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Abstract: This paper presents an experimental Synthetic Aperture Radar (SAR) system 

that is under development in the Universidad Politécnica de Madrid. The system uses 

Linear Frequency Modulated Continuous Wave (LFM-CW) radar with a two antenna 

configuration for transmission and reception. The radar operates in the millimeter-wave 

band with a maximum transmitted bandwidth of 2 GHz. The proposed system is being 

developed for Unmanned Aerial Vehicle (UAV) operation. Motion errors in UAV 

operation can be critical. Therefore, this paper proposes a method for focusing SAR images 

with movement errors larger than the resolution cell. Typically, this problem is solved 

using two processing steps: first, coarse motion compensation based on the information 

provided by an Inertial Measuring Unit (IMU); and second, fine motion compensation for 

the residual errors within the resolution cell based on the received raw data. The proposed 

technique tries to focus the image without using data of an IMU. The method is based on a 

combination of the well known Phase Gradient Autofocus (PGA) for SAR imagery and 

typical algorithms for translational motion compensation on Inverse SAR (ISAR). This 

paper shows the first real experiments for obtaining high resolution SAR images using a 

car as a mobile platform for our radar. 
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1. Introduction 
 

Synthetic Aperture Radars (SAR) typically provide a two-dimensional representation of the 

scatterers over an extensive area that has been illuminated with microwaves. These two dimensions are 

called slant range and azimuth resolution. It is known that SAR systems obtain high range resolution 

transmitting signals with a large bandwidth. For very high resolution SAR systems, the movement 

errors could be large enough to shift the detected target to other range cells due to non-ideal motion. 

These error corrections are critical for achieving the required quality of the final SAR product. 

Focusing SAR images with movement errors beyond the resolution cell has been addressed in the 

specialized literature [1, 2]. Typically, proposed techniques are based on two-step procedures. The first 

step consists of coarse motion compensation with resolution cell accuracy. Information provided by an 

Inertial Measuring Unit (IMU) is usually available for this purpose. The second step consists of fine 

motion compensation based on the received raw data. This fine correction is usually based on Signal 

Based Motion Compensation (SBMC) techniques, and their mission is to carry out a phase correction 

for auto-focusing the images. 

Currently, the miniaturization of SAR systems is a very important objective because there are 

many applications in which the weight and size of the system are critical, for example UAV operation. 

Our research group is developing a miniaturized system for this purpose. From the perspective of 

miniaturization, it is useful that the radar system operates at very high carrier frequency, that is, 

millimeter-wave band (Ka band, 34 GHz) [3]. Thus, circuits and antennas are smaller and MMIC 

technology has just been made available. Furthermore, a large bandwidth can be more easily 

transmitted working in the millimeter-wave band, because the relative bandwidth is lower. The SAR 

system described in this paper transmits to 2 GHz of bandwidth, which corresponds to range resolution 

of 7.5 cm [4]. This high resolution is a problem from the point of view of motion errors, because the 

motion errors could be larger than the resolution cell in UAV operation. 

A potential solution to this problem consists of range aligning the target response for each pulse, 

thus removing the range shift. This solution is only feasible for far scenes with a narrow swath, that is, 

with a range curvature that is very similar for all the targets in the scene. This is not valid for nearer or 

wider scenes due to the range curvature. The range curvature is different for each target because it 

depends on its position at the scene. This range curvature is generated by the ideal motion of the 

platform. The Range Migration Algorithm (RMA) is known to be able to focus SAR images with high 

and different range curvatures within the swath of interest. However, RMA can not compensate for the 

range cell shift due to the non-ideal motion of the platform, which results in defocusing. An additional 

technique to correct these effects is needed. 

Another solution is to use the motion information provided by an IMU to align the target response 

for each pulse, removing the range shift. However, the system might not have available data on this 

motion because the addition of an IMU increases the weight and size of the SAR system, which might 
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not be tolerable for some UAVs. This paper describes a method for focusing SAR images with 

movement errors larger than the resolution cell, without using an IMU. This method is based on a 

combination of the well known Phase Gradient Autofocus (PGA) for SAR imagery [5, 6, 7], with 

typical algorithms for translational motion compensation on Inverse SAR (ISAR), such as Envelope 

Correlation (EC) [8, 9] and Global Range Alignment (GRA) [10].  

The main characteristics of the proposed motion compensation method are summarized as follows: 

- It does not require IMU or sensor movements. 

- It requires prominent scatters within the swath to collect the phase error using PGA. 

- It does not compensate the range curvature due to the ideal trajectory of the platform. Therefore, it 

can be used in combination with algorithms that focus SAR images with different range 

curvatures, e.g., RMA. 

