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Abstract: Biochemical analysis of organisms to assess expo$o environmental
contaminants is of great potential use. Biochemmcatkers, specifically liver enzymes of
the first and the second phase of xenobiotic tansdition - cytochrome 48 (CYP 450),
ethoxyresorufin®-deethylase (EROD), glutathione-S-transferase (G&ng tripeptide
reduced glutathione (GSH) - were used to assegaroamation of the aquatic environment
at 12 locations near the mouths of major riverthmn Czech Republic. These rivers were
the Luznice, Otava, Sazava, Berounka, Vitava, Labl#e, Svratka, Dyje, Morava and
Odra. The indicator species selected was the Chelrigcus cephalus L.). The highest
levels of CYP 450 and EROD catalytic activity wéoend in livers of fish from the Labe
(Obifstvi) (0.32+0.10 nmol mY protein and 1061.38+545.51 pmol fimg* protein,
respectively). The highest levels of GST catalgiitivity and GSH content were found in
fish from the Otava (35.39+13.35 nmol ilimg® protein and 4.29+2.10 nmol GSH thg
protein, respectively). They were compared withelsvof specific inductors of these
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biochemical markers in muscle. The results confttnm®ntamination of some river
locations (Labe Ofistvi, Svratka).

Keywords: Biochemical markers, chuli€uciscus cephalus L.), river pollution, organic
pollutants

1. Introduction

The need for assessment of aquatic ecosystem cowtzon and of its impact on water dwelling
organisms has developed in response to rising i@geavironmental pollution, by agricultural and
industrial contaminants, in the past several dexalllany of these pollutants are widespread in the
environment, making the results of data collectomplicated to interpret. These contaminants alter
the physicochemical properties and stability of #mtire aquatic ecosystem. Fish are susceptible to
environmental contamination and are widely useliaimdicators for water quality assessment in both
marine and freshwater environments [1-5].

Because environmental contaminants can have a lsgpaztrum of sublethal effects on organisms,
bioindicators are useful tools for assessing tlesgmce and levels of chemical pollution. Such &ffec
in organisms sensitive to contaminant exposuresearsed as early warning signs for the degradation
of the environment [6-9].

Among the widely used biochemical markers in fisithe cytochrome j, system, especially the
1A subfamily [9, 10]. CytochromesRs represent a large family of enzymes, includeg@hase | of
xenobiotic metabolism, that oxidate both endogeremus$ exogenous substrates. A subfamily, CYP
4501A is present in all vertebrates and is espggdmlportant for metabolism of pollutants in aga@ati
ecoystems, where it is highly inducible by expostoepolycyclic aromatic hydrocarbons (PAH),
polychlorinated biphenyls (PCB), dioxins (2,3, 7e8achloro-dibenzodioxin; TCCD), and furans [11—
14]. Levels of CYP 450 in liver can be assessedhbgsuring ethoxyresorufi@-deethylase catalytic
activity, a highly sensitive biomarker [9].

Enzymes of phase Il of xenobiotic metabolism caglthe conjugation of both endogenous and
exogenous substrates with several highly hydrophdimpounds that occur at high levels in cells,(i.e
tripeptide glutathione - GSH). The reaction betw&eeptide glutathione and the electrophilic centr
of pollutants represents the main reaction of pliasenobiotic detoxification. The conjugate reacti
is catalyzed by glutathione-S-transferases (GSZyraes. These reactions increase the water solubilit
of the substrate and facilitate its excretion [1lbBicreased GST activity in fish liver has been
demonstrated in various fish species as the re$wxposure to PCBs [16-18], PAHs [19, 20], and
pesticides [9].

The aim of the study was to assess levels of ageatrironment contamination at eleven major
rivers in the Czech Republic through biochemicatkess in liver tissue of Chulbeuciscus cephalus
L. (Figure 1), and to compare the results of tha@sehemical analyses with the results of chemical
analysis, of fish muscle, to identify and quant#gecific inductors of these biomarkers. Selected
biochemical markers were enzymes of phase | arenibbiotic metabolism and tripeptide glutathione.
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Contamination levels of the locations were assessethe basis of the results, and the most highly
contaminated localities were predicted.

