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Abstract: This paper presents a new model, MUSCLE (Multidirectional Scanning for Line 

Extraction), for automatic vectorization of raster images with straight lines. The algorithm 

of the model implements the line thinning and the simple neighborhood methods to 

perform vectorization. The model allows users to define specified criteria which are crucial 

for acquiring the vectorization process. In this model, various raster images can be 

vectorized such as township plans, maps, architectural drawings, and machine plans. The 

algorithm of the model was developed by implementing an appropriate computer 

programming and tested on a basic application. Results, verified by using two well known 

vectorization programs (WinTopo and Scan2CAD), indicated that the model can 

successfully vectorize the specified raster data quickly and accurately.  

Keywords: Raster to vector conversion, geographic information systems, vectorization, 

thinning, topology, threshold.  
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1. Introduction 

Data collection used to be the major task which consumed over 60% of the available resources since 

geographic data were very scarce in the early days of GIS (Geographic Information Systems) 

technology. In most recent GIS projects, data collection is still a time consuming and expensive task; 

however, it currently consumes about 15-50% of the available resources [1]. In order to reduce total 

project cost, data generation method of extracting data from existing archives has been widely applied. 

By using scanning method, analogue format data from the archives can be transformed into digital 

format data, which are called raster.  

In the majority of graphical information systems, input data consist of raster images such as scanned 

maps in a GIS and engineering drawings in a CAD system. In order to manipulate, for example 

transform or select the lines and the other features from such raster images, these features must be 

extracted through a vectorization process [2]. Vectorization is quite important in document recognition, 

line detection, mapping, and drawing applications [3]. For advanced vectorization applications, the 

raster images must have high accuracy to preserve the original shapes of the graphical objects with the 

highest extent possible [4].  

Line is one of the most fundamental elements in graphical information systems. Line detection is a 

common and essential task in many applications such as automatic navigation, military surveillance, 

and electronic circuits industry [5 - 6]. In previous studies, there are a large number of algorithms 

developed for detecting lines from raster images [7 - 8 - 9 - 10]. The vectorization methods 

implemented in these algorithms can be categorized into following six classes; (1) Hough Transform 

(HT) based methods, (2) thinning based methods, (3) contour based methods, (4) run-graph based 

methods, (5) mesh pattern based methods, and (6) sparse pixel based methods [11].  

After the scanning, thresholding, and filtering stages, a traditional vectorization process consists of 

three stages (except HT based methods); (1) line thinning, (2) line following and chain coding, and (3) 

vector reduction (i.e. line segment approximation). In order to determine only the important points 

representing the medial axis, the lines on the image are to be thinned to one pixel wide by using the 

kernel processing [12]. Once line thinning stage is performed, the second stage is line following and 

chain coding the medial axis. In this stage, tracing process starts at an end pixel and continues based on 

the chain code directions until the last pixel in the line is reached. Fig-1 indicates the eight possible 

directions specified by the numbers from 0 to 7. Detail information on chain coding process can be 

found in [13 - 14 -15]. At the third stage, the medial axis coded in the second stage is examined and the 

vectors in the chain code are identified. In this process, the long vectors that closely represent the chain 

codes are formed while considering a user defined maximum deviation of the vectors from the chain 

codes [16 - 21].  

In this study, a new model, MUSCLE (Multidirectional Scanning for Line Extraction), was 

developed to vectorize the straight lines through the raster images including township plans, maps, 

architectural drawings, and machine plans. Unlike traditional vectorization process, this model 

generates straight lines based on a line thinning algorithm, without performing line following-chain 

coding and vector reduction stages [22].  

 

 



Sensors 2008, 8                            

 

 

2675

Figure 1. Chain Code Directions. 

