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Abstract: Due to the wide potential applications of wireless sensor networks, this topic has 

attracted great attention. The strict energy constraints of sensor nodes result in great 

challenges for energy efficiency. This paper proposes an energy-efficient organization 

method. The organization of wireless sensor networks is formulated for target tracking. 

Target localization is achieved by collaborative sensing with multi-sensor fusion. The 

historical localization results are utilized for adaptive target trajectory forecasting. 

Combining autoregressive moving average (ARMA) model and radial basis function 

networks (RBFNs), robust target position forecasting is performed. Moreover, an energy-

efficient organization method is presented to enhance the energy efficiency of wireless 

sensor networks. The sensor nodes implement sensing tasks are awakened in a distributed 

manner. When the sensor nodes transfer their observations to achieve data fusion, the 

routing scheme is obtained by ant colony optimization. Thus, both the operation and 

communication energy consumption can be minimized. Experimental results verify that the 

combination of ARMA model and RBFN can estimate the target position efficiently and 

energy saving is achieved by the proposed organization method in wireless sensor networks. 

Keywords: Wireless sensor networks, energy efficiency, target forecast, ant colony 

optimization 
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1. Introduction 

Wireless sensor networks (WSNs) have become a growing research field. In WSN, a large number 

of intelligent sensor nodes with sensing, processing and communication capabilities accomplish 

complicated sensing tasks. Due to the limited battery capacity, the energy efficiency of a WSN is an 

important issue. Sleeping and awakening of sensor nodes are supported in power-aware hardware 

design [1]. As a typical WSN application, target tracking should be addressed as an energy efficiency 

problem. Prior target position estimation can be used to organize the awakening and routing of WSN, 

so that the energy efficiency can be improved. Traditional target tracking is usually performed by a 

Kalman filter (KF) [2] or a particle filter (PF) [3]. These algorithms are computationally-intensive for 

sensor nodes. Here, adaptive estimation can be provided by autoregressive moving average (ARMA) 

models. However, the high uncertainty around maneuvers, which brings estimation error into the 

forecasting process, must be handled. Based on the forecasted results, energy-efficient organization of 

sensor nodes can be performed to optimize the energy consumption of a WSN. 

This paper proposes an energy-efficient organization method for WSNs. Equipped with multi-

sensors, sensor nodes can produce range and bearing measurements. As the target is often detected by a 

number of sensor nodes, a Fisher information matrix (FIM) [4] is adopted to evaluate the target 

localization error. With the known target trajectory, adaptive target position forecasting is implemented 

by a novel algorithm. It is a combination of ARMA model [5] and RBFN [6], which is called ARMA-

RBF. The target position estimation of the next sensing instant is available. The energy-efficient 

organization approach includes sensor node awakening and dynamic routing. A distributed awakening 

approach is presented to save and scale the operation energy consumption. Ant colony optimization 

(ACO) [7] is introduced to optimize the routing scheme, where transmission energy consumption is 

concerned. Experiments analyze the energy efficiency of proposed energy-efficient organization 

method and present the energy saving. 

The rest of this paper is organized as follows. Section II gives the preliminaries of the energy-

efficient organization for target tracking. In Section III, we present the principle of collaborative 

sensing and adaptive estimation. Section IV describes the approach of energy-efficient organization, 

including sensor node awakening and dynamic routing scheme. Experimental results are provided by 

Section V. Finally, Section VI presents the conclusions of the paper. 

2. Preliminaries 

The two-dimension sensing field is filled with randomly deployed sensor nodes. Their positions are 

provided by a global positioning system (GPS). A sink node is located in the centre of the sensing 

field. Sensor nodes sense collaboratively within a specified sensing period [8]. As the historical target 

positions become available, the sink node can forecast the target position of the next sensing period. 

2.1 Multi-Sensor Model 

It is assumed that each sensor node equips two kinds of sensors, one pyroelectric infra-red (PIR) 

sensor and one omni-microphone sensor. Sensor nodes obtain the bearing observations with the PIR 

sensors, while the range observations are produced by the omni-microphone sensors. For each sensor 
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node, it is assumed that the two sensors have the same sensing range sR . The coordinates of the sensor 

node and target are denoted by ( , )s s
i ix y  and ( , )target targetx y  respectively. Then the true bearing angle is 

calculated as: 

arctan
s

target it
i s

target i

y y

x x
β

−
=

−
                                                    (1) 

and the true range value is calculated as: 
2 2

arg arg( ) ( )t s s
i t et i t et ir x x y y= − + −                                          (2) 

Both sensors have zero-mean and Gaussian error distribution. The standard deviation of bearing and 
range observations is βσ  and rσ  respectively. The observations produced by the sensor node i  are: 

t
i i wββ β= +                                                            (3) 

t
i i rr r w= +                                                              (4) 

wherewβ  and rw  are the corresponding Gaussian white noise. 

