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Abstract: A valid unsupervised and multiscale segmentation of synthetic aperture radar 
(SAR) imagery is proposed by a combination GA-EM of the Expectation Maximization 
(EM) algorith with the genetic algorithm (GA). The mixture multiscale autoregressive 
(MMAR) model is introduced to characterize and exploit the scale-to-scale statistical 
variations and statistical variations in the same scale in SAR imagery due to radar speckle, 
and a segmentation method is given by combining the GA algorithm with the EM 
algorithm. This algorithm is capable of selecting the number of components of the model 
using the minimum description length (MDL) criterion. Our approach benefits from the 
properties of the Genetic and the EM algorithm by combination of both into a single 
procedure. The population-based stochastic search of the genetic algorithm (GA) explores 
the search space more thoroughly than the EM method. Therefore, our algorithm enables 
escaping from local optimal solutions since the algorithm becomes less sensitive to its 
initialization. Some experiment results are given based on our proposed approach, and 
compared to that of the EM algorithms. The experiments on the SAR images show that the 
GA-EM outperforms the EM method. 
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1. Introduction  
 
In recent years, SAR imaging has been rapidly gaining prominence in applications such as remote 

sensing, surface surveillance and automatic target recognition. For these applications, the segmentation 
of various categories of clutter is quite important, and this segmentation can play a key role in the 
subsequent analysis for target detection, recognition and image compression. Because of the nature of 
the SAR instrument, SAR images contain speckle noise, complicating the segmentation of SAR 
images. Several different segmentation methods especially designed for SAR data have been proposed. 
One approach to deal with the speckle is to use a multiscale approach, which exploits the coherent 
nature of SAR imagery formation. In particular, we build on the idea of characterizing and exploiting 
the scale-to-scale statistical variations and statistical variations in the same scale in SAR imagery due 
to radar speckle [1-3]. To fully exploit this phenomenon and its complexity, we recently introduced the 
mixture multiscale autoregressive (MMAR) model [4], and proposed the EM algorithm and the 
Bootstrap stochastic annealing EM algorithm for learning the parameters of the model, respectively. 
However, those EM algorithms converge to a local optimum and the result is sensitive to initialization. 
Additionally, the EM algorithm assumes that the number of components for modeling the distributions 
is known. This is not the case for many applications. In this paper, we propose an algorithm for finding 
the optimal number of components as well as the parameters determining the components of the 
MMAR model. The minimum description length (MDL) criterion is used for selecting the number of 
components of the model. Our approach embeds the EM algorithm and the deterministic annealing 
approach in the framework of the genetic algorithm (GA) so that the properties of three algorithms are 
utilized. The population-based stochastic search of the GA explores the search space more thoroughly 
than the EM method. Therefore, our algorithm enables escaping from local optimal solutions since the 
algorithm becomes less sensitive to its initialization. Our algorithm also enables the selection of the 
number of classifications using the MDL principle. 

This paper is organized as follows. In the next section, we will describe quadtree interpretation of 
SAR imagery and its MMAR Modeling. In Section 3, we will propose a hybrid method based on the 
GA algorithm and EM algorithm for MMAR model. In Section 4, we will present the experimental 
results. In Section 5, we will present a short conclusion concerning our algorithm. 

 
2. Quadtree Interpretation of SAR Imagery and Its MMAR Model 
 

The starting point for our model development is a multiscale sequence LX , 1−LX , K , 0X  of SAR 
images, where LX  and 0X correspond to the coarsest and finest resolution images, respectively. The 
resolution varies dyadically between images at successive scales. More precisely, we assume that the 
finest scale image 0X  has a resolution of δδ ×  and consists of an NN ×  array of pixels (with MN 2=  for 
some M ). Hence, each coarser resolution image mX  has NN mm −− × 22  pixels and resolution δδ mm 22 × . 
Each pixel ),( lkX m  is obtained by taking the coherent sum of complex fine-scale imagery over mm 22 ×  
blocks, performing log-detection (computing 20 times the log-magnitude), and correcting for zero 
frequency gain variations by subtracting the mean value. According, each pixel in image mX  
corresponds to four “child” pixels in image 1−mX . This indicates that quadtree is natural for the 
mapping. Each node s  on the tree is associated with one of the pixels ),( lkX m  corresponding to pixel 
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( lk, ) of SAR image mX . As an example, Figure 1 illustrates a multiscale sequence of three SAR 
images, together with the quadtree mapping. Here the finest-scale SAR imagery is mapped to the finest 
level of the tree, and each coarse scale representation is mapped to successively higher levels. We use 
the notation )(sX  to indicate the pixel mapped to node s . The scale of node s  is denoted by )(sm . 

