
Sensors 2008, 8, 2673-2694

sensors
ISSN 1424-8220
© 2008 by MDPI

www.mdpi.org/sensors

Full Research Paper

Multidirectional Scanning Model, MUSCLE, to Vectorize
Raster Images with Straight Lines

Ismail Rakip Karas 1, Bulent Bayram 2, Fatmagul Batuk 2, Abdullah Emin Akay 3 and Ibrahim
Baz 1

1 Gebze Institute of Technology, Dept. of Geodesy and Photogrammetry Engineering, 41400, Gebze,

Kocaeli, Turkey; E-mails: ragib@gyte.edu.tr; ibaz@gyte.edu.tr
2 Yildız Technical Univ., Dept. of Geodesy and Photogrammetry Engineering, 34349, Besiktas,

Istanbul, Turkey; E-mails: bayram@yildiz.edu.tr; batuk@yildiz.edu.tr
3 Kahramanmaras Sutcu Imam Univ., Dept. of Forest Engineering, 46100, Kahramanmaras, Turkey;

E-mail: akay@ksu.edu.tr

* Author to whom correspondence should be addressed; E-mail: ragib@gyte.edu.tr;

www.ismailkaras.com; Tel. +90 262 6053163; Fax +90 262 6053163

Received: 19 February 2008 / Accepted: 1 April 2008 / Published: 15 April 2008

Abstract: This paper presents a new model, MUSCLE (Multidirectional Scanning for Line

Extraction), for automatic vectorization of raster images with straight lines. The algorithm

of the model implements the line thinning and the simple neighborhood methods to

perform vectorization. The model allows users to define specified criteria which are crucial

for acquiring the vectorization process. In this model, various raster images can be

vectorized such as township plans, maps, architectural drawings, and machine plans. The

algorithm of the model was developed by implementing an appropriate computer

programming and tested on a basic application. Results, verified by using two well known

vectorization programs (WinTopo and Scan2CAD), indicated that the model can

successfully vectorize the specified raster data quickly and accurately.

Keywords: Raster to vector conversion, geographic information systems, vectorization,

thinning, topology, threshold.

Sensors 2008, 8

2674

1. Introduction

Data collection used to be the major task which consumed over 60% of the available resources since

geographic data were very scarce in the early days of GIS (Geographic Information Systems)

technology. In most recent GIS projects, data collection is still a time consuming and expensive task;

however, it currently consumes about 15-50% of the available resources [1]. In order to reduce total

project cost, data generation method of extracting data from existing archives has been widely applied.

By using scanning method, analogue format data from the archives can be transformed into digital

format data, which are called raster.

In the majority of graphical information systems, input data consist of raster images such as scanned

maps in a GIS and engineering drawings in a CAD system. In order to manipulate, for example

transform or select the lines and the other features from such raster images, these features must be

extracted through a vectorization process [2]. Vectorization is quite important in document recognition,

line detection, mapping, and drawing applications [3]. For advanced vectorization applications, the

raster images must have high accuracy to preserve the original shapes of the graphical objects with the

highest extent possible [4].

Line is one of the most fundamental elements in graphical information systems. Line detection is a

common and essential task in many applications such as automatic navigation, military surveillance,

and electronic circuits industry [5 - 6]. In previous studies, there are a large number of algorithms

developed for detecting lines from raster images [7 - 8 - 9 - 10]. The vectorization methods

implemented in these algorithms can be categorized into following six classes; (1) Hough Transform

(HT) based methods, (2) thinning based methods, (3) contour based methods, (4) run-graph based

methods, (5) mesh pattern based methods, and (6) sparse pixel based methods [11].

After the scanning, thresholding, and filtering stages, a traditional vectorization process consists of

three stages (except HT based methods); (1) line thinning, (2) line following and chain coding, and (3)

vector reduction (i.e. line segment approximation). In order to determine only the important points

representing the medial axis, the lines on the image are to be thinned to one pixel wide by using the

kernel processing [12]. Once line thinning stage is performed, the second stage is line following and

chain coding the medial axis. In this stage, tracing process starts at an end pixel and continues based on

the chain code directions until the last pixel in the line is reached. Fig-1 indicates the eight possible

directions specified by the numbers from 0 to 7. Detail information on chain coding process can be

found in [13 - 14 -15]. At the third stage, the medial axis coded in the second stage is examined and the

vectors in the chain code are identified. In this process, the long vectors that closely represent the chain

codes are formed while considering a user defined maximum deviation of the vectors from the chain

codes [16 - 21].