 

 

2. Material and Method 

The logic behind the model is presented in Fig-2. The following main stages in the model are 

described in this section:  

 

1. Threshold processing  

2. Horizontal and vertical scanning of the binary image 

3. Detecting wrongly vectorized lines 

4. Correcting wrongly vectorized lines by using diagonal scanning 

5. Applying topological corrections  

6. Generating final vector data 

2.1. Threshold Processing 

In grayscale images, the objects may contain many different levels of gray tones. In this study, the 

objects are separated by using the threshold processing technique, with the assumption that the gray 

values are distributed over the image nearly homogeneous [17 - 18 - 19]. In the threshold process, a 

predetermined gray level (threshold value) is to be determined and every pixel darker than this level is 

assigned black, while every lighter pixel is assigned white. Therefore, the grayscale image was 

converted into a binary image [20 - 21]. 

2.2. Horizontal and Vertical Scanning of the Binary Image 

In this stage, the horizontal and vertical lines were extracted from the binary image. The nearly 

vertical lines were obtained by scanning the images horizontally, while the nearly horizontal lines were 

obtained by scanning the images vertically. The forms of nearly vertical and nearly horizontal lines are 

shown in Fig-3. In Fig-3a, the lines which pass through the region 1 and 2 are defined as the nearly 

vertical lines and the nearly horizontal lines, respectively. Fig-3b and Fig-3c indicate the sample 

drawings for nearly vertical and nearly horizontal lines, respectively. In other words, if the slope 

(tangent) of the line is between -1 and +1, it is defined as “nearly horizontal line”. If the slope (tangent) 

of the line is less than -1 or greater than +1, it is defined as “nearly vertical line”.  
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Figure 2. Stages of MUSCLE Model. 

 

Figure 3. Samples for nearly vertical and nearly horizontal lines. 

 
At the first step, each row on the binary image was scanned horizontally to determine the thickness 

of the lines and the position of the pixels, which were located in the mid-point of the lines. During this 

process, the value (black or white) of each pixel was checked by moving from left to right. Once the 

first black pixel was met, its column number was stored into the algorithm. While continuing to scan 
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pixels, the column number of the first white pixel was also stored into the algorithm. Thus, the position 

of the middle pixel in the mid-point of the line could be determined by using the following equation, 

based on the image coordinate system: 

 

 The position of the middle pixel = m + Absolute Value ((n - m) / 2)      (1) 

 

 m : column number of the first black pixel 

 n : column number of the first white pixel  

 

For example, assuming that 8th pixel is the first black pixel and 13th pixel is the first white pixel in 

Fig-4a. Using Equation 1, position of the middle pixel can be calculated as 10th pixel, which is then 

colored with red. After performing the same process for each row on the image, distribution of the red 

pixels for nearly vertical and nearly horizontal lines is indicated in Fig-4a and Fig-4b, respectively. In 

these Figures, the distribution of the red pixels indicates that the red pixels have continuity for nearly 

vertical lines; however they have discontinuity for nearly horizontal lines.  

Figure 4. Determining red pixels by using horizontal and vertical scanning process. 

 
 

After the horizontal scanning processes were completed, only the red pixels were selected. Then, a 

neighborhood analysis was carried out based on the nearly vertical lines by taking the advantages of 

discontinuity on the nearly horizontal lines. In this method, a red pixel, which is adjacent to another red 

one, was searched along the lines. This process continued until no red pixels were found adjacent to 
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each other, indicating that the end of the line has been reached. The beginning and ending points of all 

the nearly vertical lines were determined by using the same procedure. 

 At the second step, the binary image was scanned vertically, and then, the same process described 

above was carried out for all columns. Unlike horizontal scanning, the red pixels have continuity for 

nearly horizontal lines (Fig-4c); however they have discontinuity for nearly vertical lines (Fig-4d). 

Therefore, the neighborhood analysis was carried out based on the nearly horizontal lines and the 

beginning and the ending points of all the plenary horizontal lines were determined. After completing 

the horizontal (Fig-5a) and vertical (Fig-5b) scanning of the binary image, the final vectorized data 

(Fig-5c) were generated by vectorizing the nearly vertical and the horizontal lines. 

