and Dozier (1996) [21]. Section 2 describes the theory associated 
with the LST retrieval using the GSW algorithm and presents the algorithm development for FY-2C 
data. Section 3 gives the results and the numerical values of the coefficients in the GSW algorithm. 
The sensitivity and error analyses in term of the uncertainty of the LSE and Water Vapor Content 
(WVC) in the atmosphere as well as the instrumental noise are also presented in this section. In 
addition, in order to compare the different formulations of the split-window algorithms, this section 
gives the intercomparsion of the LSTs estimated by several split-window algorithms. Section 4 gives 
an example of retrieving LST from FY-2C satellite data. The Conclusion is drawn in Section 5. 

Table 1. Specifications of S-VISSR channels: spectral range and spatial resolutions. 

Channel no. Channel name Spectral range (μm) Spatial resolution (km)
1 IR1 10.3-11.3 5 
2 IR2 11.5-12.5 5 
3 IR3 6.3-7.6 5 
4 IR4 3.5-4.0 5 
5 VIS 0.55-0.90 1.25 

2. Theory 

2.1. Radiative transfer for split-window algorithm 

On the basis of the radiative transfer theory, for a cloud-free atmosphere under thermodynamic 
equilibrium, the channel radiance ( )i iB T  measured at the Top Of the Atmosphere (TOA) in a Thermal 

Infra-Red (TIR) channel of the sensor onboard the satellite, is given with a good approximation as [23] 
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_ _( ) ( ) (1 )i i i i s i atm i i atm i iB T B T R R

              

                        ε τ ε τ↑ ↓= + + −                                                                  (1) 

where  is the channel brightness temperature observed in channel i  at the TOA, iT iB  is the Planck 
function, ( )i sB T  is the radiance measured if the surface is a black body with surface temperature sT , 

iε  is the channel emissivity in channel i , iτ  is the total atmospheric transmittance along the target to 

sensor path in channel i ,  is the thermal path atmospheric upwelling radiance in channel i , and 

 is the channel downwelling atmospheric radiance from the whole hemisphere in channel i . The 

first term on the right hand side of Eq. (1) represents the surface emission that is attenuated by the 
atmosphere. The second term represents the upwelling atmosphere emission toward the sensor and the 
third term represents the downwelling atmosphere emission that is reflected by the surface and reaches 
the sensor. 

_atm iR↑

_atm iR↓

Inverting Eq. (1), one can get 
 

_1 ( ) (1 )
[ i i atm i i atm i i

s

B T R R
T B _ ]

i i

ε τ↑ ↓
− − − −

=
ε τ

                                                                 (2) 

 
in which 1B−  is the inverse of the Planck function. Once the channel emissivity iε  is known, there are 

two ways to estimate the LST from satellite data. One is to use Eq. (2) with atmospheric radiative 
transfer model such as MODTRAN 4 [24] or 4A/OP [25], if the atmospheric profile is available from 
either conventional radiosoundings or satellite soundings. The other is to employ the split-window 
algorithm developed on the basis of the differential water vapor absorption in two adjacent infrared 
channels (McMilin, 1975) [11] if the atmospheric profile is not available.  

As S-VISSR sensor onboard FY-2C has two adjacent thermal infrared channels (IR1 and IR2), the 
GSW algorithm proposed by Wan and Dozier [21] is adopted to estimate the LST from FY-2C satellite 
data. According to GSW algorithm, the LST can be expressed as 

 

         0 1 2 3 4 5 62

1 1( ) (i j i
s

T T T T
T a a a a a a aε ε ε ε

2 )
2 2

j

ε ε ε ε
+ −− Δ − Δ

= + + + + + +                                 (3) 

with ( )i j / 2ε ε ε= +  and i jε ε εΔ = − . 
where  and  are the TOA brightness temperatures measured in channels i  (11.0 iT jT mμ ) and j  (12.0 

mμ ), respectively; iε  and jε  are, respectively, the land surface emissivities in channels i  and j ; ε  is 

the averaged emissivity; εΔ  is the emissivity difference between the two adjacent channels; and 
 are unknown coefficients which will be derived in the following from simulated FY-2C data.. 0a − 6a

2.2. Algorithm development for FY-2C  

So far, as there is no available database of in situ LST measurements in coincidence with the FY-2C 
overpasses, the only possible way to obtain the coefficients in Eq. (3) is to use numerical simulation 
for establishing the database used in the statistical regression. To this end, the atmospheric radiative 



Sensors 2008, 8                            
 

 
 

937

0T

0T
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transfer model MODTRAN 4 was used to simulate the TOA radiance with the appropriate thermal 
infrared channel response function of the S-VISSR onboard FY-2C. 