- It is valid for stripmap-mode SAR operation. 

This paper is arranged as follows: 

Section two describes the different subsystems of the radar that have been developed. Specific 

measurements of each subsystem are presented. 

Section three describes the SAR signal processing chain, emphasizing the motion compensation 

algorithm. Simulated data are presented to shown the performance of this technique for UAV 

applications. 

The last section shows two real SAR images using the proposed system in a ground SAR system 

with a car as the mobile platform. These are the first experiments to prove the feasibility of our radar in 

a SAR application. 

 

2. System Description. 
 

Nowadays, there is a great interest in using high resolution radar [11], because targets can not only 

be detected, but can also be classified and identified. To achieve high resolution, it is necessary to 

transmit a large bandwidth. The range resolution is inversely proportional to the RF transmitted 

bandwidth. The system works in the millimeter-wave band. Thus, a large bandwidth can be more 

easily transmitted because the relative bandwidth is low. 

The peak power provided by commercial amplifiers in the millimeter-wave band is low. The 

proposed sensor has a Continuous Wave (CW) configuration in order to increase the mean power and 

thus the maximum range [12]. 

The radar transmits a Linear Frequency Modulated (LFM) signal. LFM systems obtain range 

information from beat frequencies. The receiver has a homodyne structure that implements a matched 

receiver based on correlations. LFM-CW signal facilitates system miniaturization and requires low 

power operation, which makes it possible to install the system in an UAV. 

 

2.1. General scheme 

 

Figure 1 illustrates the block diagram, while Figure 2 presents several pictures of the system. The 

RF sensor dimensions are 24x16x9 cm, and its weight is 2.5 Kg. 
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Figure 1. SAR system block diagram. 
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The received signals are down-converted to base-band mixing the echoes from the targets with a 

coupled sample of the transmitted signal (homodyne architecture). The isolation between the 

transmitter and receiver is achieved using two separate antennas for transmission and reception, which 

are standard rectangular horns with a beamwidth of 6º and 8º, and a gain of 24 dB (Figure 2a). 

The signal generation is obtained with a closed-loop scheme. A Phase Locked Loop (PLL) 

generates the tuning signal to a Voltage Controlled Oscillator (VCO) using as a reference a strictly 

linear frequency ramp obtained thanks to a Direct Digital Synthesizer (DDS), which is controlled by a 

Personal Computer (PC). This PC also has an acquisition board to sample the beating frequencies, and 

to store them. The SAR signal processing is carried out by this PC (Figure 2b). 

 

Figure 2. Sensor pictures a) RF subsystem b) Control subsystem. 

 
 

The most important operation characteristics are summarized in Table 1: central frequency, fc, 34 

GHz (λ= 8.8 mm), and the maximum transmitted bandwidth (BRF), 2 GHz. The system transmits a 

continuous train of linear frequency ramps with a maximum Pulse Repetition Frequency (PRF) of 5 
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KHz. To avoid aliasing in the Doppler spectrum the maximum azimuthal sampling interval is 

determined to be 2.1 cm. 

 
Table 1. SAR system parameters. 

Parameters Values 
Central frequency fc 34 GHz 

Transmitted Power Ptx 30 dBm 

Waveform Chirp 

Maximum RF bandwidth BRF 2 GHz 

Sampling frequency fs 200 MHz 

Antenna beamwidth Ө3dB (azimuth, elevation) (6 º, 8 º) 

Maximum azimuthal sampling interval ∆x 2.1 cm 

Maximum PRF  5 KHz 

Maximum chirp rate γ 10 MHz/µs 

 

2.2. Signal generation subsystem 

 

The signal generation subsystem consists of a PLL that compares the output signal of the VCO 

with a strictly linear frequency modulated signal generated by a DDS. The VCO frequency, around 8 

GHz, is divided with a N1 divider (N1=80) to compare it in the PLL. The LFM-CW linear ramp of the 

VCO is multiplied with a N2 multiplier factor (N2=4) to obtain the desired transmitting millimeter-

wave signal. 

Figure 3 shows the measurement of a 1.6 GHz bandwidth and 34 GHz carrier frequency signal, 

which was measured with a 4 dB loss cable. In this case, the LFM generated with the DDS has a 

central frequency of 106.25 MHz and a bandwidth of 5 MHz. 

 

Figure 3. LFM-CW (fc=34 GHz, BRF=1.6 GHz) measured in the transmitter subsystem. 
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2.3. Transmitter subsystem 

 

The transmitter (TX) block is composed of a Medium Power Amplifier (MPA), a High Power 

Amplifier (HPA) and a 30 dB coupler. The measured gain of the block was around 30 dB, and the 1 

dB compression point, P1dB, is 31 dBm. 