In this study, a new model, MUSCLE (Multidirectional Scanning for Line Extraction), was

developed to vectorize the straight lines through the raster images including township plans, maps,

architectural drawings, and machine plans. Unlike traditional vectorization process, this model

generates straight lines based on a line thinning algorithm, without performing line following-chain

coding and vector reduction stages [22].

Sensors 2008, 8

2675

Figure 1. Chain Code Directions.

2. Material and Method

The logic behind the model is presented in Fig-2. The following main stages in the model are

described in this section:

1. Threshold processing

2. Horizontal and vertical scanning of the binary image

3. Detecting wrongly vectorized lines

4. Correcting wrongly vectorized lines by using diagonal scanning

5. Applying topological corrections

6. Generating final vector data

2.1. Threshold Processing

In grayscale images, the objects may contain many different levels of gray tones. In this study, the

objects are separated by using the threshold processing technique, with the assumption that the gray

values are distributed over the image nearly homogeneous [17 - 18 - 19]. In the threshold process, a

predetermined gray level (threshold value) is to be determined and every pixel darker than this level is

assigned black, while every lighter pixel is assigned white. Therefore, the grayscale image was

converted into a binary image [20 - 21].

2.2. Horizontal and Vertical Scanning of the Binary Image

In this stage, the horizontal and vertical lines were extracted from the binary image. The nearly

vertical lines were obtained by scanning the images horizontally, while the nearly horizontal lines were

obtained by scanning the images vertically. The forms of nearly vertical and nearly horizontal lines are

shown in Fig-3. In Fig-3a, the lines which pass through the region 1 and 2 are defined as the nearly

vertical lines and the nearly horizontal lines, respectively. Fig-3b and Fig-3c indicate the sample

drawings for nearly vertical and nearly horizontal lines, respectively. In other words, if the slope

(tangent) of the line is between -1 and +1, it is defined as “nearly horizontal line”. If the slope (tangent)

of the line is less than -1 or greater than +1, it is defined as “nearly vertical line”.

Sensors 2008, 8

2676

Figure 2. Stages of MUSCLE Model.

Figure 3. Samples for nearly vertical and nearly horizontal lines.

At the first step, each row on the binary image was scanned horizontally to determine the thickness

of the lines and the position of the pixels, which were located in the mid-point of the lines. During this

process, the value (black or white) of each pixel was checked by moving from left to right. Once the

first black pixel was met, its column number was stored into the algorithm. While continuing to scan

Sensors 2008, 8

2677

pixels, the column number of the first white pixel was also stored into the algorithm. Thus, the position

of the middle pixel in the mid-point of the line could be determined by using the following equation,

based on the image coordinate system:

 The position of the middle pixel = m + Absolute Value ((n - m) / 2) (1)

 m : column number of the first black pixel

 n : column number of the first white pixel

For example, assuming that 8th pixel is the first black pixel and 13th pixel is the first white pixel in

Fig-4a. Using Equation 1, position of the middle pixel can be calculated as 10th pixel, which is then

colored with red. After performing the same process for each row on the image, distribution of the red

pixels for nearly vertical and nearly horizontal lines is indicated in Fig-4a and Fig-4b, respectively. In

these Figures, the distribution of the red pixels indicates that the red pixels have continuity for nearly

vertical lines; however they have discontinuity for nearly horizontal lines.

Figure 4. Determining red pixels by using horizontal and vertical scanning process.

After the horizontal scanning processes were completed, only the red pixels were selected. Then, a

neighborhood analysis was carried out based on the nearly vertical lines by taking the advantages of

discontinuity on the nearly horizontal lines. In this method, a red pixel, which is adjacent to another red

one, was searched along the lines. This process continued until no red pixels were found adjacent to

Sensors 2008, 8

2678

each other, indicating that the end of the line has been reached. The beginning and ending points of all

the nearly vertical lines were determined by using the same procedure.