 
Figure 1. Sequence of three multiresolution SAR images mapped onto a quadtree. 

 

 
 
In this paper, we focus on a specific class of multiscale models, namely mixture multiscale 

autoregressive models [4] of the form: 
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where γ is defined to reference the parent of node s . kp  is order of the regression, Moreover the 
coefficients )(sai  and variance iσ depend only on )(sm . F  is distribution function, K  is number of 
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kπ , 0>kπ . (.)ϕ is the probability density function of a standard normal distribution. 

In Bayesian unsupervised segmentation using parametric estimation, the problem of segmentation is 
based on the model identification. The most commonly used estimator is the ML estimator, which is 
solved by the classical EM algorithms [4]. The details are as follows: 

A. Expectation Step 
The posterior probability for a pixel 0( )X s X∈  to belong to class k  at the iteration is given by  
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where , ,0 ,1 ,( ) ( ) ( )p

s k k k k pe X s a a X s a X sγ γ= − − − −L , ( )X sγ  is parent of ( )X s . 

 
B. Maximization Step 
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In this step, ws,k is considered artificially as the a posterior probability of X(s), so that, in the next 
iteration, we have 
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where )ˆ,ˆ,ˆ( ,,1,0, pkkk aaa L  satisfy the system of equations 
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where ( ( ), ) 1X s iμ =  for 0=i  and ( ( ), ) ( )iX s i X sμ γ=  for 0>i . 

The estimates of the parameters are then obtained by iterating the four steps until convergence. 
Parameters K , kp can be selected by minimum description length criterion . That is 

 

1

( ) ln( ( , )) ln( )( )
K

j
j

MDL K L K N K p
=

= − Θ + +∑                                           (6) 

where ( , )L K Θ  is likelihood function. 
 
3. Hybrid method of GA and EM Algorithm 

 
The main goal of interweaving GA with the EM algorithm is to utilize the properties of both 

algorithms. Similar to the method in [5], each individual in the population represents a possible 
solution of the MMAR model in the GA-EM algorithm. The MDL criterion is used as a fitness 
function for model selection. The best individual is the one that has the lowest MDL value. The 
evaluation of the individuals in the population is two-fold. First, R cycles of the EM algorithm are 
performed on each individual which results in an update of the set of parameters and consequently of 
the individual which encodes these parameters. In cases where the relative log likelihood drops below 
a threshold, we terminate the EM and, consequently, do not perform all R cycles. This might be the 
case for a large value of R. Second, the MDL value is determined for each updated individual to judge 
the model. Hence, the evaluation process of the individual provides both, a fitness value and an update 
of the parameters encoded by the individual.  

In the following section, the framework of the GA-EM algorithm is presented: 
procedure GA-EM 
begin 

0t ←   
0Oldsize ←  

0endc ←  
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initialize ( )P t  
while ( 5endc ≠ ) 

( )P t′  ← perform R EM steps on ( )P t  
MDL′  ← evaluate ( )P t′  

( )P t′′  ← recombine ( )P t′  
( )P t′′′  ← perform R EM steps on ( )P t′′  

MDL′′  ← evaluate ( )P t′′′   
                   [ ( ), ]P t MDL′′′′ ← select{[ ( ), ]P t MDL′′′ ′′ ∪ [ ( ), ]P t MDL′ ′  
                   minMDL ← min( MDL ) 
                    mina ← arg minMDL ( ( )P t′′′′ ) 

if ( min| |a Oldsize≠ ) then 
                    0endc ←  
                    min| |Oldsize a←  

else 
                     1end endc c← +  

end 
( )P t′′′′′  ← enforce mutation ( )P t′′′  

( 1)P t + ← mutate ( ( )P t′′′′′ ) 
1t t← +  

       end 
       EM( mina ) until convergence of the log likelihood is reached 

end 
The best evaluation value achieved during the evolution process is stored in MDLmin and the 

corresponding individual in mina , where min| |a denotes the number of components used for this model. 
( )p t denotes a population of  M  individuals at generation t  and ( )p t′  the resulting population after 

performing the EM steps. ( )p t′′ is an offspring population of ( )p t′ with size H. Performing the EM steps 
and evaluation of the offspring population delivers ( )p t′′′ and MDL′′ . In the following, the parameters 
and operators of the GA-EM are discussed in more detail. 

 
Encoding  
 

Each individual is composed of two parts. The first part uses binary encoding, where the length of 
this part is determined by the maximal number of allowed components maxM  Each of these bits is 
related to a particular component. If a bit is set to zero, then its associated component is omitted for 
modeling the mixture, while setting the bit to one includes the component. The second part uses 
floating point value encoding to encode the ,k ja and covariance kσ  parameters of maxM  components. 