2.3. Detecting Wrongly Vectorized Lines  

In a case where two or more consecutive lines are nearly horizontal or nearly vertical, raster data 

become unmanageable and the process described in the previous stages generates wrongly vectorized 

lines. For example, initially, three consecutive nearly horizontal lines (AB, BC, and CD) were  

horizontally scanned as displayed in Fig-6a. Due to discontinuity of the red pixels between intersection 

points A, B, C, and D, the neighborhood analysis cannot be performed and vectorized data cannot be 

generated. When the raster image was vertically scanned during the second step, the neighborhood 

analysis yielded wrong vectorization results because of continuity of the red pixels. The algorithm 

recognizes point A as the beginning point of the line, skips point B and point C, and ends the line at 

point D. Therefore, the process generates a wrongly vectorized line between points A and D as 

indicated in Fig-6b. 

The detection of wrongly vectorized data is performed by comparing the middle axis of the lines 

(red pixels) with the vectorized lines. The middle axis and the vectorized line have to be based on the 

same linear equation. For example, if a sample vectorized line (AB line) is a line with the beginning 

point of A(xa,ya) and the ending point of B(xb,yb), then, the linear equation for this vectorized line can 

be formed as follows: 

 

 (Y- ya) / (ya - yb) = (X- xa) / (xa - xb)           (2) 

 

 Y = ((ya - yb) / (xa - xb)) X + ((yb xa - xb ya) / ( xa - xb))        (3) 

  

When X coordinate of a red pixel is inserted into the linear Equation 3, and if the difference between 

the Y value derived from this equation and the Y coordinate of this pixel is greater than a user defined 

maximum deviation, the model defines this line as a wrongly vectorized line. After this process, the red 

pixels within the acceptable deviation range were eliminated from the image by converting them into 

the white pixel values. The wrongly vectorized lines with red pixels were remained unchanged within 

the image.  
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Figure 5. Horizontal and vertical scanning in vectorization process. 

 

 

 



Sensors 2008, 8                            

 

 

2680

Figure 6. Detecting wrong vectorization after vertical and horizontal scanning. 

 

2.4. Correction of wrongly vectorized lines by using diagonal scanning 

The image with the wrongly vectorized lines (Fig-7a) was diagonally (under 450 angle) scanned; 

first, from left to right, and then, from right to left (Fig-7b). In diagonal scanning process, if there were 

two consecutive red pixels along the direction of scanning, the second red pixel is eliminated. Thus, 

vectorized line took a discontinuous form as shown in Fig-7c. After applying the neighborhood 

analysis, the lines failed to have the acceptable number of pixels were not vectorized. The continuous 

pixels, determined by implementing diagonal scanning from both directions, were vectorized as 

indicated in Fig-7d. Then, corrected vector data were generated by combining both of the vectorized 

lines together (Fig-7e).  

2.5. Applying Topological Corrections  

Once horizontal, vertical, and diagonal scanning processes were completed, the topological 

corrections for the intersection points of the lines should have been performed. Topological corrections 

are very important to efficiently use the extracted vector data in GIS and other spatial applications. 

2.5.1. Connecting End Points of the Lines  

This circumstance occurs especially at the corner points. The correction was performed by using a 

special criterion as explained in the following section. This criterion was based on selecting a user-

determined distance between the lines. The adjacent lines in the selected distance were connected at the 

algorithm. Then, the end points are joined by calculating the mean value of coordinates for two or more 

nodes as follows (Fig-8):   

 

Xo = (X1 + X2 + .. + Xn) / n                     (4) 

Yo = (Y1 + Y2 + .. + Yn) / n                  (5) 
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Figure 7. Correction of wrong extracted lines by using diagonal scanning procedure. 
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Figure 8. Connecting end points of the lines. 

 

2.5.2. Correction of Overshoot and Undershoot Errors 

In this process, firstly; the coordinates of the intersection points between the lines were calculated as 

follows (Fig. 9):  

 

Y = ((ya - yb) / (xa - xb)) X + ((yb xa - xb ya) / ( xa - xb))                (6) 

 

Figure 9. The case of overshoot error. (d1 + d2 = d and d2 < p). 