 At the second step, the binary image was scanned vertically, and then, the same process described

above was carried out for all columns. Unlike horizontal scanning, the red pixels have continuity for

nearly horizontal lines (Fig-4c); however they have discontinuity for nearly vertical lines (Fig-4d).

Therefore, the neighborhood analysis was carried out based on the nearly horizontal lines and the

beginning and the ending points of all the plenary horizontal lines were determined. After completing

the horizontal (Fig-5a) and vertical (Fig-5b) scanning of the binary image, the final vectorized data

(Fig-5c) were generated by vectorizing the nearly vertical and the horizontal lines.

2.3. Detecting Wrongly Vectorized Lines

In a case where two or more consecutive lines are nearly horizontal or nearly vertical, raster data

become unmanageable and the process described in the previous stages generates wrongly vectorized

lines. For example, initially, three consecutive nearly horizontal lines (AB, BC, and CD) were

horizontally scanned as displayed in Fig-6a. Due to discontinuity of the red pixels between intersection

points A, B, C, and D, the neighborhood analysis cannot be performed and vectorized data cannot be

generated. When the raster image was vertically scanned during the second step, the neighborhood

analysis yielded wrong vectorization results because of continuity of the red pixels. The algorithm

recognizes point A as the beginning point of the line, skips point B and point C, and ends the line at

point D. Therefore, the process generates a wrongly vectorized line between points A and D as

indicated in Fig-6b.

The detection of wrongly vectorized data is performed by comparing the middle axis of the lines

(red pixels) with the vectorized lines. The middle axis and the vectorized line have to be based on the

same linear equation. For example, if a sample vectorized line (AB line) is a line with the beginning

point of A(xa,ya) and the ending point of B(xb,yb), then, the linear equation for this vectorized line can

be formed as follows:

 (Y- ya) / (ya - yb) = (X- xa) / (xa - xb) (2)

 Y = ((ya - yb) / (xa - xb)) X + ((yb xa - xb ya) / (xa - xb)) (3)

When X coordinate of a red pixel is inserted into the linear Equation 3, and if the difference between

the Y value derived from this equation and the Y coordinate of this pixel is greater than a user defined

maximum deviation, the model defines this line as a wrongly vectorized line. After this process, the red

pixels within the acceptable deviation range were eliminated from the image by converting them into

the white pixel values. The wrongly vectorized lines with red pixels were remained unchanged within

the image.

Sensors 2008, 8

2679

Figure 5. Horizontal and vertical scanning in vectorization process.

Sensors 2008, 8

2680

Figure 6. Detecting wrong vectorization after vertical and horizontal scanning.

2.4. Correction of wrongly vectorized lines by using diagonal scanning

The image with the wrongly vectorized lines (Fig-7a) was diagonally (under 450 angle) scanned;

first, from left to right, and then, from right to left (Fig-7b). In diagonal scanning process, if there were

two consecutive red pixels along the direction of scanning, the second red pixel is eliminated. Thus,

vectorized line took a discontinuous form as shown in Fig-7c. After applying the neighborhood

analysis, the lines failed to have the acceptable number of pixels were not vectorized. The continuous

pixels, determined by implementing diagonal scanning from both directions, were vectorized as

indicated in Fig-7d. Then, corrected vector data were generated by combining both of the vectorized

lines together (Fig-7e).

2.5. Applying Topological Corrections

Once horizontal, vertical, and diagonal scanning processes were completed, the topological

corrections for the intersection points of the lines should have been performed. Topological corrections

are very important to efficiently use the extracted vector data in GIS and other spatial applications.

2.5.1. Connecting End Points of the Lines

This circumstance occurs especially at the corner points. The correction was performed by using a

special criterion as explained in the following section. This criterion was based on selecting a user-

determined distance between the lines. The adjacent lines in the selected distance were connected at the

algorithm. Then, the end points are joined by calculating the mean value of coordinates for two or more

nodes as follows (Fig-8):

Xo = (X1 + X2 + .. + Xn) / n (4)

Yo = (Y1 + Y2 + .. + Yn) / n (5)

Sensors 2008, 8

2681

Figure 7. Correction of wrong extracted lines by using diagonal scanning procedure.