Due to the switching mechanism of the components among the individuals during evolution of the GA, 
the components weight kπ cannot be encoded. Except for the best individual, these weights are 
assumed to be uniformly distributed.  
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Recombination 
 

The crossover operator selects two parent individuals randomly from the population ( )p t′ and 
recombines them to form two offsprings. The crossover probability cp  determines the number of 
offspring individuals H ( cH p M= ). We use the single-point crossover [6] which randomly chooses a 
crossover position  max{1,..., }Mχ ∈  within the first part of the individual and exchanges the value of the 
genes to the right of this position between both individuals for the first part with its associated 
parameters in the second part.  

 
Selection 
 

For selection, the (M,H)-strategy [7] is used. This approach refers to both the parent population 
p'(t) and the offspring population pm(t) containing M and H individuals, respectively. After both 
populations have been evaluated, the M best individuals are selected to form the population p""(t) for 
the next generation. 

 
Enforced Mutation 
 

If more components model the data points in a similar manner, some of their parameters are 
forced to mutate. This similarity is measured using the correlation coefficient. If the correlation 
coefficient is above the threshold, one of both components is randomly selected and added to the 
candidate set for mutation. Once the candidate set for enforced mutation is complete, a binary value is 
sampled from a uniform distribution for each candidate. According to this value, either the candidate 
component is removed by resetting the corresponding bit in the first part of the individual. 

 
Mutation 
 

The mutation operator inverts the binary value of each gene in the first part of the individuals with 
the mutation probability pm. For the second part of the individual, a uniform distributed random 
number sampled within an upper and lower bound is assigned to genes that are mutated. These bounds 
were determined from the data set. The mutation rate for value encoding is scaled down by a factor of 
number of parameter for each component. The mutation for the value encoded part of the individual is 
restricted to the parameters values. Since our GA-EM is elitist, there are no mutations performed on 
the best individual. 

After the number of SAR imagery regions is detected and the model parameters are estimated, 
SAR image segmentation is performed by classifying pixels. The Bayesian classifier is utilized for 
implementing classification. That is to say, to attribute at each )(sX  a class k with the following way: 

1
( ( )) {max[ (1 ) ( )]}j j js jj K

k X s Arg eπ σ φ σ
≤ ≤

=                                           (7) 
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4. Experiments 
 
To demonstrate the segmentation performance of our proposed algorithm, we applied it to two 

complex SAR images of 200× 200 pixel resolution size, consisting of woodlands and cornfields [see 
Figure 2(a)]. From the complex images, we generated an above-mentioned quadtree representation 
consisting of 3L =  levels and used a second-order regression. The weight of each component iπ is 
selected randomly. The maximum number of Gaussian components in the data is assumed to be 

maxM =15 for the EM and the GA-EM algorithm. The parameter setting for the GA-EM is mp =0.02 for 
the mutation probability, cp =0.8 for the recombination probability, K  =6 for the population size, R =3 
for the number of EM steps within one GA iteration, and 0.95 for the component correlation threshold. 
The EM algorithm is executed from 2 to maxM components. The selected model is the one that achieves 
the lowest MDL value within the set of obtained candidate models. The termination condition of both 
algorithms is reached when the relative log likelihood drops below 0.001. Figure 2(c) shows the results 
from applying GA-EM approach to two SAR images, as well as the results [see Figure 2(b)] from EM 
algorithm for comparison. Table 1 compares the EM and the GA-EM. We present the percentage of 
pixels (%) that are correctly segmented using the best model. The results we obtain show that the GA-
EM slightly outperforms the EM algorithm. 
 

Figure 2. (a) Original SAR image. (b) Segmented image from EM algorithm. (c) 
Segmented image from GA-EM algorithm. 

 

               
 

               
(a)                                  (b)                                   (c) 

 

Table 1. Percentage of pixels that are correctly segmented using EM and GA-EM algorithm. 

 EM GA-EM 
Figure 2 (top) 82 93 
Figure 2 (bottom) 79 95 
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5. Conclusions 
 

We combine the GA algorithm with the EM algorithm (denoted as GA-EM) and apply it to the 
segmentation of SAR image based on the MMAR model of SAR imagery. This kind of algorithm leads 
to a great improvement in ML parameter estimation and is less sensitive to initialization compared to 
the standard EM algorithm. Experimental results show that the GA-EM algorithm gives better results 
than the classical EM algorithm in the quality of the segmented image. 
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