 

 
 

Secondly, point A(xa,ya) and point B(xb,yb) were used to determine the beginning and ending points 

of the line. The other line can be defined by point C(xc,yc) and point D(xd,yd) as follows:  

 

Y = ((yc - yd) / (xc - xd)) X + ((yd xc - xd yc) / ( xc - xd))                              (7) 

 

Then, the coordinates of the intersection point (K) for these two lines can be calculated by the 

formulations in Equations 8 and 9, respectively: 

 

 Yk = (((ydxc-xdyc)/(xc-xd) - (ybxa-xbya)/(xa-xb)) / ((ya-yb)/(xa-xb) - (yc-yd)/(xc-xd)))    (8)      

 * ((ya-yb)/(xa-xb)) + ((ybxa-xbya)/(xa-xb))                       

              
 Xk = ((ydxc-xdyc)/(xc-xd) - (ybxa-xbya)/(xa-xb) ) / ((ya-yb)/(xa-xb) - (yc-yd)/(xc-xd))   (9) 
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The distances (dn) from an intersection point, K(xk,yk), to the ending points of the intersecting lines 

can be calculated by using the following equation: 

 

            (10) 

After determining the coordinates of the intersection point and the distance between intersection 

point and the ending points, ending points were examined to determine either there were overshoot or 

undershoot errors. If the length of a line (d) was equal to sum of the distances from two ending points 

(d1 and d2) to intersection point (K) and one of these distances was shorter than a user defined distance 

value (p: explained in Section 2.7.6), ending point was defined as overshoot (Fig. 9). If the length of a 

line (d) was shorter than the sum of the distances from two ending points to intersection point and one 

of these distances was shorter than a user defined distance value (p), ending point was defined as 

undershoot (Fig. 10). Then, the algorithm corrects the overshoot and undershoot errors by moving the 

ending point to the intersection point.  

Figure 10. The case of undershoot error. (d1 + d2 > d and d2 < p). 

 
If there is a case where the length of a line (d) was equal to sum of the distances from two ending 

points to intersection point and both of these distances were longer than a user defined distance value 

(p), ending point was not defined as neither overshoot or undershoot. In this case, intersection point is 

assigned to be a new point and the lines were divided into four new lines as indicated in Fig. 11. 

Figure 11. The case where d1 + d2 = d, d1 > p, and d2 > p. 
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2.6. Generating the Final Vector Data  

The product obtained after the vectorization process is saved to be ready to use in the “DXF” 

format, which is the “de facto” standard and well known exchange CAD format by all CAD software. 

Each output images generated after scanning and correction stages can be recorded as separate layers; 

therefore, the user can monitor the vectorization process and use these layers for various purposes. 

2.7. Graphical User Interface and the Criteria 

The algorithm was programmed in Visual Basic 6.0 platform and the graphical user interface of the 

model is displayed in Fig-12. The user is expected to define the specified criteria for the current raster 

and the future vector data before the vectorization process. The performance of the vectorization 

depends remarkably on these six criteria. 

Figure 12. Interface of the algorithm including input window for threshold and vectorization criteria. 

 

2.7.1. Threshold Value 

Threshold value was used to define two main classes, black and white, based on the gray value 

distribution of the raster image. Gray values under the threshold value become black, while values 

above the threshold become white. Depending on the threshold value, some lines can be thicker and 

clarified, while some lines can be thinner and fader. Therefore, selecting an optimum value for the 

threshold according to the raster properties is very important for the success of the vectorization 

process. This optimum value can be found after having some experiences based on the trial. For 

example, by looking at the darkness of the output image, user can come up with optimum threshold 

value.  
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2.7.2. Minimum Line Thickness 

The second criterion was the thickness of the lines in the raster image to be vectorized. For example, 

if the user selects three as a minimum number of pixels for line thickness, lines thinner than three 

pixels are ignored and not vectorized. This is useful when the user wants to extract certain objects like 

parcel boundaries with certain line thicknesses. 