Figure 1. Indicator species — Chubduciscus cephalus L.).

2. Materials and Methods

In May and June 2006, male chub were caught amear, the mouths of 11 major rivers in the
Czech Republic: the Luznice (BeckiynOtava (Toplec), Sazava (Nespeky), Berounka (Srbsko),
Vltava (Zekin), Labe (Obistvi), Ole (Terezin), Labe (&in), Svratka (Zidlochovice), Dyje
(Pohansko), Morava (Lanzhot), Odra (Bohumin). Thmmicipalites near which the samples were taken
are given in brackets. The sampling sites are shiowfigure 2. Chub were selected as the most
suitable species, being sensitive bioindicatorfseshwater pollution and occuring at all test |omat.

At most sites, eight male chub were captured bytedfshing. The number and biometric
characteristics of fish captured are given in Tdble

Following capture, fish were killed by severing thginal cord after stunning, weighed and aged
from scales. Individual liver samples were taken doalysis of biochemical markers (CYP P450,
EROD, GST, tripeptide GSH). Muscle samples werdgzbon site to create a combined sample for
chemical analyses of polychlorinated dibemezdioxins (PCDD), polychlorinated dibenzofurans
(PCDF) and PCB. Immediately after collection, amgples were placed into liquid nitrogen in
cryotubes and stored at -80 °C until use.
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Figure 2. Map of the Czech Republic and locations of sangpkites (1. Luznice
(Bechyre), 2. Otava (Toglec), 3. Sazava (Nespeky), 4. Berounka (Srbsko)/Itava
(Zekin), 6. Labe (Ofistvi), 7. Olie (Terezin), 8. Labe @@in), 9. Svratka
(Zidlochovice), 10. Dyje (Pohansko), 11. Moravar{fhot), 12. Odra (Bohumin)).

2.1 Determination of CYP 450 and EROD activity

Liver samples were homogenized in buffer (0.25 Ncharose, 0.01 M TRIS and 0.1 mM EDTA)
and centrifuged at 10,000 g for 20 min at 4 °C. $hpernatant was transferred to ultracentrifugation
tubes and centrifuged again at 100,000 g for 14 4. The supernatant was drained, pellets washed
with buffer and resuspended in buffer. This susjpenwas put into individual Eppendorf tubes and
stored at —80 °C until use. Before the enzymes assayed, microsomal protein concentrations were
determined by the Lowry method [21].

Total cytochrome By was determined by visible light spectrophotometry400—490 nm on the
basis of the difference between absorbance readingS0 and 490 nm, and the values obtained were
then transformed to final concentrations. Measurémevere made after cytochrome reduction by
sodium dithionite and after the complex with carlmxide was formed. The method is described in
detail in study Sirokat al. [22].

Catalytic activity of the enzyme ethoxyresorurdeethylase was measured by spectrofluorometry.
The method is described in detail in study Sirekal. [22]. In the presence of NADPH, EROD
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transforms the substrate ethoxyresorufin to regarifleasurements were made using the Perkin-
Elmer Fluorescence Spectrophotometer 203.

Table 1.Characteristics of male chubeglciscus cephalus L.) from sampling sites;

n = number of fish.

Location Age (years)
River (Municipality) (distance n Weight+SD (g)

. . mean (range)
from site to mouth of river)
LuzZnice (Bechys) (11 kms) 8 614.4+155.0 4.9 (4-6)
Otava (Toglec) (20 kms) 9 360.6+253.0 4.2 (3-6)
Sazava (Nespeky) (27.5 kms) 8 278.1+63.9 3.8 (3-4)
Berounka (Srbsko) (29 kms) 8 292.5+99.5 3.6 (3-5)
Vitava (Zekin) (5 kms) 10 383.5+199.3 4.0 (3-7)
Labe (Olsistvi) (122 kms)* 8 306.3+144.9 4.1 (3-6)
Ohte (Terezin) (3 kms) 10 540.5+201.8 4.3 (3-7)
Labe (B¥¢in) (21 kms)* 8 546.3+211.0 4.8 (4-7)
Svratka (Zidlochovice) (23 kms) 8 243.8494.2 3.5483
Dyje (Pohansko) (16 kms) 3 626.7+558.2 4.7 (3-7)
Morava (Lanzhot) (9.5 kms) 8 304.4+110.6 3.1 (2-4)
Odra (Bohumin) (9 kms)** 8 149.4+78.1 2.8 (2-4)