2.2 Energy Model 

For the scalability of energy consumption in WSN, all the components of the sensor node are 

supposed to be controlled by an operation system, such as microOperating System (µOS) [1]. Thereby, 

shutting down or turning on any component is enabled by device drivers in the specified WSN 

application. 

During sensor node operation, four main parts of energy consumption source are considered: 

processing, sensing, reception and transmission. The processing energy is spent by the processor with 

memory. It is assumed that when the processor is active it has constant power consumption. The 

embedded sensors and A/D converter are adopted as there is any sensing task, and the corresponding 

power consumption is a constant. For wireless communication, the reception and transmission energy 

is derived from the RF circuits.  

When the reception portion is turned on, the sensor node keeps listening to the wireless channel or 

receiving data. For the transmission portion of RF circuits, the transmission amplifier has to achieve an 

acceptable magnification. Therefore, when sensor nodes i transmits data to sensor node j, the power 

consumed by transmission portion is [9]:  
2

1 2 ,tx d i j dP r d rα α= +                                                              (5) 

where dr  denotes the data rate, 1α  denotes the electronics energy expended in transmitting one bit of 

data, 2 0α >  is a constant related to transmission amplifier energy consumption, ,i jd  is the Euclidean 

distance between the two sensor nodes.  

3. Collaborative Sensing and Adaptive Estimation 

Due to the redundancy of sensor node deployment in WSNs, the target can be detected by a group of 

sensor nodes simultaneously. Observations of sensor nodes are merged for higher detection accuracy. 

Moreover, the sink node constructs the forecasting model with the historical target trajectory.  
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3.1 Target Localization with Multi-sensor Fusion 

It is assumed that the coordinates of the target are ( , )target targetx y  at one sensing instant of the WSN. 

Meanwhile, the target can be detected by sN  sensor nodes. Sensor nodes can produce the bearing 

observations iβ  and range observations ir , where 1,2, , si N= L . For sensor node i , the matrix 

representation of the observation equation can be derived from (3) and (4): 
( ) ,  ~ N(0, )i i i iH X W WΓ = + Ψ                                                 (6) 

where [ , ]T
target targetX x y=  is the true target position, [ , ]T

i i irβΓ =  is the observation vector, iH  is the 

observation matrix, iW  is the observation error vector, N  means the normal distribution function, and 
2 2[ , ]rdiag βσ σΨ = . 

With the observation of the sensor node i , the likelihood function of the true target position X  is 

calculated as: 
11

[ ( )] [ ( )]}
2

1
p( | )

2

T
i i i iH X H X

i i

r

X e
βπ σ σ

−− Γ − Ψ Γ −
Γ =

⋅
                                   (7) 

A suitable measure for the information contained in the observations can be derived from the Fisher 

information matrix (FIM) [4]. The FIM for the observations of sensor node i  is calculated as: 

E{[ ln p( | )][ ln p( | )] }T
i i iJ X X

X X

∂ ∂= Γ Γ
∂ ∂

                                    (8) 

where E represents the expected value. 

According to (7), we have: 
2 2

2 2 4 2 2 2 4 2

2 2

2 2 4 2 4 2 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i i i i i i
t t t t

i r i i r i
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i i i i i i
t t t t

i r i i i r
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r r r r
J

x y x y x y

r r r r

β β

β β

σ σ σ σ

σ σ σ σ

 ∆ ∆ ∆ ∆ ∆ ∆+ − 
 =
 ∆ ∆ ∆ ∆ ∆ ∆
 − +
  

                                      (9) 

where s
i target ix x x∆ = − , s

i target iy y y∆ = −  and t
ir  is the Euclidean distance between the true target 

position and sensor node i  as presented in (2). 
1

iJ −  is the estimation error covariance matrix, which defines the Cramer-Rao lower bound (CRLB). 