Keeping in mind that a practical LST algorithm should accommodate atmospheric variations wide 
enough to cover all possible real situations, two radiosonde observation databases were taken into 
account in our simulation. One is the latest version of the Thermodynamic Initial Guess Retrieval 
(TIGR) database TIGR2002, which was constructed by the Laboratoire de Meteorologie Dynamique 
(LMD) and represents a worldwide set of atmospheric situations (2311 radisoundings) from polar to 
tropical atmosphere with varying water vapor amounts ranging from 0.1 to 8 g/cm2 
(http://ara.lmd.polytechnique.fr/htdocs-public/products/TIGR/TIGR.html). The other is the six 
standard atmospheric profiles (tropical, mid-latitude summer, mid-latitude winter, sub-arctic summer, 
sub-arctic winter, and US76) stored in the MODTRAN 4. For LST retrieval, we only consider 
atmospheric variation in clear-sky conditions. Consequently, the profiles with relative humidity at one 
of levels greater than 90% in TIGR2002 were discarded as this seldom happens under clear-sky 
conditions. Therefore, 1413 representative atmospheric situations were extracted from TIGR2002. 
Figure 1 shows a plot of the atmospheric Water Vapor Content (WVC) as function of the atmospheric 
temperature  in the first boundary layer of these selected atmospheres. As shown in this figure, the 

 varies from 231 K to 315 K and the atmospheric WVC changes from 0.06 g/cm2 to 6.44 g/cm2. 
0T
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Figure 1. Plot of the atmospheric water vapor content as function of atmospheric 
temperature in the first boundary layer of the selected 1413 atmospheric profiles in 

TIGR2002. 

 
Taking into account the angular dependence of the TOA radiance, six different Viewing Zenith 

Angles (VZAs) (0°, 33.56°, 44.42°, 51.32°, 56.25°, 60°) varying from 0° to 60° were used in 
MODTRAN simulations. With the VZAs and the radiosoundings mentioned above as MODTRAN 
input, we can obtain the channel atmospheric parameters (τ , , ) with spectral integration 

of the channel response function for each VZA and each atmospheric profile. 
_atm iR↑

_atm iR↓

0

In addition, in order to make the simulation more representatives, the reasonable variations of LST 
are varied in a wide range according to the atmospheric temperature T  in the first boundary layer of 
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0 5T

 
 
the atmospheric profiles used. That is, LST varies from −  K to 0 15T +  K in steps of 5 K for 

 K, and from  K to  K in steps of 5 K for 0 290T ≥ 0 5T − 0 5T + 0T 290<  K. Moreover, considering the 

most land covers, the averaged emissivity ε  varying from 0.90 to 1.0 with a step of 0.02 and the 
emissivity difference εΔ  from -0.025 to 0.015 with a step of 0.005, were used in our simulation [21].  

Then for a given LST, in combination with the atmospheric parameters ( iτ , , ), LST 
(

_atm iR↑
_atm iR↓

sT ) and LSE ( iε ), the channel brightness temperature  at the TOA can be determined according to 
Eq. (1) with the inverse of Planck’s law. At this stage, the 

iT

sT

0 6a a
 is directly related to the TOA measured 

brightness temperatures  and . The coefficients iT jT −  in Eq. (3) can be obtained through 

statistical regression method. In total, for the TIGR2002 database and the six standard MODTRAN 4 
atmospheres, 261738 different situations were obtained for each VZA. 

3. Results and Analysis 

3.1. GSW algorithm coefficients 

0aIn order to determine the coefficients 6a− in Eq. (3), Wan and Dozier (1996) [21] divided the 
averaged emissivity, atmospheric WVC and atmospheric surface temperature ( ) into several 

tractable sub-ranges for improving the fitting accuracy. Taking into account the fact that the S-VISSR 
sensor onboard FY-2C has no atmospheric sounding channels, the atmospheric surface temperature is 
not simultaneously available, and thus it will be substituted in this work for the determination of the 
coefficients in Eq. (3) by the approximate Land Surface Temperature (LST).  

