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Abstract: This paper describes a fast procedure for evaluating asphalt pavement surface 
defects using airborne emissivity data. To develop this procedure, we used airborne 
multispectral emissivity data covering an urban test area close to Venice (Italy).For this 
study, we first identify and select the roads’ asphalt pavements on Multispectral Infrared 
Visible Imaging Spectrometer (MIVIS) imagery using a segmentation procedure. Next, 
since in asphalt pavements the surface defects are strictly related to the decrease of oily 
components that cause an increase of the abundance of surfacing limestone, the diagnostic 
absorption emissivity peak at 11.2μm of the limestone was used for retrieving from MIVIS 
emissivity data the areas exhibiting defects on asphalt pavements surface.The results 
showed that MIVIS emissivity allows establishing a threshold that points out those asphalt 
road sites on which a check for a maintenance intervention is required. Therefore, this 
technique can supply local government authorities an efficient, rapid and repeatable road 
mapping procedure providing the location of the asphalt pavements to be checked. 

Keywords: urban environmental monitoring; thermal remote sensing; object-oriented 
classification; band-depth analysis. 
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1. Introduction  

According to the European Asphalt Pavement Association (EAPA; http://www.eapa.org/), asphalt 
pavement is commonly referred to as a mixture of bitumen and mineral matter [12,48] that for Italy 
asphalts is mainly composed of silicates and limestone [2]. The primary surface defects that occur on 
the asphalt pavement mixture are raveling, flushing and polishing [67]. Raveling is defined as “the 
progressive loss of pavement material from the asphalt surface caused by (a) stripping of the 
bituminous film from the aggregate, (b) asphalt hardening due to aging, (c) poor compaction especially 
or insufficient asphalt content”. Flushing is the “excess asphalt on the surface caused by a poor initial 
asphalt mix design”. Polishing is defined as “a smooth oily surface caused by traffic wearing off sharp 
edges of aggregates” [67]. 

The management and maintenance of transportation infrastructures are based on detailed and 
accurate information about the road network. The pavement type and road surface conditions are the 
most common variables required to provide detailed road mapping. This data is critical to the 
management decision process that involves billions of euros of assets, and maintenance budgets of 
millions of euros each year. Moreover, street maintenance work looks still today like something 
hurriedly thrown and only based on the roadman job. Often the maintenance is carried out when the 
pavement is approaching its collapse point and with renewal interventions linked to the worker 
experience [57]. 

Remote sensing can solve the road condition mapping by applying relatively cheap methods to 
evaluate the surface defects of asphalt pavements [25,29,63]. 

Haas et al. [19] were the first authors that investigated and extracted a pavement condition index 
(PCI) by connecting the road physical parameters (cracking, rutting and raveling) gathered from field 
observations with the Global Positioning System (GPS). This common technology provides detailed 
and geo-referenced information about road condition even though the low cost and easy managing 
requirements remain unsolved. Furthermore, land-based mobile mapping systems with an extensive set 
of sensors (including laser reflectometers, ultrasonic sensors, accelerometers, global positioning 
systems, gyroscopes, video and machine vision systems) and computers, such as Automated Road 
Analyser (developed by Roadware GRP of Paris, Ontario, Canada), have been commercially available 
for road mapping application [44,62]. However, the high cost of road network inspection requires the 
development of innovative remote sensing data analyses that are reasonably priced, easy to manage for 
the local authorities and valuable for the road condition mapping. For this purpose, many studies have 
been conducted to discriminate road surface distresses [25] and to analyze the spectral features of 
urban materials and their separability [4,20,22-24,51,56,58].  

The characteristic absorption bands of silicates and limestone that outcrop when the asphalt 
pavements show surface defects, have been studied by many authors in the 8 to 12μm thermal infrared 
spectral region (TIR) [32-34,53-55,65,66]. 