 

2.4. Receiver subsystem 

 

The coupled sample of the TX block, using the 30 dB coupler, was amplified with a MPA and used 

as the Local Oscillator (LO) signal in the receiver. The RF echoes were amplified with a Low Noise 

Amplifier (LNA) before mixing them with the LO. The base-band signal was amplified 20 dB before 

filtering it. The noise figure of the receiver is 5.2 dB. 

 

2.5. IF subsystem and acquisition subsystem 

 

The Intermediate Frequency (IF) block consists of an amplifier and a band-pass IF filter. This filter 

must be designed for a concrete application and is used to reduce the IF bandwidth to be sampled, and 

to improve the Signal to Noise Ratio (SNR).  

There are several ways to tune the range interval to be acquired. In other works [13], a heterodyne 

receiver with fixed IF frequency and a variable mixer was used. In our sensor, a fixed central 

frequency IF filter and a variable PRF were used to tune the different range limits. The technique is 

explained in detail in [3, 4] but a short summary is given here. 

 The received signal from a target is demodulated with a coupled version of the transmitted signal to 

produce a beat signal, with frequency fb: 

 

PRFB
c

R

c

R
f RFb ⋅≈= 22 γ      (1) 

 

The beat frequency is directly proportional to the target range R. A fixed IF bandwidth fL < |f| < fH 

allows collecting data from a range interval Rmin < R < Rmax: 
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The system can be tuned to different range intervals varying the PRF with the advantage of using a 

same IF filter. Also, the system can make a band-pass sampling. The band-pass theorem [14] states 

that a band-pass signal that has a nonzero spectrum only over the frequency interval fL < |f| < fH can be 

reproduced from sampled values if the sampling frequency fs satisfies the relationships: 

 

)1(

22

−
≤≤

n

f
f

n

f L
s

H  , 
LH

H

ff

f
n

−
≤≤2   with Zn ∈     (3) 

 



Sensors 2008, 8                            

 

 

3390

The sampling rate reduction allows use of a cheaper Analogue to Digital Converter (ADC), and 

reduces the memory and CPU requirements.  

 
3. LFM-CW SAR signal processing chain 
 

The radar receives a delayed echo of the transmitted signal, equation (4), for each scatter in the 
scene. This signal is given by equation (5), where Ns is the number of scatters in the scene, and )ˆ,( tkR  

the range to the scatter kth. This range has two components: the range )ˆ,( tkRi  due to the ideal 

trajectory of the platform and the range )ˆ,( tkRerr due to the movement errors of the platform. 
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=      (4) 

 

where c is the speed of light, ωc is the carrier pulsation, PRI=1/PRF, γ≈BRF/PRI, t is the fast time and 

t̂  is the slow time. 
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The received signal, equation (5), is demodulated with the complex conjugate of the transmitted 

signal, equation (4). The result of this operation is the signal given by equation (6), which is band-pass 

filtered and sampled, resulting the digital signal shown in equation (7). 
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where the fast time is sampled with a sampling period 1sT , ( 1snTt = ), and the slow time is sampled at 

PRF rate, ( PRImt ⋅=ˆ ), and m and n are integer indexes with values m=0,...,M-1 and n=0,...,N-1. 

After sampling, the signal given by equation (7) was demodulated with a digital reference signal, 

equation (8), and low-pass filtered. This reference signal is the echo that would have been received 

from a target at the centre range of the swath (range R0). 
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This operation has two consequences. First, the band-pass signal is converted to a low-pass signal. 

Second, the reference signal makes motion compensation to a line, which is necessary to use RMA as 

the Image Formation Process (IFP) [7, 15]. At this point, the signal is a low-pass signal that can be 

resampled to fulfill the Nyquist sampling rate. This resampling, with a period Ts2, reduces the number 

of samples and therefore the computational burden. 
The resampled signal, equation (9), still has three error terms: a phase error )(merrΦ , a frequency 

shift (equivalent to a range shift) and the known Residual Video Phase (RVP) [7]. 
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The phase error )(merrΦ  and the range shift were estimated and corrected using an autofocus 

technique. PGA, which has been extended to stripmap mode, is the chosen algorithm to estimate and 

correct the motion errors. The implemented algorithm is explained in the next section. 

The RVP term can be removed by means of the technique known as range deskew [7]. 