0T

For different values of the numerical experiments, in order to improve the accuracy of the retrieval 
LST, for each VZA as done in [21], the averaged emissivity was divided into two groups: one varies 
from 0.90 to 0.96 and the other ranges from 0.94 to 1.0. The WVC was divided into six sub-ranges 
with an overlap of 0.5 g/cm2: [0, 1.5], [1.0, 2.5], [2.0, 3.5], [3.0, 4.5], [4.0, 5.5], and [5.0, 6.5] g/cm2. 
The LST, sT , was divided into five sub-ranges with an overlap of 5 K: 280sT ≤  K,  K, 

 K,  K,  K. Then, the coefficients a in Eq. (3) can be 

obtained through statistical regressions method for each VZA and each sub-range. 

275 295sT≤ ≤

6290 sT≤ ≤ 310 305 325sT≤ ≤ 320sT ≥ 0 − a

As an example, Figure 2 displays the coefficients of the GSW algorithm as functions of the secant 
VZA for the sub-range with WVC from 1.0 g/cm2 to 2.5 g/cm2, and LST varying from 290 K to 310 K 
for the two emissivity groups. As shown in this figure, the coefficients 0a a6−  for other VZAs can be 

linearly interpolated in function of the secant VZA. Similar results are obtained for the other sub-
ranges.  
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[0.90,0.96]

 
 
 
 
 
 
 
 
 
 
 
 
 
                                (a)                                                                                    (b) 

Figure 2. Coefficients of the generalized split-window algorithm for the sub-range with 
LST varying from 290 K to 310 K, and WVC from 1.0 g/cm2 to 2.5 g/cm2. (a) for 
ε ∈ [0.94,1.0] and (b) for ε ∈  

3.2. Estimation of LST 

Figure 3 shows, respectively, the histogram of the difference between the actual sT  and the sT
.5]

 
estimated using GSW algorithm with the coefficients corresponding to the sub-range WV , 
and  for two different emissivity groups and VZA=0°. The Root Mean Square 
Errors (RMSEs) between the actual and estimated 

[1.0,2∈C
[290 ,310 ]sT K∈ K

sT  is 0.37 K for the emissivity group [0.94,1.0]ε ∈ , 
and 0.48 K for the other emissivity group [0 0.96].90,ε ∈ . Similar results were obtained for the other 
VZAs. 

 
 
 
 
 
 
 
 
 
 
                                (a)                                                                                       (b) 

 
Figure 3. Histogram of the difference between the actual and estimated sT  for the sub-

range with LST varying from 290 K to 310 K, and WVC from 1.0 g/cm2 to 2.5 g/cm2. (a) 
for [0.90,0.96]ε ∈  and (b) for [0.94,1.0]ε ∈ . 
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Figure 4. RMSEs between the actual and estimated sT  as functions of the secant VZA for 
different sub-ranges in two different emissivity groups. 
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In addition, Figure 4 gives the RMSEs between the actual and estimated sT

[0.94,1.0]

 as functions of the 

secant VZA for the two emissivity groups with different sub-ranges. Taking into account that, in 
reality, the lower LST is usually accompanied with much less WVC, as shown in figure 1, Therefore, 
for the LST less than 280 K, the maximum WVC is 2.5 g/cm2, while for the LST between 275 K and 
295 K, the maximum WVC is 5.5 g/cm2. 

From figure 4, one can see that the RMSEs increase with the increase of the VZA. The RMSEs are 
less than 1 K for all sub-ranges with the VZA less than 30°, or for all sub-ranges with the VZA less 
than 60° and the WVC less than 3.5 g/cm2. The RMSEs increase dramatically with the increase of the 
VZA when the WVC larger than 3.0 g/cm2, with the maximum RMSE of 2.7 K for the sub-range 
ε ∈ [5.0,6.5]C ∈ [305 ,325 ]s K∈

6

, WV , and T K , for VZA=60°. 