Much progress has been made in understanding the nominal range of wavelengths suitable for 
detecting a variety of minerals and the relationship between spectral absorption feature intensity and 
mineral abundance using remote sensed data [27,32,34,40,41]. Among others, the TIR spectral region 
is becoming increasingly more important, thus enhancing the use of multi-channel remote sensing TIR 
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instruments to discriminate geologic surface materials including carbonates, sulfates, clays, and felsic 
vs. mafic silicate minerals [3,14,49]. 

In this framework, the research will be focused on developing, implementing and validating the 
effectiveness of emission spectroscopy, in the TIR spectral range from 8.18μm to 12.70μm, to provide 
a rapid assessment of the asphalt surface distress. Fast and non destructive methods, such as emission 
spectroscopy, offer potentially useful alternatives to time-consuming chemical methods of asphalt 
analysis. The characteristics of asphalt pavement emissivity spectra are controlled by mineral 
composition, water (hydration, hygroscopic, and free pore water) and particle size distribution. 

Nowadays, the most common sensors that operate in the TIR range are: the TIMS instrument (8.2-
12.6μm with 6 bands) [33], the SEBASS airborne sensor (7.57-13.5μm with 128 bands) [36-64], the 
ARES instrument (8.32-12.97μm with 32 bands) [52] and the AHI airborne sensor (7.5-11.7μm with 
256 bands) [7]. Such spectral range is covered by sensors functioning also in other spectrum regions: 
the DAIS-7915, the Multispectral Infrared Visible Image Spectrometer (MIVIS), the AHS-160 and the 
MASTER simulator (0.46-2.39μm with 25 bands; 3.14-5.26μm with 15 bands; 7.76-12.87μm with 10 
bands) [28]. 

In particular, the airborne MIVIS sensor, with its high spectral and/or spatial resolution [5], allows 
reliable quantitative measurements of specific absorption features of urban materials [1]. Moreover, a 
spatial resolution at least of 5m is optimum for urban applications [59,69], since “the spectral mixing 
space” becomes more complex with larger pixels [58,59]. Therefore, MIVIS sensor was used in order 
to retrieve a threshold to individuate those asphalt pavements to be checked for maintenance as it 
records emitted radiation in the TIR range, using a total of 10 bands with 2mrad of IFOV 
(Instantaneous Field Of View). 

Since the asphalt pavements aging can be related to the loss of oily components [60] and to the 
sealing tar surface [25], and the decrease of oily components leads to an increase of several types of 
limestone deposits that are identifiable in the TIR range [36], a simple and fast method was developed 
in order to define a threshold on the basis of the band depth analysis [9] at 11.2μm (i.e., the limestone 
absorption peak in the TIR range).  

For this purpose, an airborne MIVIS imagery covering a test area close to Venice city (Italy) was 
used for identifying in the TIR spectrum region the diagnostic asphalt emissivity features. 

2. Study area 

The study area (Figure 1) is characterized by a mixture of urban land cover types and surface 
materials, including many asphalted roads and, in particular, two main highways with asphalt 
pavements of different ages and conditions (i.e., more or less weathered and corroded). The study area 
corresponds to a MIVIS (Table 1) scene of 755 columns x 2956 lines (Figure 1b) and is centered at 
latitude 45°33’19’’N and longitude 12°16’49’’E. The flight strip was acquired over a rural area close 
to Venice city (Italy; Figure 1a) on November 23, 2006 at 11:56 (GMT), using scan rates of 25 scans/s 
at an altitude of 1500m, corresponding to a 3-m ground-pixel resolution at the instrument’s IFOV. 
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Figure 1. (a) MIVIS scene, outlined in black over a regional map; (b) MIVIS imagery 
acquired over Venice study area (755 columns × 2956 lines). 

Table 1. MIVIS sensor characteristics. 