After these corrections, the signal given by equation (10) is obtained. This is the signal desired by 

RMA to obtain a perfectly focused SAR image [7]. 
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4. Motion error compensation 
 
4.1. Phase Gradient Autofocus (PGA) 

 

This subsection only shows an overview of the PGA algorithm. The detailed description can be 

found in [5, 6, 7]. PGA is able to estimate and remove arbitrary phase errors in SAR images. The right 

operation of spotlight PGA is based on three hypotheses: 

- The phase error must be spatially invariant over the entire image, that is, all the scatters in a scene 

must share the same phase error history. 

- Targets must exist with phase error information over the entire data set. 

- The raw data signal must be related to the SAR image by means of a two-dimensional Fourier 

Transform. This condition is always fulfilled in spotlight SAR, because the data are usually motion 

compensated to a point. However, our radar is going to operate at stripmap-mode to maximize the 

coverage of the scene. 

The next four points summarize spotlight PGA: 
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1. Circular shifting: The input to PGA is the complex SAR image. The first step is to choose the 

strongest target for each range bin and circularly shift it to the azimuthal origin. This shift removes the 

Doppler frequency offset of these scatters. Therefore, PGA can not estimate linear phase errors in the 

Doppler history. 

2. Windowing: Each selected scatter is windowed azimuthally. Windowing isolates the phase error 

information contained at the dominant scatter from other scatters at the same range bin that could 

interfere with the phase error estimation. 

3. Phase gradient estimation: The circular shifted and windowed data are inversely Fourier 

transformed along azimuth to the range-compressed domain. Let us denote S(m,n) as the signal 

associated with the windowed target from the nth range bin, i.e., the windowed and shifted Fourier 

transform across the columns of s(m,n): 

 
[ ]( )),()(exp),(),( nmmjnmSnmS err θ+Φ=      (11) 

 
where )(merrΦ  is the phase error (spatially invariant) and ),( nmθ  is the scatter-dependent phase 

function for the chosen target in the nth range bin. The linear unbiased minimum variance estimate of 

the gradient phase error is given by: 
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where ),( nmS′  is the first derivative along columns of S(m,n). 

There are other phase gradient estimators that produce good results in combination with circular 

shifting and windowing [5, 7, 16]. 

4. Iterative phase correction: The estimated phase gradient has to be integrated to obtain the phase 

error. Any constant or linear term of the phase error is removed. After the integration, the phase error 

is corrected multiplying the range-compressed data with a complex exponential function whose phase 

is the inverse of the phase error estimate. Then the corrected data are Fourier transformed to the image 

domain, leading to a more focused image. All the described steps are iteratively repeated until some 

convergence criterion is reached [5, 7]. 

Basic spotlight PGA is based on the three fundamental hypotheses that have been explained above. 

The proposed SAR signal processing chain implements a stripmap-mode with motion compensation to 

a line. The first difference is referred to the azimuthal resolution limit and the scene coverage. In 

stripmap-mode, the antenna beamwidth limits the azimuthal resolution, and data collection length 

determines azimuthal scene size. However, in spotlight-mode, data collection length determines 

azimuthal resolution and antenna beamwidth limits the azimuthal scene size.  

Both modes usually use the same transmitted signal and a dechirp-on receive procedure [7]. 

However, the second difference is the reference signal used for dechirping. Stripmap-mode uses 

compensation to a line that preserves the azimuthal chirp, while spotlight-mode uses motion 

compensation to a point that removes this azimuthal chirp [7]. 
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The proposed stripmap PGA implements different strategies to fulfill these PGA hypotheses. The 

implemented algorithm is described in the next subsections. The movement error that has been 

estimated by PGA is used in a two step correction method: a coarse correction that removes the range 

shift, and a fine correction that focuses the target within the resolution cell. 

 

4.2. Stripmap to spotlight conversion 

 

Spotlight PGA needs a raw signal data that can be compressed by means of a two dimensional 

Fourier transform to form a SAR image. However, stripmap data preserve the azimuthal chirp and a 

linear range migration, that is, a single scatter is detected at different range bins for each pulse of the 

data set. These stripmap characteristics do not allow compression of the image using a two-

dimensional Fourier transform. To solve this problem, the proposed algorithm converts stripmap data 

to spotlight data. The conversion consists of a change of the reference signal. Stripmap data have been 

motion compensated with a fixed reference range R0, while spotlight data were motion compensated 

with a different reference range Rc(m) for each pulse. The stripmap to spotlight conversion removes the 

stripmap motion compensation and applies motion compensation to the scene center. This is equivalent 

to multiply each pulse with a complex exponential given by equation. (13): 
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where λ is the wavelength. 