It should be pointed out here that, in practice, the LST is estimated in two steps for actual satellite 
data. Firstly, approximate LSTs are estimated using Eq. (3) with the coefficients derived for the whole 
range of LST providing that the sub-ranges of emissivity and WVC are known, and then more accurate 
LSTs are estimated once again using Eq. (3), but with the coefficients 0a a−  corresponding to the 

sub-range of LST which is determined according to the approximate LST obtained in the first step. 
Figure 4 also shows the RMSEs between the actual sT  and the sT  estimated with the coefficients 

obtained for the whole range of LST. 
Keeping in mind that the GSW algorithm also requires LSE and WVC as model input, the 

following section will present the determination of these two parameters.  

3.3. Determination of the LSEs 

The LSEs in channels IR1 and IR2 of S-VISSR can be estimated from the LSEs in channels 31  
(11 μm) and 32 (12 μm) of MODIS provided by the MODIS LST product MOD11B1 at 5 km 
resolution. To determine the emissivity relationship between S-VISSR channels and MODIS 31 and 32 
channels, two spectral databases, one from the University of California Santa Barbara (UCSB) 
(http://www.icess.ucsb.edu/modis/EMIS/html/em.html) and the other from the Johns Hopkins 
University (JHU) (http://speclib.jpl.nasa.gov/), are used. The emissivities in the two split-window 
channels of MODIS ( 31ε  and 32ε ) and S-VISSR ( 1IRε  and 2IRε ) were calculated by the integrals of the 

spectral emissivity with the channel response functions over the spectral range of the channels. The 
channel response functions of the two split-window channels for MODIS and FY-2C are displayed 
respectively in figure 5.  

A statistical relationship between MODIS channels and S-VISSR channels was established by a 
linear regression analysis. As a result, the emissivities in S-VISSR channels IR1 and IR2 are, 
respectively, related to the emissivities in MODIS channels 31 and 32 by Eqs. (4) and (5).  

 

                                 1 0.0611 1.0614IR 31ε ε= − +                                                                                   (4) 

                                 2 0.0210 1.0199IR 32ε ε= − +                                                                                  (5) 
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Figure 5. S-VISSR and MODIS split-window spectral response functions. 

Figure 6 shows the emissivities and linear regression results. Only the emissivities of soil, 
vegetation, water, and snow/ice in JHU and UCSB databases were included in this work. Some few 
deviated points in this figure are due to the fact that the spectral ranges of S-VISSR channels IR1 and 
IR2 are broader than those of MODIS channels 31 and 32 as shown in figure 5. However, as shown in 
figure 6, the results of the linear regression are good with the RMSEs within 0.002, which indicates 
that the emissivities in S-VISSR channels IR1 and IR2 can be directly derived from those in MODIS 
channels 31 and 32, respectively. 
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Figure 6. Linear fitting relationship of the emissivities between the S-VISSR channels IR1 
and IR2 and the MODIS channels 31 and 32, respectively. 

 
Alternatively, the emissivities of the S-VISSR IR1 and IR2 channels can be estimated either with 

the land surface classification as did by Sun and Pinker (2003) [13] or using the method developed by 
Jiang et al. (2006) [26] which combined mid-infrared and thermal infrared data of SEVIRI to retrieve 
LSE. 
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3.4. Determination of the atmospheric WVC 

The MODIS total precipitable water product MOD05 provides the atmospheric column water vapor 
amounts, which can be used as the model input when the scanning times of the sensors MODIS and  
S-VISSR are close to each other. However, MODIS provides the instantaneous WVC only four times 
per day, which can not meet the need for the temporal resolutions (an hour) of S-VISSR onboard FY-
2C. Since the atmospheric WVC changes with time, the method developed by Li et al. (2003) [27] can 
be used to determine the WVC from S-VISSR IR1 and IR2 data. 

According to Li et al. (2003) [27], the atmospheric WVC can be derived by the use of the 
transmittance ratio of split-window channels,  

 

                                          1 2
j

i

WVC c c
τ
τ

= + ×                                                                                     (6) 

with                                      j i
ji

i j

R
τ ε
τ ε

=                                                                                                   (7) 

 and                            
, ,

1

2
,

1

( )(

( )

N

i k i j k j
k

ji N

i k i
k

T T T T
R

T T

=

=

− −
=

−

∑

∑

)
                                                                                  (8) 

 
where  and  are unknown coefficients, 1c 2c iτ  and jτ  are the atmospheric transmittances in the split-

window channels i  and j , the subscript  denotes pixel , and the k k iT  and jT  are the TOA mean (or 

the median) channel brightness temperatures of the N  neighboring pixels considered for channels i  
and j , respectively.  