Spectral coverage 

VIS: 0.43-0.83 µm   (channels 1-20) 

Bandwidth 

20 nm 

SNR 

(min, max) 

6 - 366  

NIR: 1.15-1.55 µm   (channels 21-28) 50 nm 80 - 1062 

SWIR: 1.98-2.47 µm   (channels 29-92) 8 nm 4 - 191 

TIR:    8.18-12.70 µm (channels 93-102) 340-540 nm 150 - 1500 

FOV and IFOV 71° and 2 mrad Cross-track pixels 755 

Angular 1.64  Digitalization accuracy 12 bit 

3. Data and methods 

3.1. Image preprocessing 

MIVIS data preprocessing was performed as follows: (i) radiometric calibration of the raw data; (ii) 
atmospheric correction of the Thermal Infra-Red (TIR) data [18]; (iii) calibration to apparent 
emissivity by separating temperature and emissivity according to the methods described by [16,17]. 

The radiometric calibration of the airborne MIVIS TIR raw data was performed using a two-point 
calibration technique that is based on the linearity of the detector response over the dynamic range of 
the instrument [47]. To this goal, the maximum and minimum reference values of the radiance were 
acquired at the beginning and end of each scansion line to satisfy the calibration accuracy 
requirements. 

The retrieved pixel spectral radiance (nW cm-2 sr-1 nm-1) ( pixelRλ ), expressed by a linear equation 

obtained jointing the two reference points (i.e., the maximum and minimum reference values expressed 
by the radiance value and the corresponding Digital Number), is shown in Equation 1. 
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Where, the pixelDNλ  is the pixel raw data to be radiometrically calibrated; the CBBDNλ  and HBBDNλ  

are the spectral raw data measured for the cold (minimum reference value) and hot (maximum 
reference value) blackbody, respectively; CBBBλ  and HBBBλ  are the spectral radiance values for each 

blackbody as predicted by Planck’s law with emissivity equal to one (ελ=1) and known temperature 
(Ti). 

As regards the atmospheric attenuation of the TIR spectral radiance that includes atmospheric 
transmission and upwelling atmospheric radiance, the ISAC (In-Scene Atmospheric Compensation) 
algorithm [31,36,64,70] was employed for MIVIS TIR atmospheric correction. This algorithm assumes 
two pixels of the scene to be blackbodies on which neither locations nor temperatures are known. The 
ISAC algorithm is suitable also when the atmospheric radiative conditions are not available during the 
acquisition time. For this study, we followed the “most hits” method as described by Johnson [31] and 
pixels whose emissivity was equal to 1 at the wavelength were used as a marker. 

Once the image was atmospherically corrected, we used the method developed by Johnson [31], and 
revised by Hook et al. [27] and Kahle et al. [34] to retrieve apparent emissivities. The method is based 
on the Planck’s law for gray body radiator (ελ ≠ 1). The standard formulation of this law for the 
spectral radiance (Lλ) of each pixel (i) is described by the following equation: 

λλ λλλλλ τεε ATMSKYiiii LLTB +−+= ])1()([L ,,,  (2)

where ελ,i is the surface spectral emissivity of pixel (i); Bλ (Ti) is the blackbody spectral radiance at 
Ti temperature, located at pixel (i); 

λSKYL  is the spectral downwelling radiance; τλ is the spectral 

atmospheric transmission; 
λATML  the spectral upwelling radiance. The 

λSKYL , τλ and 
λATML   are 

related to the emission of the atmosphere itself that reaches directly the sensor or is reflected by the 
surface before being acquired by the sensor and they are also assumed to be independent from the view 
angle (i.e., pixel location) [36,64]. 

In order to extract pixel emissivity from the pixel radiance, the requirement is to discriminate from 
Equation (2) the emission that depends on the kinetic T and other atmospheric parameters as well as 
the ε value for each image band [16]. This multivariable problem is solved by using the assumption of 
ISAC algorithm about the linear relationship between the observed radiance and the Planck’s function, 
whose slope is related to the atmospheric transmission (τλ), and whose offset is the upwelling 
atmospheric radiance (

λATML ), at that wavelength: 
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The emissivity can be calculated from this linear equation, in terms of the other variables: 
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Substituting in Eq. (4) the Eq. (2) and solving for T, then gives 
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As the goal of this study is the assessment of the spectral feature shapes and the band depth 

analysis, we need to retrieve relative emissivities. In this context, several methods have been proposed 
in literature for deriving emissivities such as the reference channel method [32], the emissivity 
normalization method [17], the temperature-independent spectral indices [3], the thermal log residuals 
and alpha residuals [26], and the spectral emissivity ratios [68]. Several of these methods are compared 
and reviewed by Gillespie [15-17], by Hook et al. [26,27] and by Li et al. [45]. 