* Distances between Labe sites and the border @étmany
** Distance between Odra site and the border witakd

2.2 Determination of GST activity and tripeptide GSH

The liver samples were extracted with phospateebuiipH 7.2). The homogenate of liver was
centrifuged (2,400 g for 10 min, 4 °C) and the soptant used for determination of glutathidhe-
transferase (GST), reduced tripeptide glutathi@®H), and protein concentration.

The catalytic activity of GST was measured spettobpmetrically (at 340 nm) by a modified
method of Habiget al. [23] using a Cobas Emira biochemical analyzepeBuoatant with phosphate
buffer (pH 7.2), 0.02 M CDNB (1-ClI-2,4-dinitroben®), and 0.1 M reduced glutathione was pipetted
into the cuvette of the biochemical analyzer. Tpecsic activity was expressed as nmol of formed
product per minute per milligram of protein.

Tripeptide glutathione was determined by the metbbcEliman [24] using the Cobas Emira
biochemical analyzer. Absorbance of coloured proeas determined at 405 nm and concentrations
(nmol GSH mg protein) calculated according to a standard catiibn. The protein concentration was
determined with theBicinchoninic Acid Protein Essay Kit (Sigma-Aldriclusing bovine serum
albumin as standard.



Sensors 2008 8 2594

2.3 Determination of PCDD/PCDF and PCB

The pooled samples of fish muscle were homogenemed dried by lyophilization. Internal
standards (13°C,, labeled PCDD/PCDF; 13C,, labeled dioxin-like PCB; and 18Cy, labeled
mono- to deca- PCBs) were added to the lyophilsadple. The samples were Soxhlet-extracted with
a 3:1 hexane-acetone mixture for 24 h. Fat remama@isequential clean up, and fractionation were
performed by a combination of dialysis with a seenipeable membrane and a modified EPA 1613
method [25].

PCDD/PCDFs and dioxin-like PCBs were analyzed ugeg chromatography/high-resolution mass
spectrometry (GC/HRMS) (Thermo Electron MAT95XP) MID scan mode. Two ions were
monitored for both native and isotope labeled commois. Quantification masses were chosen in
accordance with EPA 1613 and EPA 1668. Full congedh€B analyses were performed by
GC/MS/MS (Thermo Electron PolarisQ). The DB5ms omtuwas used for separation of congeners.
Gas chromatography conditions were set as foll@pfties injection at 260°C for 1 min; He as carrie
gas at 1.1 mL/min constant flow mode; temperatfitt@transfer line, 275°C; temperature program of
GC oven, 70°C for 1 min, 20°C mtrto 180°C, then 2.5°C to 300°C, followed by 5 nsnthermal.

The experiments were performed under constant ttondi ion source temperature, 200°C; flow of
dumping He to ion trap — 1.05 mL/min; isolation &8 min; excitation time, 10 min; number of
microscans, 3.

Toxic equivalents (TEQs) for fish were used to esgr levels of PCDD/PDCF and PCB
concentrations in male chub muscle, as reporteéddoyden Berg et al. [26].

QA/QC: the laboratory is accredited by Czech Accreditatimstitute in accordance to ISO 17 025
norm. The method was validated using certifiedreafee materials NIST 1588a, NIST 1944, WMF,
WMS (Wellington Laboratories). In accordance withr standard operating procedures, we obtain
recoveries of IS ranging from 50-130%.

2.4 Satistical methods

Statistical analysis of the data was performedgusite program STATISTICA 6.1 for Windows
(StatSoft CR). Data were assessed by non-paranmegéticods because data normality was not proven.
The Kruskal-Wallis test was used to compare biodbanmarkers of contamination among individual
profiles. Whenever the Kruskal-Wallis test reveadeghificant differences between profiles (P < (,05
multiple comparisons of all profiles were subsediyeperformed. Relationships among individual
parameters were assessed using Spearman's conreladifficient (R).