To localize the target with higher accuracy, we should extract the information from the all the 
observations { | 1,2, , }i si NΓ = L . The FIM for all the observations is calculated as: 

1

sN

i
i

J J
=

=∑                                                                 (10) 

According to the estimation error covariance matrix 1J − , the root mean square error (RMSE) eL  is 

taken as the target location error, which is calculated as: 
1trace( )eL J −=                                                            (11) 

where trace is a function computing the sum of matrix diagonal elements. 

In this way, the target can be localized by maximum likelihood estimation after gathering the 
observations from the sensor nodes. The location accuracy is reflected by eL . 
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3.2  Adaptive Target Position Forecasting 

As a record of the target trajectory, a time series of historical target positions is transferred among 

the sensor nodes with sensing tasks. When the current target position is obtained, the historical target is 

also available in the active sensor nodes so that target forecasting can be performed. In the two-

dimension field, the target position is presented by Descartes coordinates. One direction of the target 
trajectory { | 1,2, , }k ty k N= L  is considered for this discussion. The problem is to estimate the target 

position 1tNy +  in the next sensing period. The same forecasting approach can be implemented in the 

other direction.  

The ARMA model is adopted here due to its outstanding performance in model fitting and 

forecasting and its modest computational burden. The ARMA model contains two terms, the 

autoregressive (AR) term and the moving average (MA) term [5]. In the AR process, the current value 
of the time series ky  is expressed linearly in terms of its previous values 1 2{ , , , }k k k py y y− − −L  and a 

random noise ka . This model is defined as a AR process of order p , AR( )p . It can be presented as: 

1 1 2 2k k k p k p ky y y y aφ φ φ− − −= + + + +L                                            (12) 

where { | 1,2, , }i i pφ = L  are the AR coefficients. In the MA process, the current value of the time 

series ky  is expressed linearly in terms of current and previous values of a white noise series 

1{ , , , }k k k qa a a− −L . This noise series is constructed from the prediction errors. This model is defined as 

a MA process of order q , MA( )q . It can be presented as: 

1 1 2 2k t k k q k qy a a a aθ θ θ− − −= − − − −L                                              (13) 

In the autoregressive moving average process, the current value of the time series ky  is expressed 

linearly in terms of its values at previous periods 1 2{ , , , }k k k py y y− − −L  and in terms of current and 

previous values of a white noise 1{ , , , }k k k qa a a− −L . 

To determine the order of ARMA model, the patterns of autocorrelation function (ACF) and partial 

autocorrelation function (PACF) are analyzed. After experimental analysis, it is found that the time 
series { | 1,2, , }k ty k N= L  can be modeled by AR( )p . The method of least square estimation is 

adopted to determine the coefficients of AR( )p  [10]. 

With the constructed AR( )p  model, forecasting can be performed on sensor nodes. In general, the 

estimation equation of 1tNy +  is: 

1 1 2 1 1E[ ]
t t t tN N N p N py y y yφ φ φ+ − − += + + +L                                           (14) 

Compared to (12), the noise term 1pa +  is not taken into account. To enhance the accuracy and 

robustness of forecasting, the estimation 1pa +
)

 of 1pa +  is obtained by RBFN.  

RBFN is a three-layer feed-forward neural network which is embedded with several radial-basis 

functions. Such a network is characterized by an input layer, a single layer of nonlinear processing 

neurons, and an output layer. The output of the RBFN is calculated according to [11]: 

2
1

(|| || )
M

out j j in j
j

z z cω χ
=

= −∑                                                       (15) 

where inz  is an input vector, jχ  is a basis function, 2|| ||⋅  denotes the Euclidean norm, jω  are the 

weights in the output layer, M  is the number of neurons in the hidden layer, and jc  are the centers of 
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RBF in the input vector space. The functional form of jχ  is assumed to have been given, which is 

always assumed as Gaussian function: 

( )
2

2
inz

inz e σχ
−

=                                                                     (16) 

where σ  is a constant. 

The framework of ARMA-RBF is shown in Figure. 1. According to (15), the RBFN is constructed 

as: 

1 1: 2
1

(|| || )
t t t

M

N j j N p N j
j

a y cω χ+ − +
=

= −∑
)

                                                  (17) 

Figure 1. The framework for ARMA-RBF forecasting. 