In this study we applied the emissivity normalization routine proposed by Realmuto [50], Hook et 
al. [26], Kealy and Hook [35] and Gu et al. [18] and implemented in the ENVI 4.4. [41] image 
processing software. This routine, first, derives the brightness temperature of each pixel from the pixel 
radiance. Afterward, the apparent emissivity image is obtained by normalizing the radiance of each 
pixel to the Planck’s curve that is generated from the pixel with the maximum brightness temperature 
with an emissivity value set to 0.96 (i.e., a reasonable hypothesis for exposed mineral surfaces). 

3.2. Image classification 

To develop a method for automated image analysis of road asphalt pavements on the basis of their 
emissivity spectral features, (a) an object-oriented approach and (b) a band-depth analysis were used 
(Figure 2). 

Figure 2. Flow diagram indicating the steps followed in the methods. 
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3.2.1. Object-oriented approach  

An object-oriented approach was first adopted in order to individuate and select on MIVIS imagery 
the asphalt roads [6,43], which was also used as an input mask later on in the band-depth analysis. 

Object-oriented approaches can represent a valuable alternative to the conventional pixel-based 
classification methods, as they consider the spatial context. Segmentation methods divide a study area 
into adjoining clusters of pixels, called segments or regions, based on similarity or dissimilarity of 
their single or multiple-layer pixel values [61].  

The segmentation approach allows for: (a) quantifying the spatial heterogeneity within the data at 
various scale levels; (b) delineating homogeneous patches also involving a certain spatial 
generalization; (c) implementing an explicit hierarchal structure between segments at different spatial 
scales. As a result, spatial information is very important in classification processes to produce reliable 
maps [46]. 

For this study, according to Jensen [30], we used an object-oriented approach with a segmentation 
procedure followed by classification as implemented in the Feature Extraction module of the ENVI 4.4 
software package [42]. In more detail, the procedure consists of a combined process of segmenting the 
image into regions of pixels, computing attributes for each region to create objects, and last classifying 
the objects. In order to identify only road asphalt pavements with the requirement of a sufficient 
neighboring number of pixels showing a homogeneous asphalt mixture, we chose only highways and 
exits asphalt pavements for the further band-depth analysis. For this purpose, a workflow consisting of 
two main tasks was adopted.  

(i) The “find objects” task (i.e. segmentation; [30]) that was divided, in its turn, into four steps: 
“segment”, “merge”, “refine”, and “compute attributes”. The “segment” and “merge” steps of this task 
were used to divide the image into segments corresponding to real-world objects and for solving over-
segmentation problems and then the adjacent segments were grouped on the basis of their brightness 
value. 

(ii) The “rule-based classification” task (i.e. classification; [30]) was used to extract only the 
highways and exits objects and then to export them onto a raster image. 

In this final step, the rules criteria with the relative appropriate scale factors (i.e., weights) were 
identified using both spectral and spatial attributes for classifying the highways/exits asphalt 
pavements objects.  

3.2.2. Band Depth analysis on asphalt roads 

In Italy road paving asphalts are made of a mixture of mineral aggregate (mainly of silicates and 
limestone granules) and bitumen [2]. Asphalt pavements surface defects [67] are strictly related to the 
decrease of the oily components of the bitumen, thus increasing the surface abundance of the limestone 
granules (see Figure 3). Therefore, for this study we chose the outcrop of the limestone granules, 
which certainly highlights distressed paving asphalts, as an indicator for those asphalt pavements to be 
checked for maintenance. 
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Figure 3. Example of an asphalt pavement of the study area with surfacing limestone 
granules. 