2.7.3. Minimum Line Length 

Another criterion for eliminating the unnecessary details and for vectorizing the lines with sufficient 

length was the assignment of the minimum number of the pixels for the line length. For example, if a 

user selects six for this criterion, the algorithm eliminates lines that are shorter than six pixels during 

the vectorization process. Thus, unwanted objects such as text and noise can be eliminated from the 

raster image much more easily.  

2.7.4. Maximum Deviation Distance 

The determination of the wrongly vectorized lines was performed by considering the deviation 

distance between the red pixels and the vectorized line as described in section 2.3. The maximum 

deviation distance is defined by the user based on the sensitivity of the job. For instance, if a user 

selects three for this value, the vectorized lines that are more than three pixels away from the red pixels 

would be considered to be in the incorrect form, whereas the lines that are closer than this value would 

be considered to be in the correct form. 

2.7.5. Maximum Joint Distance 

During the topological correction of the vectorized data, the ending points of the lines that were 

closer to each other must have been merged for joining  the broken lines. For achieving this, the user is 

allowed to define and input a maximum joint distance value. Consequently, if the distance between 

ending points of the lines is less than the input value, the model connects these points at a shared 

intersection point. 

2.7.6. Overshoot and Undershoot Distance 

The user is allowed to define and input a distance value for correcting the undershoot and overshoot 

errors during the vectorization process. For example, if a user assigns the value of  three for this 

criterion, dangles and gaps which are smaller than three pixels would be eliminated and geometrically 

corrected as explained in section 2.5.  

3. Results and Discussion 

The algorithm was tested on a sample raster data of a township plan. In Turkey, township plans are 

highly desired maps which are generally in analogue format and subject to intensive digitizing tasks. In 

the model application, vectorization algorithm was applied on the map exposed in Fig-13.  
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The user-defined values were assigned to the criteria described in the previous section. Setting a low 

threshold value (50%) caused discontinuity along the lines during vectorization processes (Fig-14). 

However, setting a high threshold value (90%) resulted in very thick lines with noises; therefore, it 

caused the algorithm to induce errors and yielded bad results (Fig-15).  

If the thickness value of the line was selected to be very big, some of the necessary lines were 

ignored in the process (Fig-16). For example, when the minimum number of pixel for the line 

thickness was decreased, the one pixel- thickness was ignored in the vectorization process. 

For the third criterion, when the number of pixels for the minimum line length was selected as a 

very big value (e.g. 9 pixels), the noise problem was mostly solved, however, some of the lines along 

the parcel boundaries were failed to be extracted (Fig-17a). On the other hand, when the value of this 

criterion was set to be a low value (e.g. 3 pixels), almost all of the lines along the parcel boundaries 

were extracted. However, it was observed that some of the noises over the lines were also vectorized 

(Fig-17b).  

Figure 13. The input raster dataset used in the application. 
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If the value of the fourth criterion, the deviation distance between red pixels and the vectorized line, 

was selected to be a high value, the chance of ignoring the lines that were wrongly vectorized tends to 

increase (Fig-18). When the fifth criterion was selected to be a high value, the lines that were not 

intended to be processed were merged and vectorized as seen in Fig-19. The model application also 

revealed that setting  a low value for the sixth criterion had yielded better results regarding the 

correction of the overshoot and undershoot errors.  

Figure 14. The results of the vectorization process using a low threshold value. 

 

Figure 15. The results of the vectorization process using an extra high threshold value. 
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Figure16. The results of the vectorization process using a high line thickness value. 

 

Figure 17. The results of the vectorization process using as high (a) and low (b) value 

for the third criterion. 

 

Figure 18. The results of the vectorization process using a high value for the fourth criterion. 