Sensors 2008, 8

2682

Figure 8. Connecting end points of the lines.

2.5.2. Correction of Overshoot and Undershoot Errors

In this process, firstly; the coordinates of the intersection points between the lines were calculated as

follows (Fig. 9):

Y = ((ya - yb) / (xa - xb)) X + ((yb xa - xb ya) / (xa - xb)) (6)

Figure 9. The case of overshoot error. (d1 + d2 = d and d2 < p).

Secondly, point A(xa,ya) and point B(xb,yb) were used to determine the beginning and ending points

of the line. The other line can be defined by point C(xc,yc) and point D(xd,yd) as follows:

Y = ((yc - yd) / (xc - xd)) X + ((yd xc - xd yc) / (xc - xd)) (7)

Then, the coordinates of the intersection point (K) for these two lines can be calculated by the

formulations in Equations 8 and 9, respectively:

 Yk = (((ydxc-xdyc)/(xc-xd) - (ybxa-xbya)/(xa-xb)) / ((ya-yb)/(xa-xb) - (yc-yd)/(xc-xd))) (8)

 * ((ya-yb)/(xa-xb)) + ((ybxa-xbya)/(xa-xb))

 Xk = ((ydxc-xdyc)/(xc-xd) - (ybxa-xbya)/(xa-xb)) / ((ya-yb)/(xa-xb) - (yc-yd)/(xc-xd)) (9)

Sensors 2008, 8

2683

The distances (dn) from an intersection point, K(xk,yk), to the ending points of the intersecting lines

can be calculated by using the following equation:

 (10)

After determining the coordinates of the intersection point and the distance between intersection

point and the ending points, ending points were examined to determine either there were overshoot or

undershoot errors. If the length of a line (d) was equal to sum of the distances from two ending points

(d1 and d2) to intersection point (K) and one of these distances was shorter than a user defined distance

value (p: explained in Section 2.7.6), ending point was defined as overshoot (Fig. 9). If the length of a

line (d) was shorter than the sum of the distances from two ending points to intersection point and one

of these distances was shorter than a user defined distance value (p), ending point was defined as

undershoot (Fig. 10). Then, the algorithm corrects the overshoot and undershoot errors by moving the

ending point to the intersection point.

Figure 10. The case of undershoot error. (d1 + d2 > d and d2 < p).

If there is a case where the length of a line (d) was equal to sum of the distances from two ending

points to intersection point and both of these distances were longer than a user defined distance value

(p), ending point was not defined as neither overshoot or undershoot. In this case, intersection point is

assigned to be a new point and the lines were divided into four new lines as indicated in Fig. 11.

Figure 11. The case where d1 + d2 = d, d1 > p, and d2 > p.

Sensors 2008, 8

2684

2.6. Generating the Final Vector Data

The product obtained after the vectorization process is saved to be ready to use in the “DXF”

format, which is the “de facto” standard and well known exchange CAD format by all CAD software.

Each output images generated after scanning and correction stages can be recorded as separate layers;

therefore, the user can monitor the vectorization process and use these layers for various purposes.

2.7. Graphical User Interface and the Criteria

The algorithm was programmed in Visual Basic 6.0 platform and the graphical user interface of the

model is displayed in Fig-12. The user is expected to define the specified criteria for the current raster

and the future vector data before the vectorization process. The performance of the vectorization

depends remarkably on these six criteria.

Figure 12. Interface of the algorithm including input window for threshold and vectorization criteria.

2.7.1. Threshold Value

Threshold value was used to define two main classes, black and white, based on the gray value

distribution of the raster image. Gray values under the threshold value become black, while values

above the threshold become white. Depending on the threshold value, some lines can be thicker and

clarified, while some lines can be thinner and fader. Therefore, selecting an optimum value for the

threshold according to the raster properties is very important for the success of the vectorization

process. This optimum value can be found after having some experiences based on the trial. For

example, by looking at the darkness of the output image, user can come up with optimum threshold

value.