 
The applied procedure consists, first, of the analysis of the available John Hopkins University 

(JHU) spectral library [55] information allowed for retrieving the emissivity spectral features (8-13μm 
TIR range) of the asphalt paving material. An absorption band can be described by characteristics, 
such as the position, depth, width and asymmetry [8-10,68]. The presence of an absorption feature and 
its position in the reflectance/emissivity spectrum provides valuable information about the chemical 
composition of a material [21]. 

Figure 4 depicts the JHU emissivity spectra convolved to MIVIS bandpasses in order to show how 
their occurrence would affect MIVIS detectability of the major limestone absorption feature. Looking 
at Figure 4a, it is evident that the main difference between the emissivity spectral feature, in the 8-
13μm range, of new and old pavement asphalts is the spectral contrast centered at 11.2μm. Moreover, 
the study of Kirkland et al. [36] confirms that the 11.2μm is the diagnostic emissivity band for the 
limestone (Figure 4b). 

 

(a) 
 

(b) 
 

Figure 4. Examples (a) of new and old emissivity spectra of paving asphalt from the JHU 
spectral library and (b) of limestone band-depth analysis (intervals 9.59-11.94μm): 
emissivity continuum-removed absorption peak of a pure limestone spectrum (JHU 
spectral library), both convolved to MIVIS bandpasses in order to show how its occurrence 
would affect MIVIS detectability.  
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In view of this information, a methodology was developed to map by airborne remote sensing the 

asphalt roads showing surface defects on the basis of the diagnostic 11.2μm limestone emissivity peak. 
Therefore, once selected the highway/exits asphalt roads by means of the object-oriented approach, 

a Band-Depth (BD) analysis was performed on MIVIS emissivity data to measure the spectral contrast 
of the limestone peak at 11.2μm that is centered, if convolved to MIVIS bandpasses, at 10.93μm 
(Figure 4b).  

The BD analysis primarily requires application of the continuum-removal method that consists of: 
(a) “fitting a straight line hull to represent the reflectance or emissivity background using two 
continuum tie points on either side of the absorption feature” [8,39] and (b) dividing the spectrum by 
this fitted continuum line. Thus, continuum-removed absorption features can be directly overlapped to 
one another by scaling them to the same depth at the band centre allowing a comparison of the shapes 
of their absorption features.  

The absorption band depth (D) was calculated from:  
 

D 1 Rb Rc  (6)
 
where Rc is the emissivity of the continuum at the band centre and Rb is the emissivity at the band 

centre (Figure 4b). 

4. Results and discussion 

4.1. Object-oriented classification results 

In this application, the highways/exits asphalt roads feature classification, shown in Figure 5, was 
obtained by assigning to the band ratio criterion (concerning the MIVIS emissivity channels centered 
at 10.93 and 11.94μm) a weight of 0.5, whereas the spatial criterion received the remaining weight of 
0.5 (length 0.4, form factor 0.2 and elongation 0.4). These optimal segmentation parameters were 
determined using a systematic trial and error approach validated by the visual inspection of the quality 
of the output image objects, i.e., how well the asphalt pavements matched feature boundaries in the 
image [46]. Moreover, on the obtained classification image some residual errors were manually 
corrected on the image in order to achieve a mask of only asphalted highways and exits (Figure 5). 

This object-oriented approach used for the extraction of asphalt roads is very cost-effective, because 
it reduces the necessity for laborious on-screen digitizing that is by far the most expensive task of the 
standard photo-interpretation process.  
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Figure 5. Object-oriented classification of MIVIS emissivity image. In yellow are depicted 
the masked highways and exits, they are overlaid on MIVIS channel 13 only for 
visualization purposes. 

4.2. Application requirements and Band-Depth results 

In order to be confident that MIVIS instrument technical characteristics allow to recognize the 
peculiar asphalt absorption features at 11.2μm (i.e., the outcropping limestone granules) and to apply 
BD analysis, a Band Detection Limit (BDL) was first calculated according to the Kirkland et al.  
[36,38] method. 