On the basis of the numerical results obtained in Section 2.2, coefficients  and  can be 

respectively derived as functions of secant VZA as 
1c 2c

 
2

1 28.104 14.996 / cos( ) 3.211/ cos ( )c VZA= − + VZA
VZA

                                              (9) 
2

2 28.056 14.954 / cos( ) 3.206 / cos ( )c VZA= − + −                                         (10) 

 
Figure 7 shows the curve fits of the coefficients c1, c2 as functions of secant VZA. As noted, the 

fitting results are quit well with both R-squares equal to 0.999. In addition, with the actual WVC and 
the transmittance ratio of split-window channels IR1 and IR2 obtained in Section 2.2, the RMSE 
between the actual WVC and the WVC estimated using Eqs. (6), (9) and (10) is 0.17 g/cm2, which 
indicates that the fitting results are good. 

3.5. Sensitivity analysis 

As Wan and Dozier (1996) [21] indicated that the errors of LST estimated by the GSW algorithm 
come mainly from the uncertainties of LSEs, atmospheric properties and the instrument noises. These 
three uncertainties of error are taken into account in this investigation. 
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Figure 7. Curve fits of the coefficients −  in Eq. (6) as functions of the VZA 

3.5.1 Sensitivity analysis to instrumental noises (NE∆T) 

In order to see how significant the effect of the instrumental NE∆T on the retrieval of LST, a 
Gaussian random distribution error of 0.1 K, 0.2 K and 0.5 K are, respectively added to the TOA 
brightness temperatures T  and  in Eq. (3). Then we estimate the LST using GSW algorithm with 

the noised TOA brightness temperatures. As an example, compared the actual LST with the estimated 
LST for the sub-range: 

i jT

.94,[0 1.0]ε ∈ , WV [1.0,2.5]C ∈ , and T K[290 ,310 ]s K∈ , the RMSE is 0.38 K 

for NE∆T=0.1 K, 0.43 K for NE∆T=0.2 K, and 0.67 K for NE∆T=0.5 K. Compared the RMSE of 0.37 
K for no instrumental noise, the accuracy of retrieval LST can be affected by 3% for NE∆T=0.1 K, by 
16% for NE∆T=0.2 K, and by 81% for NE∆T=0.5 K. 

3.5.2 Sensitivity analysis to LSEs 

According to the Eq. (3), the sensitivity of the uncertainties in LSEs is mainly dependent on the 
terms (1 ) /ε ε− 2/( ) and ε εΔ , which can be written as 

 

                         2 52 2
i j i jT T

a aα
+ −

= +
T T

                                                                                         (11) 

                        3 62 2
i j i jT T T T

a aβ
+ −

= + 12) 

wo cases are considered in this investigation. One is the extremely dry atmospheric condition 
(W

                                                                                          (

 
T

[0.0,1.5]VC ∈ ) and the other is the extremely wet atmospheric condition ( [5.0,6.5]WVC ∈ ). With 
the regression coefficients and the iT  and jT  simulated in Section 2.2, using equations (11) and (12) 
we can obtain the variations of α  and β . Table 2 lists the variations of α  and β  for the sub-range: 

[0.94,1.0]ε ∈ , [290 ,31 ]sT K K∈ [0.0,1.5]WVC0 , ∈  and the sub-range [0.94,1.0]ε ∈ , 
K[290 ,310sT K∈ ] , [5.0WVC ,6.5]∈ , fo  r ely.  VZA=0°, respectiv
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Table 2. Statistics of the errors due to the uncertainties in LSEs for the sub-
range [0.94,1.0]ε ∈ , ,[290 ,310 ]sT K∈ K [0.0,1.5]WVC ∈  and the sub-range [0.94,1.0]ε ∈ , 

, WV , for VZA=0°. [290 ,310 ]sT K K∈ [5.0,6.5]C ∈

Conditions [0.94,1.0]ε ∈ , T K[290 ,310 ]s K∈ , VZA=0° 

Water vapor content 
(g/cm2) 