 
 

Input vector 1 1[ ]i i i py y y+ + −L  and output i pa +  are taken as the training samples, where 

1 ti N p≤ ≤ − . Then the estimation 1tNy +
)

 is calculated as: 

1 1 2 1 1 1t t t t tN N N p N p Ny y y y aφ φ φ+ − − + += + + + +) )
L                                        (18) 

In ARMA-RBF algorithm, the RBFN is dynamically trained with the new target position in each 

sensing period. With the output of RBFN, the forecasting error of ARMA model can be compensated. 

4. Energy-Efficient Organization Method 

With the forecasted target position, WSN performs distributed awakening to enhance the scalability 

of the energy consumption. Moreover, the routing scheme of data reporting is optimized by ACO for 

energy efficiency. 

4.1 Distributed Sensor Node Awakening 

Sensor node awakening is considered with the forecasted target position. To prolong the lifetime of 

WSN, we exploit a sensor node awakening approach. Operation modes of sensor node are defined as 

follows:  

1) Sleep: It has the lowest power consumption as all the components are inactive. Only the timer-

driven awakening is supported, that is, the processor component can be awakened by its own timer. 

The power consumption is defined as 5mW. 
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2) Idle: Only the processor component is active in this mode. All the other components is controlled 

by the operation system. The power consumption is defined as 25 mW. 

3) Sense: The processor and sensor components are active. In this mode, sensor nodes can acquire 

the target observations. The power consumption is defined as 40 mW. 

4) Rx: The processor is working and the reception portion of RF circuits is turned on. Sensor nodes 

can receive request or data. The power consumption is defined as 45 mW. 

5) Rx & tx: The processor is active while both the reception and transmission portions of RF circuits 

are turned on. Sensor nodes can receive and transmit information. The power consumption is defined 
as (45 )txP+  mW, where txP  is the power consumption of transmission portion according to Section II.  

Then, sensor node awakening strategy can be exploited according to the defined operation modes. 

Each sensor node controls its operation modes separately. For a sensor node in idle mode, if there is no 

target in its sensing range, it will get into rx mode. Thus, the broadcasting information of the target 

position can be obtained from the sink node. Note that this target position is the target position 

estimation forecasted in the last sensing period. That is because the target localization is not 

accomplished yet, while the sensor node should go to sleep as soon as possible. Then the sensor node 

goes to sleep mode with the estimated sleep period number. If the sensor node in idle mode detects any 

target, it goes into data acquisition sensing mode. After that, the data is transmitted for data fusion in 

the rx & tx mode. Then, the forecasted target position is acquired. Also, the sensor node which finishes 

the sensing task goes to sleep mode, adopting the estimated sleep period number. 

Here, the estimation approach of sleep period number will be discussed. For each sensor node, we 
define the shortest distance to the WSN boundary as mind . Then the sleep time is: 

min max

min max
max

s

target ssleep
s

T d v T R

d Rt
d v T R

v

≤ +
 −=  > +


                                           (19) 

where T  denotes the sensing period, sR  is the sensing range of sensor node, and maxv  is the maximum 

target velocity. When any target gets into the sensing field, the Euclidean distance between the 
forecasted target position and the sensor node is denoted by targetd ′ . If mintargetd d′ < , then target targetd d ′= ; 

otherwise, mintargetd d= . 

Thereby, WSN stays on standby for any new target entering it. When there is a target in the sensing 

field, the sensor nodes which are far away from the target will go to sleep. The sleeping sensor nodes 

are awakened on time when there is potential sensing task.  

4.2 Dynamic Routing with Ant Colony Optimization 

When there is a target in the sensing field, a group of sensor nodes goes into the sense mode at each 

sensing instant. The observations produced by these sensor nodes should be transferred to the sink 

node for collaborative sensing. As these sensor nodes are close to each other, data transmission is 

enabled in one pair of sensor nodes at a time to avoid collisions in the communication. Therefore, a 

routing problem is considered as follows:  
1) The index of sensor nodes with observations is denoted by {1,2, , }anL ; 

2) The cost measure of edge between sensor node i  and j  is defined according to (5):  
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2
, 1 2 , ,  i j i jd i jρ α α= + ≠                                                        (20) 

3) A optimal path { (1), (2), , ( )}anλ λ λL  should be found, where ( ) {1,2, , }ai nλ ∈ L . At the 

beginning, sensor node (1)λ  transmits observations to sensor node (2)λ . Sensor node ( )anλ  can 

localize the target by data fusion. If i j≠ , then ( ) ( )i jλ λ≠ . The minimization objective function is: 
1

( ), ( 1)
1

an

i i
i

F λ λρ
−

+
=

=∑                                                               (21) 

In this way, the observations of sensor nodes can be merged step by step on the path and the last 

sensor node will obtain the final target localization result. This result is then reported to the sink node. 