3. Results
3.1 Results of biochemical analyses

The highest CYP 450 levels in liver were foundishffrom the Labe (Qibstvi) (0.32+0.10 nmol
mg* protein), while the lowest concentration was ie tuZnice (0.11+0.08 nmol riigprotein) (Figure
3). Statistical analysis of CYP 450 levels showigmhificant differences between Labe (@tvi) and
following locations: the LuZnice, the Sazava, tleeddinka, the Svratka and the Morava (P < 0.05).
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Figure 3. Content of cytochrome P450 in male chlbugiscus cephalus L.) livers.
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The highest EROD activity in liver was in fish frothe Labe (Ofistvi) (1061.38+545.51 pmol
min* mg* protein), and the lowest EROD activity was in Merava (183.04+48.20 pmol mifnmg*
protein) (Figure 4). Significant differences weosiid (P < 0.05) between the Labe {fStvi) and the
Otava, the Sazava, and the Morava. A significafierdince (P < 0.05) was also found between the
Morava and the Vltava.

Figure 4. EROD activity in male chuli_euciscus cephalus L.) livers.
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The highest GST catalytic activity in fish liver svaetected in fish from the Otava (35.39+13.35
nmol min* mg* protein). The lowest was in those from the Odta §14.43+3.80 nmol mih mg*
protein). Statistical analysis of GST activity stealsignificant differences between the locationaDdr
and the locations Luznice, Otava, Vltava, and L istvi) (P < 0.05), and also between the Svratka
and the Otava (P < 0.05) (Figure 5).

The highest GSH tripeptide content in fish liversndetected in the Otava (4.29+2.10 nmol GSH
mg* protein), the lowest GSH content was in the Bekau(lL.23+0.73 nmol GSH rigprotein).
Statistical analysis of GSH content in fish liveiowed significant differences between the Otava and
the Berounka, the @&, the Morava, and the Odra (P < 0.05); statistaralysis also showed
significant differences between the Labe {fGtvi) and the Berounka (P < 0.05) (Figure 6).

Significant correlations (R = 0.571) of EROD adtwvith CYP 450 and of GST with GSH (R =
0.595) in liver tissue were found in fish from laitations (P < 0.01).

Figure 5. GST catalytic activity in male chuhduciscus cephalus L.) livers.
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3.2 Results of chemical analyses

The concentrations of PCCD/PCDF TEQs in male chuisake ranged from 0.10 (Berounka) to
1.10 pg g dry weight (d.w.) (Ote) and from 0.27 (Vltava) to 1.71 pg g.w. (Labe OHstvi and
Svratka), respectively. The concentrations of PABQ% in male chub muscle ranged from 0.21
(Berounka) to 1.28 pgyd. w. (Labe Ofistvi). Total TEQs concentrations pf PCDD/PCDF and
PCB TEQs concentrations) in male chub muscle rariged 0.74 (Berounka) to 3.97 pg'al. w.
(Labe Olsistvi). The toxic equivalents of analysed chemieaks shown in Figure 7. No correlation
with biochemical markers from individual sites waesformed because of the combined chub muscle
samples.
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Figure 6. Content of tripeptide GSH in male chule(ciscus cephalus L.) livers.
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4. Discussion