Sensors 2008, 8

2685

2.7.2. Minimum Line Thickness

The second criterion was the thickness of the lines in the raster image to be vectorized. For example,

if the user selects three as a minimum number of pixels for line thickness, lines thinner than three

pixels are ignored and not vectorized. This is useful when the user wants to extract certain objects like

parcel boundaries with certain line thicknesses.

2.7.3. Minimum Line Length

Another criterion for eliminating the unnecessary details and for vectorizing the lines with sufficient

length was the assignment of the minimum number of the pixels for the line length. For example, if a

user selects six for this criterion, the algorithm eliminates lines that are shorter than six pixels during

the vectorization process. Thus, unwanted objects such as text and noise can be eliminated from the

raster image much more easily.

2.7.4. Maximum Deviation Distance

The determination of the wrongly vectorized lines was performed by considering the deviation

distance between the red pixels and the vectorized line as described in section 2.3. The maximum

deviation distance is defined by the user based on the sensitivity of the job. For instance, if a user

selects three for this value, the vectorized lines that are more than three pixels away from the red pixels

would be considered to be in the incorrect form, whereas the lines that are closer than this value would

be considered to be in the correct form.

2.7.5. Maximum Joint Distance

During the topological correction of the vectorized data, the ending points of the lines that were

closer to each other must have been merged for joining the broken lines. For achieving this, the user is

allowed to define and input a maximum joint distance value. Consequently, if the distance between

ending points of the lines is less than the input value, the model connects these points at a shared

intersection point.

2.7.6. Overshoot and Undershoot Distance

The user is allowed to define and input a distance value for correcting the undershoot and overshoot

errors during the vectorization process. For example, if a user assigns the value of three for this

criterion, dangles and gaps which are smaller than three pixels would be eliminated and geometrically

corrected as explained in section 2.5.

3. Results and Discussion

The algorithm was tested on a sample raster data of a township plan. In Turkey, township plans are

highly desired maps which are generally in analogue format and subject to intensive digitizing tasks. In

the model application, vectorization algorithm was applied on the map exposed in Fig-13.

Sensors 2008, 8

2686

The user-defined values were assigned to the criteria described in the previous section. Setting a low

threshold value (50%) caused discontinuity along the lines during vectorization processes (Fig-14).

However, setting a high threshold value (90%) resulted in very thick lines with noises; therefore, it

caused the algorithm to induce errors and yielded bad results (Fig-15).

If the thickness value of the line was selected to be very big, some of the necessary lines were

ignored in the process (Fig-16). For example, when the minimum number of pixel for the line

thickness was decreased, the one pixel- thickness was ignored in the vectorization process.

For the third criterion, when the number of pixels for the minimum line length was selected as a

very big value (e.g. 9 pixels), the noise problem was mostly solved, however, some of the lines along

the parcel boundaries were failed to be extracted (Fig-17a). On the other hand, when the value of this

criterion was set to be a low value (e.g. 3 pixels), almost all of the lines along the parcel boundaries

were extracted. However, it was observed that some of the noises over the lines were also vectorized

(Fig-17b).

Figure 13. The input raster dataset used in the application.

Sensors 2008, 8

2687

If the value of the fourth criterion, the deviation distance between red pixels and the vectorized line,

was selected to be a high value, the chance of ignoring the lines that were wrongly vectorized tends to

increase (Fig-18). When the fifth criterion was selected to be a high value, the lines that were not

intended to be processed were merged and vectorized as seen in Fig-19. The model application also

revealed that setting a low value for the sixth criterion had yielded better results regarding the

correction of the overshoot and undershoot errors.

Figure 14. The results of the vectorization process using a low threshold value.

Figure 15. The results of the vectorization process using an extra high threshold value.

Sensors 2008, 8

2688

Figure16. The results of the vectorization process using a high line thickness value.

Figure 17. The results of the vectorization process using as high (a) and low (b) value

for the third criterion.

Figure 18. The results of the vectorization process using a high value for the fourth criterion.