As it only includes the coordinates of the target, the communication cost is ignored. 

It is assumed that the sink node maintains the awakening information of sensor nodes. Therefore, 

the optimization of routing scheme can be performed by the sink node. ACO is adopted to find the 
optimal path [7]. In addition to the cost measure, each edge has also a desirability measure ,i jτ , called 

pheromone, which is updated at run time by artificial ants. Ants prefer to move to sensor nodes with a 

high amount of pheromone. The probability with which ant k  in sensor node i  chooses to move to the 
sensor node j  is given as follow: 

, ,

, ,
,

( )

( )

0

k
i

g
i j i j k

ig
k

i u i u
i j

u Q

k
i

j Q

j Q

τ δ
τ δη

∈


∈= 


∉

∑                                                 (22) 

where ,i jτ  is the pheromone, ,i jδ  is the inverse of the cost measure ,i jρ , k
iQ  is the set of sensor nodes 

that remain to be visited by ant positioned on sensor node i , and  ( 0)g g >  is a parameter which 

determines the relative importance of pheromone versus distance. Once all ants have built their tours, 

pheromone is updated on all edges according to 

, , ,
1

(1 )
am

k
i j t i j i j

k

τ α τ τ
=

= − + ∆∑                                                     (23) 

where 

,

1
 ant  has toured edge ( , )

0

k k
i j

if k i j
L

otherwise
τ


∆ = 


                                     (24) 

0 1tα< <  is a pheromone decay parameter, kL  is the length of the tour performed by ant k , and am  is 

the number of ants. Finally, the edge which receives the greatest amount of pheromone is regarded as 

the optimal path. 

5. Experimental Results 

In this section, the efficiency of collaborative sensing, adaptive estimation and energy-efficient 

organization will be analyzed with simulation experiments.  

5.1 Experimentation Platform 

It is assumed that the sensing field of WSN is 400 m x 400 m, in which 300 sensor nodes are 

deployed randomly. The sensing period is 0.5 s. For the target, maximum acceleration is 25 m/s  and 
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maximum velocity is 25 m/s. Deployment of WSN and target trajectory is given in Figure 2. The 

trajectory of 100 points involves different moving situations, so this scenario can represent the 

generalization of tracking problem. According to Section II, each sensor node has the sensing range of 

40 m. The standard deviation of bearing observations is 2o  while that of range observations is 1 m. 
The parameters in (5) are set as: 1 500 nJ/bitα = , 2

2 5 nJ/(bit m )α = ⋅  and 1 Mbit/sdr = . The data 

amount of observations is 1 KB for each sensor node. It is assumed that the time for staying in each 

mode is 20 mstδ = .Then, the power consumption of WSN in the each sensing period is: 
300

1

( ) ( , )WSN
i

t
P k P i k

T

δ
=

= ∑                                                       (25) 

where T  is the sensing period and k  is the sensing period index. ( , )P i k  denotes the power 

consumption of sensor node i  in the k -th sensing period. Moreover, the total energy consumption of 
WSN after Tn  sensing periods is: 

1

( )
Tn

WSN WSN
k

E T P k
=

= ∑                                                         (26) 

Figure 2. Deployment of WSN and the target trajectory. 

 
 

Among the total energy consumption, energy consumed by transmission portion is defined as 

transmission cost, while the other energy consumption is defined as the operation cost.  

5.2 Target Tracking Experiments 

First, the efficiency of collaborative sensing is discussed. For sensing performance comparison, we 

consider the situation that only the closest sensor node for the target acquires the observations. Figure 3 

compares the target location error with collaborative sensing and single sensor node. Obviously, the 

localization errors of single sensor node and collaborative sensing method have the same trend, where 

are impacted by the same obstacles and noises. However, it can be seen that the collaborative target 

location error is much less than that of single sensor node all the time. The reason is that the 

collaboration of multiple sensor nodes can enhance the tracking ability and weaken the impact of noise 

and obstacles, which can significantly improve the robustness of target tracking. Thus, the sensing 

performance is enhanced by the collaborative sensing. 
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Figure 3. Comparison of target localization error with collaborative sensing and single 

sensor node. 