BDL is the percentage of the absorption features, in our case the 11.2μm limestone peak, to be 
detected with the desired confidence level [38]. The resulting value depends on the BDL related to the 
width and depth of the spectral contrast exhibited by the target. The BDL is calculated using: 

 

tervalSamplingIn
BandFWHMSNR

CFBDL =  
(7)
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where BDL = the minimum band depth required for detection of a given band width and center; 
Confidence Factor (CF) = the contrast relative to the SNR level that a feature should exhibiting to be 
distinguished from background; Band FWHM = the full-width target band at the half maximum of the 
band depth; Sampling Interval = the instrumental spectral sampling interval. 

According to Kirkland et al. [38], the BDL value depends on the instrument signal-to-noise ratio 
(SNR), instrument spectral resolution, target spectral band depth, band width, desired signal level 
above the noise (CF) and atmospheric compensation. Lower numbers for the BDL indicate that lower 
spectral contrast is required for detection. The CF influences the BDL such that a higher CF requires 
greater band contrast for acceptance (i.e., a CF = 1 represents a signal level comparable with noise). 

The BDL values were calculated by assuming that the target surface covered the instrument’s field 
of view, and no atmospheric attenuation influenced the data. It is clear, however, that even though the 
noise levels for a given sensor are generally fixed, for remote sensing data application, the signal 
portion of the SNR is affected by other external factors such as view angle, atmospheric attenuation 
and scattering and surface emissivity, which can modify the sensor perceiving signal [11]. 

Since the sensor SNR [13] cannot be modeled without specific knowledge of the instrument 
characteristics, the following calculations were made using MIVIS sensor characteristics to establish 
its capability to retrieve spectral absorption features in the TIR region.  

The MIVIS sensor DN values, acquired in-flight on the internal blackbodies, were converted to 
emissivity following the same procedure used in § 3.1 [26,35], except for atmospheric correction. 
Atmospheric correction of the blackbody data was not taken into account, because the distance 
between the sensors and the blackbodies was negligible. The SNR of the TIR bands was, consequently, 
estimated by dividing the emissivity mean spectra of all masked asphalt pavement pixels (i.e., signal) 
by the standard deviation of blackbody emissivity (i.e., noise). Figure 6 shows MIVIS SNR calculated 
for the TIR spectral range on the masked asphalt pavements of the study area. 

 

 

Figure 6. Estimates of MIVIS SNR in the TIR spectral range calculated on the masked 
asphalt pavements of the study area. 
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Regarding the spectra recorded by the MIVIS scanner on the masked asphalt pavements, to have a 
spectral feature that can be detected with the desired CF, the asphalt material has to depict a spectral 
contrast greater than the MIVIS scanner BDL. Therefore, a BDL value of 0.0012 was obtained by 
using, in Equation 7, MIVIS instrument characteristics within the desired TIR interval (as shown in 
Figure 4b), i.e., a FWHM of 0.4 μm, a band sampling interval at 10.93�μm of 0.2μm, a SNR at 
10.93μm above 1100 and with a CF of 2. 

The 0.0012 BDL value is the minimum limestone fractional exposure on the asphalt material 
required for being detected by MIVIS instrument characteristics. 

Once the BDL analysis confirms that MIVIS characteristics allows for recognizing the limestone 
diagnostic emissivity peak, the MIVIS emissivity data of the masked highways/exits pavements were 
analyzed by means of the band-depth procedure to establish a suitable threshold level for 
discriminating those asphalt pavements to be checked for maintenance intervene. 

For this purpose, an extensive field survey was carried out on all masked asphalt roads to visually 
check the asphalt pavements conditions. Figure 7a shows the two selected areas with certainly surface 
defects on which retrieving the BD threshold level that identifies those asphalt pavements (i.e., pixels) 
where to check for an asphalt maintenance intervention. On the two selected test areas the distribution 
function of the BD (at 10.93μm) analysis was calculated. Next, a threshold, which is based on the BD 
values distribution and that allows for discriminating in both test areas distressed asphalt pavements 
pixels (visually checked by field surveys), was assessed by using: 

μ -σ (8)
where, μ is the mean value of the test areas BD distribution and σ is the corresponding standard 

deviation. As a consequence, the BD value of 0.020 is the identified threshold for determining on all 
masked pixels (i.e., the highways/exits) the asphalt pavements to be checked for maintenance work. 
Figure 7b shows in red the distressed asphalt pixels individuated using the above mentioned threshold 
of 0.020. For example, in Figure 8, asphalt pavements of a highway and the relative exits, different 
from the two chosen as test areas, are shown as a particular case as they demonstrate the ability of the 
proposed procedure in detecting the different surface defects of the same asphalt.  