This conversion removes the azimuthal chirp without modifying the phase error that must be 

estimated [7]. PGA needs targets with phase error information over the entire data collection range. In 

spotlight-mode, the phase history of any point covers the entire data set. However, in stripmap-mode 

the phase history of any scatter is limited by the antenna beamwidth and is contained only in a portion 

of the data set. A solution was proposed in [17]. It consists of dividing the complete data collection 

into azimuthal data segments. Our proposed PGA uses this philosophy and independently converts 

each segment from stripmap to spotlight mode. Furthermore, this minimizes range migration even in 

the case of squinted stripmap data.  

Both spotlight and stripmap data with dechirp-on receive have a RVP term. In both modes, RVP 

can be removed using the range deskew filter given by equation (14) [7]. 

 








−= 2exp)( fjfH rd γ
π

      (14) 

4.3. Range alignment previous to the phase estimation 

 

For each azimuthal data segment, some prominent scatters must be selected to estimate the phase 

error due to the non-ideal movement. This selection can be done in the range compressed domain. 

Several methods to choose prominent scatters in the range compressed domain have been proposed in 

the specialized literature about ISAR [19, 20]. For our purpose, the most appropriate algorithm is 
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based on the minimal normalized variance criteria. It computes the normalized variance for each range 

bin (column of the range compressed map). The range bin n̂  with the minimal normalized variance is 

chosen. The formulation is given by equation (15): 
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where S(m,n) is the range compressed map, with M azimuthal cells (rows), and N range bins 

(columns). 

In this way, we achieve selected targets that are located in an azimuthal coordinate quite centered 

respect to the middle of the azimuthal data segment. Taking short enough azimuthal data segments, we 

can avoid the linear range migration due to the ideal motion of the platform. It means that a selected 

target has remained in the same range cell for the major part of the azimuthal data segment and, 

therefore, this range column is the most appropriate to extract the movement error. 

Unfortunately, the range migration cell due to non-ideal motion is still present in the range 

compressed domain. The selected range column could be processed by the typical PGA to extract the 

movement error. However, the range column does not have information in zones where the movement 

error was larger than the range resolution, because the target has suffered a range shift. One way to 

overcome this drawback is range aligning the history of the target in the range compressed domain. 

There are several ISAR techniques that make this correction. Also, we have to take into account that 

this range alignment is usually the first step for motion compensation in ISAR. For example, EC [8, 9] 

or GRA [10] are robust techniques for aligning the history of a target in the same range column in 

presence of noise and clutter. 

To avoid the interference of other targets in the range compressed domain, we can compress the 

image azimuthally via a Fourier transform and isolate the selected prominent scatter in the image 

domain using a window. This technique is used in ISAR processing [21]. The complete procedure is 

illustrated in Figure 4. 

After the range alignment, the column can be processed by the basic PGA to estimate the phase 

error due to non-ideal motion. 

 

4.4. Phase gradient estimation 

 

Only the scatters that are illuminated during all the acquisition time have complete phase error 

information. The geometry of stripmap-mode does not allow collection of data from the same scatter 

all the time. Returns from a target are only received for a limited number of pulses. The number of 

received pulses is determined by the antenna beamwidth. This is a drawback, because PGA needs 

targets with phase error information over the entire data set. 

The solution proposed in [17] consists of dividing the data set into shorter azimuthal data 

segments. After this division, each azimuthal data segment is independently converted from stripmap 

to spotlight-mode in the manner described above. Each segment is range compressed via a Fourier 
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transform. For each segment, several columns containing prominent targets are selected using minimal 

normalized variance. The history of these targets is range aligned as previously explained. Then, basic 

spotlight PGA is independently applied to each column to obtain a phase error estimate. Final phase 

error of the segment will be an average of these independent estimations. 

 
Figure 4. Range alignment procedure. 

 
 

It is known that PGA can not estimate linear phase errors. Thus, the phase error estimation of each 

segment could exhibit a different linear component. To avoid discontinuities in the phase error 

estimation between consecutive segments, in [17] it is proposed to remove the mean of the phase 

gradient before combining and integrating the phase error segments. However, this procedure leads to 

large errors because the segments are small, and the linear component of the actual phase error is, in 

fact, different from zero and also different from one segment to another. 

An estimate of the second derivative of the phase error has the advantage of forcing the 

mathematical continuity between consecutive segment estimations. The second derivative estimate of 

the phase error from all the segments is integrated together yielding the phase error gradient without 

any discontinuity over the complete data set. The mean of the whole phase gradient was then removed 

before integrating again to get the complete phase error. 

The first hypothesis of PGA is that the phase error must be spatially invariant over the entire 

image, i.e. all the scatters in a scene must share the same phase error. Traditional PGA algorithm 

assumes that the phase error is constant with range. However, with wide swaths or short ranges, the 

incidence angle is highly varied and the phase error due to the movement exhibits range dependence. 