Figure 19. The results of the vectorization process using a high value for the fifth criterion.

Sensors 2008, 8

2689

In order to generate the best vectorization out of the sample data, a number of alternative values

were tested over the criteria. The goal was to vectorize all the lines at the parcel boundaries and to

eliminate the remnants of the noises and texts as mush as possible. Our results indicated that the best

vectorization was performed by using the following combinations over the criteria:

• The threshold value as 65%,

• The minimum line thickness value as 1 pixels,

• The minimum line length value as 6 pixels,

• The maximum deviation distance value as 4 pixels,

• The maximum joint distance value as 4 pixels,

• The overshoot and undershoot distance value as 2 pixels.

The final vector data generated by applying the vectorization process with the criteria above are

displayed in Fig-20. Consequently, a great success was achieved for fixing the lines at the parcel

boundaries; however, the noises could not be removed completely.

Figure 20. Overlay of the first test image and final output processed by the vectorization algorithm.

The performance of the proposed model was evaluated by comparing the results with two

commercial raster-to-vector programs, WinTopo and Scan2CAD. For comparison, the images in Fig.

13, Fig. 21, and Fig. 22 were processed by all the three models and the results were indicated in Table

Sensors 2008, 8

2690

1. The images were acquired in 200 dpi and 8 bit radiometric resolution by using scanner. So, before

the threshold processing, images have 256 grey values.

Figure 21. The second test image used in the comparison.

Our results indicated that WinTopo completed the vectorization process in the shortest computation

time; however, it divided the lines into many pieces, which resulted in too many objects. This also

required intense and time consuming post-processing process after the vectorization. Scan2CAD

performed a quality vectorization process with acceptable number of objects. However, there were still

some errors on vector images.

Sensors 2008, 8

2691

Figure 22. The third test image used in the comparison.

Sensors 2008, 8

2692

Table 1. The summary of the sample application considering number of final objects

and processing time.

Programs

The Number of Final Objects Processing Time (sec)

Image 1 Image 2 Image 3 Image 1 Image 2 Image 3

MUSCLE 628 4074 1391 6.0 68.0 33.0

WinTopo 2308 7040 3788 0.5 3.0 2.0

Scan2CAD 712 1855 573 3.0 36.0 22.0

MUSCLE also provided very successful results, especially for the images with straight lines. The

model generated an individual vector for each piece of line, which reduced the number of final objects.

This feature also reduced the computation time in the process of correcting the errors. However, total

time spent on vectorization process was longer than the time spent by using the other two commercial

programs since the current version of the MUSCLE was not professionally optimized.

5. Conclusions

In this study, a new model, MUSCLE, was developed by implementing an appropriate computer

programming to automatically vectorize the raster data with straight lines. The model allows users to

define specified criteria which are crucial for the success of vectorization process. A basic

vectorization application presented in this study cannot be totally generalized, yet it showed that this

model is able to successfully vectorize raster images with straight lines. More work in necessary to

improve the quality of the vectorized image such as automated selection of user defined optimum

combinations for the criteria.

The unique contribution of this model can be described briefly as its potential for vectorizing

straight lines based on a line thinning and simple neighborhood analysis, without performing line

following-chain coding and vector reduction stages. Besides, the model has the ability to vectorize not

only the maps with linear lines such as cadastral map sheets, township plans, etc., but also other

documents such as technical drawings, machine pieces, architectural drawings, etc., which are to be

converted from a analogue format to digital format. It is highly anticipated that MUSCLE can provide a

quick and simple way to efficiently vectorize raster images. There are several opportunities to improve

this model such as vectorizing curve lines and refining model interface.

The sample application, where the performance of the model has been compared with the two well

known commercial vectorization programs, indicated that the current version of MUSCLE can perform

a successful vectorization task. It was believed that refining and optimizing the algorithm by

professionals would improve the vectorization process. Further researches are also required through an

extended and a diversified sample space to expose the feasible application areas of MUSCLE. Yet, our

results suggest that MUSCLE may offer opportunities for replacing the complicated digitizing tasks

with a concise, automatic and computer-aided process.