 

Figure 19. The results of the vectorization process using a high value for the fifth criterion. 
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In order to generate the best vectorization out of the sample data, a number of alternative values 

were tested over the criteria. The goal was to vectorize all the lines at the parcel boundaries and to 

eliminate the remnants of the noises and texts as mush as possible. Our results indicated that the best 

vectorization was performed by using the following combinations over the criteria: 

 

• The threshold value as 65%, 

• The minimum line thickness value as 1  pixels, 

• The minimum line length value as 6  pixels, 

• The maximum deviation distance value as 4  pixels,  

• The maximum joint distance value as 4  pixels, 

• The overshoot and undershoot distance value as 2  pixels. 

 

The final vector data generated by applying the vectorization process with the criteria above are 

displayed in Fig-20. Consequently, a great success was achieved for fixing the lines at the parcel 

boundaries; however, the noises could not be removed completely. 

Figure 20. Overlay of the first test image and final output processed by the vectorization algorithm. 

 
The performance of the proposed model was evaluated by comparing the results with two 

commercial raster-to-vector programs, WinTopo and Scan2CAD. For comparison, the images in Fig. 

13, Fig. 21, and Fig. 22 were processed by all the three models and the results were indicated in Table 
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1. The images were acquired in 200 dpi and 8 bit radiometric resolution by using scanner. So, before 

the threshold processing, images have 256 grey values. 

Figure 21. The second test image used in the comparison.  

 
Our results indicated that WinTopo completed the vectorization process in the shortest computation 

time; however, it divided the lines into many pieces, which resulted in too many objects. This also 

required intense and time consuming post-processing process after the vectorization. Scan2CAD 

performed a quality vectorization process with acceptable number of objects. However, there were still 

some errors on vector images.  
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Figure 22. The third test image used in the comparison. 
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Table 1. The summary of the sample application considering number of final objects 

and processing time.   

Programs 

The Number of Final Objects Processing Time (sec) 

Image 1 Image 2 Image 3 Image 1 Image 2 Image 3 

MUSCLE 628 4074 1391 6.0 68.0 33.0 

WinTopo 2308 7040 3788 0.5 3.0 2.0 

Scan2CAD 712 1855 573 3.0 36.0 22.0 

 

MUSCLE also provided very successful results, especially for the images with straight lines. The 

model generated an individual vector for each piece of line, which reduced the number of final objects. 

This feature also reduced the computation time in the process of correcting the errors. However, total 

time spent on vectorization process was longer than the time spent by using the other two commercial 

programs since the current version of the MUSCLE was not professionally optimized.  

5. Conclusions 

In this study, a new model, MUSCLE, was developed by implementing an appropriate computer 

programming to automatically vectorize the raster data with straight lines. The model allows users to 

define specified criteria which are crucial for the success of vectorization process. A basic 

vectorization application presented in this study cannot be totally generalized, yet it showed that this 

model is able to successfully vectorize raster images with straight lines. More work in necessary to 

improve the quality of the vectorized image such as automated selection of user defined optimum 

combinations for the criteria.  

The unique contribution of this model can be described briefly as its potential for vectorizing 

straight lines based on a line thinning and simple neighborhood analysis, without performing line 

following-chain coding and vector reduction stages. Besides, the model has the ability to vectorize not 

only the maps with linear lines such as cadastral map sheets, township plans, etc., but also other 

documents such as technical drawings, machine pieces, architectural drawings, etc., which are to be 

converted from a analogue format to digital format. It is highly anticipated that MUSCLE can provide a 

quick and simple way to efficiently vectorize raster images. There are several opportunities to improve 

this model such as vectorizing curve lines and refining model interface.    

The sample application, where the performance of the model has been compared with the two well 

known commercial vectorization programs, indicated that the current version of MUSCLE can perform 

a successful vectorization task. It was believed that refining and optimizing the algorithm by 

professionals would improve the vectorization process. Further researches are also required through an 

extended and a diversified sample space to expose the feasible application areas of MUSCLE. Yet, our 

results suggest that MUSCLE may offer opportunities for replacing the complicated digitizing tasks 

with a concise, automatic and computer-aided process.   
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