Two alternatives have been proposed: 

The first one consists of dividing the data set into narrow range subswaths. The subswath width has 

to be chosen to guarantee high correlation of the phase error within the subswath. The division is 

carried out with the range compressed data, after azimuthal segmentation and stripmap to spotlight 

conversion. The previously described PGA procedure is independently applied to each subswath. The 
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selected targets of one subswath will have very similar phase errors, and the PGA correction will be 

appropriate to all the targets within the subswath. 

The second alternative is to estimate the range dependence of the error to correlate different 

subswaths. This method is based on the Phase Weighted Estimation PGA (PWE-PGA) described in 

[18]. This method improves the performance of PGA, but increases its computational complexity. 

 

4.5. Coarse movement correction 

 

Once the phase error due to non-ideal motion has been estimated, the movement error can be 

extracted using the phase information. Usually 0t  is negligible in comparison with γ
cf  and, 

therefore, ( )mRerr  can be approximated by: 

 

( ) )(
4

mmR errerr Φ−≈
π
λ

      (16) 

 
where )(merrΦ  is the estimated phase error and )(mRerr  is the estimated motion error on the slant 

plane. 
This estimate is valid to correct the range shifts due to the movement errors. The range shift can be 

removed using the original stripmap raw data. The procedure consists of shifting each received pulse 

the quantity given by )(mRerr . The shift can be performed by multiplying each mth pulse of the raw 

matrix s(m,n) with a complex exponential given by (17).  

 








 ⋅⋅= 2)(
4

exp),( serrcoarse nTmR
c

jnmg
πγ

     (17) 

 

After this correction, the movement errors that are larger than the resolution cell have been 

compensated, i.e. the range shift due to non-ideal motion has been removed. However, the range 

curvature due to ideal motion that is different for each scatter still remains. This range curvature will 

be compensated using RMA [7, 15]. 

The range error estimated by (16) is extracted from the phase information. This range information 

is only valid if the estimated phase error can be unwrapped, i.e. if the phase difference between two 

consecutive pulses is lower than π radians: 

 

( ) ( ) π
λ
π <−− 1

4
mRmR errerr      (18) 

 

Equation (18) imposes a limit for the maximum instantaneous radial velocity error (projected over 

slant plane velocity) that can be corrected. Using equation (19), for our system the instantaneous 

maximum radial velocity error will be 11 m/s, which is a high value. 

 



Sensors 2008, 8                            

 

 

3397

PRFvslant 4

λ<       (19) 

4.6. Fine movement correction 

 

The coarse correction removes the range shift, but a fine correction is still necessary, i.e. the typical 

phase correction of PGA. Once the phase error component has been estimated and the range shift 

removed, the corrected stripmap data set can be Fourier transformed to the range domain, and the 

phase error estimation can be removed for each range bin. Let S(m,n) be the range compressed data of 

s(m,n). The correction consists of multiplying each column (range bin) of the matrix S(m,n) with a 

complex exponential given by equation (20): 

 
( )( )mjmG errfine Φ⋅= exp)(      (20) 

 

Finally, the range compressed data are inversely Fourier transformed again to the time domain. 

This data matrix contains the stripmap signal in the format required by RMA, without motion error and 

without RVP. 

 

4.7. Movement error analysis 

 

Let there be a trajectory error with z and y direction components, see Figure 5. These movements, 

y(m) and z(m), induce a phase error and a range shift on the slant plane that depends on the range to the 

targets yk. The proposed algorithm can correct range dependencies due to non-planar movement of the 

platform. 

 

Figure 5. Range dependant error due to non-ideal motion. 

 

kϑ

y

z

ky

h
minR

minyx
 

 

The phase error can be written as: 

 

[ ] kzkykkkerr mmmzmym ϑϑϑϑ
λ

π
cos)(sin)(cos)(sin)(

4
)(, ⋅Φ+⋅Φ=⋅−⋅−=Φ   (21) 

 
For a target located in the center of the kth range bin the incidence angle kϑ  is: 

 



Sensors 2008, 8                            

 

 

3398










⋅+
= −

RkR

h
k δ

ϑ
min

1cos  (22) 

 

where Rδ  is the range resolution of the image 
The )(myΦ  and )(mzΦ  phase error components do not depend on kϑ  and, therefore, they are the 

same for all the range bins. This is exploited by PWE-PGA, described in [18]. Therefore, this non-

ideal motion can be compensated by the proposed autofocus algorithm described above. 

Variations in along-track speed result in non-uniform spacing of the radar pulses. This non-uniform 

sampling of the Doppler spectrum results in erroneous calculations of the Doppler phase history. 