[0.0,1.5]C ∈ [5.0,6.5]CWV  WV ∈  

Variable β  α  α  β  

Range of Values (K) [44.80,61.23] [-135.71,-121.05] [11.57, 34.42] [-70.13,-19.48] 
Mean (K) 52.39 -127.60 23.29 -45.56 
Standard deviation 
(K) 

3.10 3.06 4.22 9.32 

 
From table 2 one can see that the values of α  and β  in extremely dry atmospheric condition 

(WV ) are nearly two times as large as those of [0.0C ∈ ,1.5] α  and β  in extremely wet atmospheric 
condition, (WV ), respectively. This means that the sensitivity of ( 2/( )[5.0,6.5]C ∈ )1 /ε ε−  and ε εΔ  
to LST for wet atmospheric condition is decreased two times as that for dry atmospheric condition.  

2/( )From equation (3), the LST error LSTδ  due to the uncertainty in (1 ) /ε ε−  and ε εΔ can be 
estimated by,  

2 2 2 2
2( ) ( )LST 1 ε ε−δ α δ β δ

ε ε
Δ

= +

) /

                                                              (13) 

2/( )Assuming that the uncertainties of (1 ε ε−  and ε εΔ

6

 are around 1%, the LST error is [1.3K, 
1.5K] with the mean of 1.4 K for the dry atmosphere and [0.2K, 0.8K] with the mean of 0.5 K for the 
wet atmosphere.  

3.5.3 Sensitivity analysis to the atmospheric WVC 

It is well known that the WVC in the atmosphere is not easily determined from satellite data. In 
order to see how significant the effect of the uncertainty of the WVC on the retrieval of LST in GSW 
algorithm, the wrong sub-range selection of the WVC is investigated in our work. As mentioned above 
in Section 3.1, the WVC was divided into six sub-ranges with an overlap of 0.5 g/cm2. The overlap 
WVC could be fallen into two adjacent sub-ranges. That is, it is included by two sub-ranges and 
corresponded to two pairs of coefficients 0a a− . We aim to analyze the effect of the overlap WVC on 
the retrieval of LST.  

Figure 8 gives an example of the uncertainty of the WVC. From figure 8 one can see that the 
overlap water vapor content  falling into two sub-ranges  and 

. When we estimate the LST with the water vapor content WV  using the 
coefficients corresponding to the sub-range 

[1.0,1.5]WVC ∈ [0.0,1.5]WVC ∈
[1.0,1.5]C ∈[1.0,2.5]WVC ∈

[0.94,1.0]ε ∈ , WV [0.0,1.5C ]∈ , and , 
the RMSE between the actual and the estimated 

[290 ,310sT K∈ ]K

sT  is 0.18 K, while using the coefficients 
corresponding to the sub-range [0.94,1.0]ε ∈ , WV [1.0,C 2.5]∈ , and T K[s 290 ,310 ]K∈ , the RMSE is 
0.43 K.  
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Figure 8. Histogram of the difference between the actual and estimated sT  for the overlap 
water vapor content WV  using the coefficients of different sub-ranges. [1.0,1.5]C ∈

3.6. Intercomparison of different formulations of the split-window algorithms 

It is well known that the LST retrieval from satellite observations has been ongoing for several 
decades. Many different formulations of the split-window algorithms have been proposed. They are 
somewhat similar in formulation and several of them are directly inspired from Becker and Li’s (1990) 
[12] formulation. In order to perform the intercomparison with the recently proposed split-window 
algorithms, different formulations were used to estimate the LST with the same simulated FY-2C data 
in this work. Those formulations are listed in table 3: 

Table 3. Different formulations of split-window algorithms in literatures, ε  is the 
averaged emissivity in channesl i  and j , and εΔ  is the difference between the two 
channels emissivities. 