All the areas classified as distressed (depicted in red in Figure 7b) were further visually checked by 
means of a field survey carried out on the accessible roads mostly for safety reasons. Based on the 
visual field accuracy assessment, the asphalts to be checked for maintenance can be properly identified 
in all the masked study area with accuracy ranging from 75 to 90%, corresponding respectively to a 
total surface area of about 70,200 m2 and 84,240 m2 (total area is 93,600m2). 

In particular, both MIVIS classification and field surveys allowed observing that surface defects 
were greater for the highways exit asphalts than for the highways’ ones. 
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(a) 

 
(b) 

Figure 7. (a) In yellow are depicted the two test areas, selected for training the band-depth 
analysis; (b) Image showing the band-depth analysis results: in red are depicted the 
detected asphalt pavements showing surface defects thus to be checked for maintenance. 
Both images are overlaid on MIVIS channel 13 only for visualization purposes. 
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Figure 8. Images showing an example of asphalt pavements with different surface defects 
within the study area. Image (b) shows MIVIS emissivity BD classification results. Both 
images are overlaid on MIVIS channel 13 only for visualization purposes. 

5. Conclusions 

The preliminary results of this study demonstrate the utility of airborne remote sensing for 
identifying asphalt roads and discriminating those on which checking for a maintenance work. The 
potentiality of assessing the surface defects of asphalt pavements by using airborne Thermal Infra-Red 
data was established. This method can be surely applied to roads (e.g. highways, secondary roads) 
crossing rural environments and in large parking areas and wide streets within urban centres, whereas 
in case of densely settled urban areas it is difficult to successfully exploit this procedure. In fact, the 
presence of heat islands and other major drawbacks (e.g., brightness effects) would not allow obtaining 
suitable results. 

The integration of object-oriented classification (i.e., segmentation followed by classification) 
applied to MIVIS multispectral TIR data permitted the identification of all the road asphalt pavements 
with a very cost-effective and accurate procedure. 

For the surface defects assessment of the identified asphalt roads we chose the surfacing limestone 
granules occurrence as a suitable indicator. Therefore, on the primary emissivity absorption feature of 
the limestone at 11.2μm a band-depth analysis of the continuum-removed absorption feature was 
performed on a MIVIS airborne TIR imagery. The detection limit analysis showed that MIVIS 
technical characteristics in the TIR range allow discriminating this spectral feature. However, a more 
accurate discrimination of the limestone diagnostic absorption feature can be achieved using more 
advanced hyperspectral thermal instruments, such as AHI and SEBASS airborne sensors. 

In conclusion, the proposed combination of segmentation procedure and emissivity shape-based 
analysis used in this preliminary study allows for a rapid discrimination (i.e., a suitable threshold) of 
the location of distressed asphalt pavements. Therefore, the encouraging results may let public 
institutions and private companies to adopt this procedure, applied to airborne remote sensing data, to 
rapidly control and monitoring the surface defects of the road asphalt pavements. Such large-scale 
monitoring can be also included in the more general framework of critical and civil infrastructures 
management and protection. 

Future application of the proposed procedure will include field spectral analyses, using a portable 
micro-Fourier transform infrared radiometer: (a) to construct a spectral library of asphalt pavements 
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with different surface defects useful for calibrating and validating further thermal remote sensing data 
acquired on this study area and on other test sites; and (b) to provide asphalt samples for laboratory 
mineral abundance analysis and for determining their deterioration/aging level. 
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