Traditionally, the data are interpolated in the azimuthal direction to correct the velocity variations 

across the synthetic aperture [2]. This interpolation is based on the measured data of an IMU. Our 

system does not have an available IMU, therefore, this kind of error can not be compensated. 

However, our autofocus is able to correct constant deviations respect to the nominal velocity, that is, 

the mean velocity error. 

A constant deviation of the speed generates a phase error that produces defocus and distortion in 

the image. An analytic study of this phase error can be obtained with a simple geometrical 

development. 
Suppose a target located on the ground in a position with coordinates( )pp yx , . The phase of the 

received signal for each pulse is directly proportional to the distance between the platform and the 

target )ˆ(tRp : 

)ˆ(
4

)ˆ( tRt p⋅−=Φ
λ
π      (23) 

  

where t̂  is the slow time and λ  is the wavelength of the transmitted signal. 

The range between the platform and the target varies for each pulse if the platform moves at 

different speed from the nominal one. Suppose a nominal velocity of the platform, Va, this range is 

given by:  

( )22 ˆ)ˆ( tVxrtR appp ⋅−+=      (24) 

 

where 22
pp yhr +=  is the distance between platform and target projected over the y-z plane. 

Supposing 
px  and tVa

ˆ⋅  << 
pr , equation (24) can be approximated by: 

( )
p

ap
pp r

tVx
rtR

⋅
⋅−

+=
2

ˆ
)ˆ(

2

      (25) 

 
Now, suppose that the platform moves with a constant deviation velocity, 

aV∆ , over the nominal 

speed Va. The new range between the platform and the target, )ˆ(tRbias , is given by: 

 

( )( )22 ˆ)ˆ( tVVxrtR aappbias ⋅∆+−+=     (26) 
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Supposing 
px  and ( ) tVV aa

ˆ⋅∆+  << 
pr , equation (26) can be approximated by: 

 

( )( )
p

aap
pbias r

tVVx
rtR

⋅
⋅∆+−

+=
2

ˆ
)ˆ(

2

    (27) 

 

Using equation (23) that relates range with phase, the phase error due to a non-zero mean velocity 

error is given by: 

( ))ˆ()ˆ(
4

)ˆ( tRtRt pbiaserr −⋅−=Φ
λ
π       (28) 

 

Developing: 

( )
t

r

Vx
t

r

VVV
t

p

ap

p

aaa
err

ˆ4ˆ22
)ˆ( 2 ⋅

∆⋅
⋅+⋅

⋅+∆⋅∆
⋅−=Φ

λ
π

λ
π    (29) 

 

The phase error consists of two different components. The first term is a quadratic error. This error 

produces a loss of resolution. The second term is a linear error which produces an azimuthal shift of 

the image. 
The quadratic error depends on the projected distance over the y-z plane, 

pr . Therefore, this error 

is different for each range bin, because it depends on the position of the target in z and y. However, 

this kind of error can be compensated by the autofocus, because it perfectly matches with the error 

model of the method PWE-PGA described in [18]. 

The linear phase error cannot be corrected. It is space variant because depends on the projected 

distance over the y-z  plane, 
pr , and the azimuthal coordinate of the target 

px . Therefore, this error 

distorts the image. The permitted distortion gives the maximum allowed velocity deviation, 
aV∆ . 

 

4.8. Simulated results 

 

The algorithm was tested with simulated stripmap-mode data. The simulated system has the same 

parameters as our real LFM-CW SAR system. The nominal resolution cell chosen for this experiment 

is 15 cm (24 cm with windowing). The simulation evaluated the degradation of the impulse response 

of the SAR system. The measured parameters were azimuth and slant range resolution at -3 dB and -9 

dB respect to the main lobe level, and azimuth and slant range PSLR (Peak Side-Lobe Ratio) with 

respect to the main lobe level. 

The simulated scene consists of several corner reflectors uniformly distributed in a swath of 45x80 

m. The swath is 2500 m away from the radar. The movement error consists of random shifts in the y-z 

plane, see Figure 5. The combination of these errors generated a range shift in the slant plane larger 

than the range resolution. This motion error is shown in Figure 6g. Also, the estimated motion error by 

the autofocus is shown in Figure 6g. Our algorithm appears to have good accuracy. The residual error 

is linear and can not be compensated by the autofocus. However, it is not important because these 

errors do not result in image defocusing [7]. 
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Figure 6a shows the SAR image and Figure 6b shows the detail of the system impulse response 

without applying any autofocus technique. The image is completely defocused. Figure 6c illustrates a 

more focused SAR image. This is the result of applying the autofocus only with fine correction, 

without coarse correction. The detail of the system impulse response can be seen in Figure 6d. Figure 

6e and 6f respectively show the SAR image and the detailed system impulse response applying the 

complete autofocus. Thanks to the novel coarse compensation we can appreciate a resolution 

improvement of 7 % in slant range, and 11 % in azimuth. Also a slight increment of the PSLR is 

achieved. Table 2 gives the exact measured values. 