Authors Formulations 
Price, 1984 [8] 0 1 2 3 4( ) ( )(1 )s i i j i j jT a a T a T T a T T a Tε ε= + + − + − − + Δ  

Prata and Platt, 1991 [14] 0 1 2 3
1ji

s

TTT a a a a ε
ε ε ε

−
= + + +  

Vidal, 1991 [15] 0 1 2 3
1( )s i i jT a a T a T T a 4aε ε

ε ε
− Δ

= + + − + +  

Ulivieri et al., 1992 [16] 0 1 2 3 4( ) (1 )s i i jT a a T a T T a aε ε= + + − + − + Δ  

Sobrino et al., 1993 [17] 
2( ) ( )T a a T a T T a T T a0 1 2 3s i i j i j 4 5(1 ) aε ε− + Δ= + + − + − +  

Sobrino et al., 1994 [18] 0 1 2 3 4( )s i i jT a a T a T T a a εε
ε

Δ
= + + − + +  

Coll et al., 1997 [19] 
2

0 1 2( ) ( )s i i j i jT T a a T T a T T 3 4(1 )a aε ε− + Δ= + + − + − +  
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In addition, Becker and Li (1995) [20] further modified their split-window algorithm (Becker and 
Li, 1990) [12] by adding atmospheric water vapor correction as 

 

0s 2 2
i j i jT A P M

T T T T+ −
= + +                                                                                           (14) 

 
with        0 0 1A a a w= +

2 3 4 5 6( cos )(1 ) ( )P a a a w a a wθ ε ε= + + − − + Δ  

7 8M a 9 10( )a a w 11 12) ( )a w a a w(1 ε ε− + Δ

( ) / 2i j

= + + + −  

 
where ε ε= + i j and ε ε ε εΔ = − w,  is the total precipitable water amount, and θ  is the 

Viewing Zenith Angle (VZA).  
In order to make the intercomparsion more reasonable, the coefficients from the above equations 

have been recalculated using the same simulated FY-2C data within the same sub-ranges in Section 3.1. 
As an example, table 4 depicts the RMSEs between the actual and the estimated sT  versus the secant 
VZA for the sub-range: [0.94,1.0]ε ∈ , [1.0,2.5]WVC ∈ , and [290 ,310 ]sT K K∈ . From this table, one 

can see that the RMSEs increase with the increase of the VZA for all algorithms. In addition, except 
for the algorithms proposed by Price (1984) [8], and Prata and Platt (1991) [14], the sT  estimated 

using the other algorithms are comparable, which indicates that the split-window algorithm can be 
successfully applied to the LST retrievals from FY-2C data. It should be noted that the RMSE values 
in Table 4 will be larger, especially for BL95, in considering the sensitivity to WVC errors. 

Table 4. RMSEs between the actual sT  and the sT  estimated using different formulations 
of the split-window algorithms for the sub-range [0.94,1.0]ε ∈ , , and 

. 
[1.0,2.5]WVC ∈

[290 ,310 ]sT K K∈

RMSE 

(K) 

 Authors 

VZA(o) GSW Price84 Prata91 Vidal91 Ulivieri92 Sobrino93 Sobrino94 Coll97 BL95 

0 0.37 0.73 1.15 0.38 0.38 0.37 0.38 0.38 0.22 

33.56 0.41 0.74 1.26 0.43 0.42 0.42 0.42 0.43 0.25 

44.42 0.46 0.74 1.35 0.48 0.47 0.47 0.47 0.47 0.28 

51.32 0.52 0.75 1.43 0.53 0.53 0.51 0.53 0.52 0.32 

56.25 0.57 0.77 1.49 0.58 0.58 0.57 0.58 0.57 0.36 

60 0.63 0.80 1.54 0.64 0.64 0.62 0.64 0.62 0.41 

4. Application to actual FY-2C satellite data 

The objective of the present work is to estimate the LST from Chinese first operational 
geostationary meteorological satellite FengYun-2C (FY-2C) data for cloud-free skies. Figure 9 gives 
an example of the retrieval LST around Beijing in China during FY-2C satellite scanning on May 15, 
2006 at 11:00 local time. The model inputs are the TOA brightness temperatures LSTs, VZA, LSEs, 
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and WVC. The TOA brightness temperatures LSTs and VZA are directly extracted from the FY-2C 
satellite data. The LSEs are derived from the emissivities in MODIS channels 31 and 32 provided by 
MODIS/Terra LST product MOD11B1, and the WVC are obtained from MODIS total precipitable 
water product MOD05. Symbols A, B, and C located in red, green and baby blue colored areas in 
figure 9 represent bare soil, cultivated surface and sea surface, respectively.  

 

C 

B 

A 

Beijing

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Map of the LST estimated from FY-2C satellite data at 11:00 local time on May 
15, 2006. 
 