Sensors 2008, 8

2693

References

1. Longley, P.A.; Goodchild, M.F.; Maguire, D.J.; Rhind, D.W. In GIS Data Collection, Geographic

Information Systems and Science 2001, Hoboken, NJ: John Wiley & Sons, 203-224.

2. Nieuwenhuizen, P.R.; Kiewiet, O.; Bronsvoort, W.F. An Integrated Line Tracking and

Vectorization Algorithm. Proceedings of Eurographics '94, Oslo, Norway, Sept., 1994, 3(3), 349-

359

3. Zhong, D. X. Extraction of embedded and/or line-touching character-like objects. Pattern. Recogn.

2002, 35(11), 2453 – 2466.

4. Dori, D.; Wenyin, L. Automated CAD Conversion with the Machine Drawing Understanding

System: Concepts, Algorithms, and Performance. IEEE T. Syst. Man Cyb. 1999 - Part A: Systems

And Humans, 29(4), 411-416.

5. Shpilman, R.; Brailovsky, V. Fast and robust techniques for detecting straight line segments using

local models. Pattern Recogn. Lett. 1999, 20(9), 865-877.

6. Climer, S.; Bhatia, S. K. Local Lines: A linear time line detector. Pattern Recogn. Lett. 2003, 24,

2291–2300.

7. Miao, L.; Liu, X.; Peng, Q.; Bao, H. BRDC: binary representation of displacement code for line.

Comput. Graph. 2002, 26(3), 401–408.

8. Lagunovsky, D.; Ablameyko, S. Straight-line-based primitive extraction in grey-scale object

Recognition. Pattern Recogn. Lett. 1999, 20(10), 1005-1014.

9. Madhvanath, S.; Kim, G.; Govindaraju, V. Chaincode Contour Processing for Handwritten Word

Recognition. IEEE T Pattern Anal. 1999, 21(9), 928-932.

10. Hori, O.; Tanigawa, S. Raster-to-vector Conversion by Line Fitting Based on Contours and

Skeletons. Proc., Int. Conf. Document Analysis and Recognition. 1993, Tsukuba (Japan), 353-358.

11. Wenyin, L.; Dori, D. From Raster to Vectors: Extracting Visual Information from Line Drawings.

Pattern. Ana.l Appl. 1999, 2(2), 10-21.

12. Treash, K.; Amaratunga, K. Automatic Road Detection in Grayscale Aerial Images. J. Comput.

Civil Eng. 2000, 14(1), 60-69.

13. Freeman, H. On the encoding of arbitrary geometric configurations. IEEE Trans. Electron. 1961,

10, 260-268.

14. Freeman, H. Computer Processing of line-drawing images. Comput. Surv. 1974, 6(1), 57-97.

15. Freeman, H.; Davis, L.S. A corner-finding algorithm for chain-coded curves. IEEE Trans.

Electron. 1977, 26(1), 297-303.

16. Sun, J. and Wu, X. Shape Retrieval Based on the Relativity of Chain. Lect. Notes Comput. Sc.

2007, V. 4577/2007, P. 76-84

17. Wang, L.; Bai, J. Threshold selection by clustering gray levels of boundary. Pattern Recogn. Lett.

2003, 24(12), 1983–1999.

18. Belkasim, S.; Ghazal, A.; Basir, O.A. Phase-based optimal image thresholding. Digit. Signal

Process. 2003, 13, 636–655.

19. Liao, P.S.; Chen, T.S.; Chung, P.C. A Fast Algorithm for Multilevel Thresholding. J. Inf. Sci. Eng.

2001, 17, 713-727.

Sensors 2008, 8

2694

20. Hasson, N.N.; Aljunid, S.A.; Badlishah, A. R. Simplification of Raster Images to Extract Visual

Information. International Journal of Computer Science and Network Security 2006, 6(11), p.49.

21. Jennings, C. Computer Vision for Line Drawings. 1993, MSc Thesis, University of Calgary.

22. Karas, I.R. Evaluating Topological Relationships of The Objects in 3D GIS and Network Analysis,

2007, PhD Thesis, Yildiz Technical University, Istanbul, Turkey.

© 2008 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.