Phase | enzyme levels (CYP 450 content and ERORitgrtshow the highest contamination to be
at localities downstream from major chemical fae®r (Labe Ofistvi, Labe [&¢in), urban
concentrations (Vitava), and heavy industry (coating) (Odra). The major inducers of commonly
monitored biomarkers are contaminants that beloralarge group of organic pollutants, PAH, PCB,
and PCDD/PCDF, persistent in the environment. Itidocof the cytochrome 48 system and EROD
activity is well documented; a large number of laory studies have been carried out measuring
effects of organic trace pollutants on hepatic emzy of various fish species [19, 27-30]. Results of
laboratory studies have been confirmed in a greather of field studies [i.e., 31-34]. Our results
indicate the presence, at observed locations, diicitors of the observed biochemical markers. The
highest levels of these inductors were detectdinmuscle from the sites on the Labe {iGtvi) and
the Svratka. The source of organic chemical paltutat the Labe (Gistvi) site is the chemical
manufacturing industry. The River Labe is one & thost highly polluted European rivers [35-38].
Numerous chemical plants are located along its $askwell as along the tributaries of the uppereLab
in the Czech Republic. Presumably as a result lotidin, the toxic substances are homogeneously
distributed along the River Labe [39]. Despite g@fao reduce intentional and incidental releases,
organic pollutants are frequently detected in emnnental samples. The presence of organic polkitant
in fish muscle and the relation to specific bioneskwere also determined by Siradtaal. [22] and
Havelkovaet al. [40] at the Labe (Gistvi) and Vitava. Sirokat al. [22] found the highest PCB levels
(X 7 PCB) in fish muscle and the greatest PAH lewrelsottom sediment at sites on the River Labe
and the Vitava. High levels of organic chemicallgaints at Svratka in the presented study may be
related to the densely populated urban area of.Brno
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Figure 7. Total TEQ concentrations for PCDD/PCDFs and PG®Bsg" d. w.) in male
chub (euciscus cephalus L.) muscle.
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Measurements of phase Il enzymes may be usefuiarcontext of the balance between phase |
activation and phase Il detoxification. The balabeéveen phase | activation reactions and phase |l
conjugation pathways can underlie the toxicity @y organic xenobiotics, such as the PAHs.

The highest activity of GST and the highest lesdl¢ripeptide reduced GSH were detected at the
locations Otava, Labe (@istvi) and LuzZnice. Major inductors of the enzynwsthe phase I
xenobiotic detoxification and tripeptide GSH arscatonsidered to be persistent organic pollutants:
PCBs, PAHs and PCCD/PCDFs [16, 18]. Increased carat®ns of total liver glutathione relative to
reference sites, have been observed in English(Bl#aronectes vetulus) collected from a PCB- and
PAH- polluted portion of the Puget Sound in Wastong[41] and in brown bullhea@Ameiurus
nebulosus) from a PAH-polluted section of the Buffalo RivarNew York [42].

Some studies have not confirmed those which shayheni GST activity related to organic
pollutants [17, 43-45]. Significant differencesanzyme activity in fish from polluted and reference
sites have been reported in some field studies49pb-T his variation in findings could be the resoit
fish species’ differing sensitivity to the presemdexenobiotics in the environment [50]. The presen
of GST catalytic activity inhibitors could play amportant role in the biochemical responses of
aquatic organisms [51].

The highest total TEQ concentrations of chemicalupgnts (PCCD/PCDFs and PCB) were
detected at the locations Labe {@bvi) and Svratka. The present study revealedsdip® relationship
between concentrations of chemical pollutants (PETIDF and PCB) in fish muscle and levels of
biomarkers in indicator fish liver from e.g. Lab®kfistvi). Decreased levels of phase | hepatic
enzymes, despite increased levels of the spedcifiadtors in muscle may indicate the presence of
specific inhibitors of these enzymes in the aquatiwironment (i.e., Svratka). There is extensive
literature on the biomarker inhibition of metaliompounds (i.e., copper, lead, zinc, cadmium, &sen
nickel, chromium, and tin) and their effects orhfigopulations [52-56]. It is difficult to find an
appropriate reference site with no contaminantsreldeer, several natural factors influence EROD



Sensors 2008 8 2599

activity, including sex, reproductive status, seascspecies, and water temperature, making data
sometimes difficult to interpret [12, 57-58]. Ecgical and biological factors should be taken into
account to explain variations in enzymatic biotfarmeation activities in fish.

5. Conclusions

Methods of biochemical monitoring for exposure tawvieonmental contaminants are of great
potential use. In the present study, CYP 450, giatadctivities of EROD and GST and tripeptide GSH
were used for assessment of contamination by argawmliutants at twelve locations in the Czech
Republic. The highest level of CYP 450 and ERODvéagtwere found at the Labe (@istvi); the
highest GST activity and levels of tripeptide GSldravfound at the location Otava. The results of
analysis of muscle for specific inductors of theasweed biomarkers confirmed high levels of
biochemical contamination at the Labe {3tvi). However, high content of the inductors instle of
fish from the Svratka coupled with low levels ofdr biochemical markers may indicate the presence
of specific inhibitors of biomarkers in the aquatitvironment.
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