 
 

Figure 4. Target position forecasting error of ARMA and ARMA-RBF in the coordinate 

frame XOY: (a) X direction; (b) Y direction. 

 
(a) 

 
(b) 
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Then, the target position forecast performance of time series analysis is studied. In each sensing 

period, the known target trajectory in the x and y directions forms two sets of time series, which are 

analyzed respectively without further assumptions. It is assumed that target localization in the initial 

5 s can be guaranteed by the boundary sensor node, where the target localization results are used for 

ARMA learning. According to Section III, the target positions forecasting error with ARMA and 

ARMA-RBF is compared. The forecasting error from 5 s to 25 s is given in Figure 4. Following the 
patterns of ACF and PACF, the parameter p is set as 3 for ( )AR p  model. As illustrated in Figure 4, 

because RBFN is dynamically trained and used for compensating the forecasting error of ARMA 

model, the forecasting error of ARMA-RBF algorithm is much less than ARMA algorithm. Thus, with 

ARMA-RBF algorithm, the estimation of target movement can provides more accurate results for 

sensor nodes scheduling. Obviously, the energy-efficient organization method can stably keep the 

energy consumption of operation and transmission in a low level. It means that the energy consumption 

of WSN can be more balanced, and the lifetime of whole WSN can be prolonged, with the guidance of 

energy-efficient organization. 

Figure 5. Power consumption comparison with general organization and energy-

efficient organization: (a) operation cost; (b) Transmission cost. 

 
(a) 

 
(b) 
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With the forecasted target position, the sensor nodes estimate the sleep period number and go to 

sleep in a distributed manner. Thereby, the operation cost of WSN is optimized. In each sensing period, 

all the sensor nodes which can detect the target wake up. In order to minimize the transmission cost, 

the ACO algorithm is utilized for routing. According to (25), the power consumption of WSN is 

calculated. Meanwhile, a general organization approach is considered for comparison, where all the 

sensor nodes wake up every sensing period. Instead of ACO algorithm, sensor nodes forward their 

observations according to the distance from sink node, where it starts on farthest sensor node and ends 

on the closest sensor node. Figure 5(a) illustrates the operation cost with general organization and 

energy-efficient organization, while the power consumption curves of transmission cost are presented 

in Figure 5(b). Utilizing energy-efficient organization, the operation and transmission costs are both 

lower, because the energy-efficient organization method can automatically adjust the status of sensor 

nodes and schedule the sleep period of each sensor node according to the estimation of target 

movement. 

According to Figure 5, Table 1 gives the energy consumption of the organization approaches 

utilizing (26). Define the relative reduction of energy consumption as: 
1 2

1
100%WSN WSN

WSN

E E
C

E

−∆ = ×                                                    (27) 

where 1
WSNE  and 2

WSNE  denote the energy consumption with general and energy-efficient organization, 

respectively. Thus, 12.3% operation cost and 40.7% transmission cost is saved during target tracking. 

Table 1. Energy Consumption Comparison of General Organization and Energy-efficient 

Organization. 

Energy consumption (J) General organization Energy-efficient organization 

Operation 111.5 97.8 

Transmission 84.7 50.2 

6. Conclusions 

Considering the energy constraints of target tracking in WSN, this paper proposes an energy-

efficient organization method based on collaborative sensing and adaptive target estimation. Sensor 

nodes which are equipped with bearing and range sensors utilize the maximum likelihood estimation 

for data fusion. Hence, targets can be localized by collaborative sensing while the localization error is 

evaluated utilizing FIM. A sink node maintains the historical target positions, with which the target 

position in the next sensing instant is estimated by ARMA-RBF. The future target position is derived 

from the forecasted results and is adopted to organize the sensor nodes for sensing. Here, the energy-

efficient organization method includes the distributed sensor node awakening and adaptive routing 

scheme. Sensor nodes can go to sleep when there is no target in its sensing range and it can be 

awakened once there is potential sensing task. Besides, probabilistic awakening is introduced to 

prolong the sleep time of sensor nodes. ACO algorithm is employed to optimize the path of data 

transmission. Experiments of target tracking verify that target localization accuracy is enhanced by 

collaborative sensing of the sensor nodes, while the forecasting performance is improved by combining 
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ARMA model and RBFN. More importantly, the energy efficiency of WSN is guaranteed by the 

distributed sensor awakening and dynamic routing. The main contribution of this paper is an energy-

efficient organization framework for target tracking as well as the forecasting and awakening 

approaches. 
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