In addition, table 5 lists the values of the VZA, WVC, LSE, TOA brightness temperature, and 
resultant sT  for one representative pixel in each red, green, and baby blue colored areas in figure 9. 

Table 5. Description of symbols A, B and C in figure 9. 

 A (red) B (green) C (baby blue) 

Longitude (o) 120.06 E 116.15 E 122.75 E 

Latitude (o) 43.70 N 33.84 N 38.47 N 

VZA (o) 53.44 41.96 49.14 

WVC (g/cm2) 0.868 1.465 1.217 

1IRε  0.944 0.962  0.986  

2IRε  0.946 0.966  0.99 

1IRT  (K) 309.42 295.24 281.95 

2IRT  (K) 307.32 294.58 282.20 

sT  (K) 318.35 299.74 286.47 
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It should be pointed out here that the LST estimated from the FY-2C satellite data has not been 
validated with in situ measurements since there are no in situ measurements available. In addition, due 
to the extreme difficulty or impossibility to get the LST at ground level representative at 5km*5km, we 
will try to cross validate LST derived from FY-2C data in the future with the well validated LST 
product provided by MODIS data.  

5. Conclusions 

In this paper, we have addressed the retrieval of the Land Surface Temperature (LST) from the 
Chinese first operational geostationary meteorological satellite FengYun-2C (FY-2C) data in two 
thermal infrared channels IR1 (10.3-11.3 mμ ) and IR2 (11.5-12.5 mμ ), using the Generalized  
Split-Window (GSW) algorithm proposed by Wan and Dozier (1996) [21]. 

Taking into account the fact that the S-VISSR sensor onboard FY-2C has no atmospheric sounding 
channels, the coefficients in the GSW algorithm were derived by dividing the ranges of the mean 
emissivity, the atmospheric Water Vapor Content (WVC), and the LST into tractable sub-ranges, and 
were recalculated using a statistical regression method from the numerical values simulated with an 
accurate atmospheric radiative transfer model MODTRAN 4 over a wide range of the atmospheric and 
surface conditions. The simulation analysis showed that the LST could be estimated by the GSW 
algorithm with the Root Mean Square Error (RMSE) less than 1 K for the sub-ranges with the Viewing 
Zenith Angle (VZA) less than 30° or for the sub-ranges with VZA less than 60° and the atmospheric 
WVC less than 3.5 g/cm2 provided that the Land Surface Emissivities (LSEs) are known. 

As the GSW algorithm requires WVC and LSE as model input, the MODIS total precipitable water 
product MOD05 providing the atmospheric column water vapor amounts, was used to obtain the WVC 
when the scanning times of the sensors MODIS and S-VISSR are close to each other. As for the other 
scanning times of S-VISSR, the atmospheric WVC can be determined using the method developed by 
Li et al. (2003) [27]. As for LSE, the MODIS/Terra LST product MOD11B1 providing the LSEs with 
5 km resolution for the thermal infrared channels 31 and 32, was used to derive the LSEs in S-VISSR 
channels IR1 and IR2, respectively.  

In addition, the sensitivity and error analyses in term of the uncertainty of the LSE and WVC as 
well as the instrumental noise were also performed in this work. The results show that the accuracy of 
retrieval LST can be affected by 3% for NE∆T=0.1 K, by 16% for NE∆T=0.2 K, and by 81% for 
NE∆T=0.5 K for the sub-range [0.94,1.0]ε ∈ , [1.0,2.5]WVC ∈ , and [290 ,310 ]sT K K∈ ; given the 
uncertainties of (1 ) /ε ε−  and 2/( )ε εΔ  around 1%, the LST error is [1.3K, 1.5K] with the mean of  
1.4 K for the dry atmosphere and [0.2K, 0.8K] with the mean of 0.5 K for the wet atmosphere; and the 
effect of the uncertainty of the WVC on the retrieval LST could be around 0.3 K. 

Moreover, in order to compare the different formulations of the split-window algorithm, several 
split-window algorithms were used to estimate the LST with the same simulated FY-2C data. The 
result of the intercomparsion showed that most of the algorithms give comparable results, which 
indicates that the split-window algorithm can be successfully applied to the LST retrievals from  
FY-2C data. 
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