 

Table 2. SAR system impulse response measurements. 

COARSE 

CORRECTION 

Azimuth 

Resolution (cm) 

Slant Range  

Resolution (cm) 
Azimuth 

PSLR (dB) 

Slant Range 

PSLR(dB) 
-3 dB -9 dB -3 dB -9 dB 

NO 26.4 45.3 31.0 52.8 -23.8 -50 

YES 24.4 41.8 27.7 46.8 -24.4 -50 

 

5. Real data using a ground mobile platform 
 

The LFM-CW radar has been installed in a car that has been used as mobile platform, see Figure 7. 

Two real experiments have been carried out to evaluate the performance of our radar as sensor of a 

SAR system. The nominal square resolution cell is 30 cm. 

The first experiment consists of obtaining a high resolution SAR image of a zone with man-made 

objects and vegetation. Figure 8 illustrates the SAR image that has been achieved and an optical image 

to compare. Most of the objects can be detected thanks to the high resolution. We can observe that 

many shadowing effects are presented because the system was being operating at ground level. 

Furthermore, the noise level was high, but it is interesting to remark that the incidence angle was near 

to 90 degrees, that is, the waves were almost tangent to the terrain surface. Therefore, the 

backscattering from the scene was very low. These two effects will not appear in UAV or airborne 

operations. Furthermore, this image has been processed without motion compensation because the 

movement errors were negligible. 

The second experiment consisted of illuminating a rustic scene with the radar. Previously, one 

corner reflector was placed in the zone to measure the real impulse response of the system. This target 

was labeled C in Figure 9a that shows an optical image of the zone. The Point Spread Function (PSF) 

of the system can be estimated by measuring the impulse response of the system to this reflector. 

Figure 9a shows the optical image. Figure 9b illustrates the movement error estimated by the proposed 

algorithm. Figure 9c shows the SAR image of the scene without motion compensation. Also, a detail 

of the measured PSF without motion compensation is shown in Figure 9d. Figure 9e shows the SAR 

image of the scene with our motion compensation. The detail of the measured PSF with motion 

compensation is shown in Figure 9f. After motion compensation, the estimated PSF shows that the 

system has a square resolution cell around the nominal (30 cm), and a PSLR larger than 20 dB. 
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These two experiments have proved the feasibility and the right performance of the complete 

system, hardware and software, to use our miniaturized radar as a SAR sensor in UAV applications. 

 

Figure 6. Simulated motion compensation: a) SAR image without motion compensation; 

b) Detail of a target without motion compensation; c) SAR image only with fine 

correction; d) Detail of a target with only fine correction; e) SAR image with coarse and 

fine correction; f) Detail of a target with coarse and fine correction; g) Movement errors. 
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Figure 7. Automobile SAR system. 

 
 

Figure 8. Area with man-made objects and vegetation a) Optical image b) High 

resolution SAR image. 

 
 

 

 



Sensors 2008, 8                            

 

 

3403

Figure 9. Rustic area with corner reflector C a) Optical image b) Estimated motion error 

c) SAR image without motion compensation d) Detail of the corner reflector C response 

(PSF) without motion compensation e) SAR image with motion compensation f) Detail 

of the corner reflector C response (PSF) with motion compensation. 

 
4. Conclusions 
 

A millimeter-wave LFM-CW radar has been described. Some measurements of the subsystems 

have been presented. This sensor is modular, compact and lightweight, so it is very attractive for use in 

portable applications like UAV operation. The radar has a CW configuration to provide enough power 

to operate at medium range. It works in millimeter-wave band, so a large RF bandwidth is transmitted 

and a high range resolution is achieved.  

This work is the first step towards proving the feasibility of our millimeter-wave LFM-CW radar as 

a SAR sensor. The sensor has been integrated in a ground SAR system using a car as mobile platform. 

Ground SAR systems have more shadowing effects, worse SNR and smaller coverage than airborne 
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systems. However, two high resolution ground SAR images have been presented to demonstrate the 

performance of the system and the feasibility for UAV applications. Furthermore, an autofocus 

algorithm has been developed to correct movement errors larger than the resolution cell for UAV 

applications. The paper describes the algorithm and shows the obtained results. 
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