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Abstract: Directional gap probability or gap fraction is a basic parameter in the optical 

remote sensing modeling. Although some approaches have been proposed to estimate this 

gap probability from remotely sensed measurements, few efforts have been made to 

investigate the scaling effects of this parameter. This paper analyzes the scaling effect 

through aggregating the high-resolution directional gap probability (pixel size of 20 meters) 

estimated from leaf area index (LAI) images of VALERI database by means of Beer's law 

and introduces an extension of clumping index, Ĉ, to compensate the scaling bias. The 

results show that the scaling effect depends on both the surface heterogeneity and the 

nonlinearity degree of the retrieved function. Analytical expressions for the scaling bias of 

gap probability and Ĉ are established in function of the variance of LAI and the mean value 

of LAI in a coarse pixel. With the VALERI dataset, the study in this paper shows that 

relative scaling bias of gap probability increases with decreasing spatial resolution for most 

of land cover types. Large relative biases are found for most of crops sites and a mixed 
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forest site due to their relative large variance of LAI, while very small biases occur over 

grassland and shrubs sites. As for Ĉ, it varies slowly in the pure forest, grassland and 

shrubs sites, while more significantly in crops and mixed forest. 

Keywords: directional gap probability, scaling bias, leaf area index, clumping index 

 

1. Introduction 

Directional gap probability or gap fraction is defined originally as the probability of a beam 

transferring at a given incident zenith angle through the vegetative canopy without any interception. As 

a key variable describing canopy structure and biomass spatial distribution, it is used to simplify the 3-

D light interception problem to a 1-D problem (Pinty et al., 2004), and has been employed to estimate 

surface component temperatures from multi-spectral and multi-angular measurements (Francois and 

Ottle, 1997; Francois, 2002, Li et al., 2001; Menenti et al, 2008). Though gap probability can be 

estimated in situ from optical instrument data such as hemispherical photographs (Leblanc et al., 2005) 

and usually used to derive leaf area index (LAI) at local scale in field (Jonckheere et al., 2004; Weiss et 

al., 2004), the field measurements cannot meet the practical demands at large scale. An attractive and 

unique way to map and monitor LAI and directional gap probability at large scale is to use the space 

observation from satellite data in the visible and near-infrared bands. Nowadays LAI is widely 

estimated directly from satellite measurements using different methods (Myneni et al., 1997; Weiss and 

Baret, 1999; Chen et al., 2002; Fernandes et al., 2003) and the directional gap probability P is 

estimated from the spatially retrieved LAI by means of the following relationship (Norman, 1995; 

Menenti et al., 2001), 

cos( )( , ) GLAIP LAI e θθ −=                                                            (1) 

where θ  is the zenith angle of incident beam, G is the projection of leaf area in perpendicular to 

incident beam and is related to the leaf angle distribution (Wang et al., 2007). With this relationship, 

directional gap probability can be estimated through vegetation structure information including LAI, 

leaf angle distribution.  

Through observation and studies in different scales including foliage (Rochdi and ad M. Chelle, 

2006), shoot (Smolander and Stenberg, 2003), canopy (Kotz et al., 2004) and landscape (Garrigues et 

al., 2006a) by remote sensing, ecological and agricultural community, scientists have realized spatial 

heterogeneity is universal. Besides the spatial heterogeneity of the land surface, non-linearity of the 

transfer function is another source of uncertainties in the estimation of land surface 

variables/parameters from remotely sensed data. (Hall et al., 1992; Friedl et al., 1995; Pelgrum, 2000; 

Garrigues, 2006b). We can notice that the directional gap probability P estimated from equation 1 is 

highly non-linear with respect to LAI, which will inevitably induced scaling bias when applied to a 

coarse pixel. Consequently it is necessary to analyze the scaling effect of the directional gap probability 

at different scales, and to improve the retrieval accuracy of directional gap probability, and 

subsequently to improve the accuracy of land surface component temperatures retrieved from multi-

spectral and multi-angular satellite data. However, up to now, there are no many efforts in literature 

devoted to study the scaling effect of the directional gap probability. 
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This study focuses on the analysis of the scaling effect on the directional gap probability by means 

of a simple scaling-up scheme and LAI derived from high resolution spatial data. The second section 

provides the theoretical framework to estimate the scaling effect of directional gap probability raised 

by two different aggregation schemes from local scale to larger scale. In the third section, we present 

the different types of remotely sensed LAI images obtained from VALERI database (Validation of 

Land European Remote sensing Instruments). In section 4, the scaling effect associated with the non-

linear relationship between LAI and gap probability is quantified over several types of landscape. 

Conclusion is given in section 5. 

2. Theoretical framework 

2.1. Up-scaling of directional gap probability  

There are two different schemes generally used to aggregate the parameters/variables from the local 

scale to regional or global scale (Pelgrum, 2000), which are depicted in Figure 1 and described roughly 

below: 

1) The aggregation of the results which are derived from a distributed model f using distributed 
input variables. Spatially distributed variables ( , )p x y ( here i

sub pixelLAI −  ) are input to a distributed 

model f ( here Eq. 1), results of the distributed model f are denoted as ( )f p  ( here ( )i
sub pixelP θ− ), then 

the aggregative result ( )f p  ( here ( )pixelP θ ) on a larger scale are deduced (Eq.2) from distributed 

results;(see left flow chart of Figure 1) 

2) The aggregation of input variables before use in an aggregative model F (here Eq.3), thereby 
producing an aggregative result. Spatially distributed input data ( , )p x y  ( here i

sub pixelLAI − ) are first 

averaged to p (here pixelLAI ) from local scale to a larger scale, then p is input to aggregative model F 

(Eq. 4), produces aggregative result ( )F p  (here ( )pixelP θ ). (see right flowchart of Figure 1) 

Figure 1. General schemes of two aggregation schemes. 
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As it concerned to gap probability, supposing that the pixel whose area is S is composed by N 

homogeneous sub-pixels, each sub-pixel i has an area of si 
1

N

i
i

S s
=

=∑ , the directional gap probability for 

a given direction (i.e. zenith θ) is computed using the first aggregation scheme (see left flowchart of 

figure 1) with, 

1

( )
( )

N
i

i sub pixel
i

pixel

s P
P

S

θ
θ

−
==
∑

                                                        (2) 

where i
sub pixelP − is the directional gap probability for sub-pixel i, which can be estimated from Eq.1.  

The directional gap probability can also be aggregated following the second aggregation scheme 

(see right flowchart of figure 1) by 

1

N
i

i sub pixel
i

pixel

s LAI
LAI

S

−
==
∑

,                                                          (3) 

Then computing the directional gap probability with help of the same formula as Eq. 1 by 
/ cos( )( ) pixelGLAI

pixelP e θθ −=                                                               (4) 

2.2. Scaling bias of directional gap probability 

Since the distributed model related LAI to P is nonlinear (see Eq.1) and the input LAI data at coarse 
pixel is heterogeneous, there exists a difference between pixelP  and pixelP . This difference comes from 

the different aggregations. To assess the scaling effect of the directional gap probability, inserting Eq. 1 

into Eq. 2 and neglecting the third and higher order terms of the Taylor series expansion, one gets: 

2
2

2
( ) ( ) ( )

2cos ( )pixel pixel pixel LAI

G
P P Pθ θ θ σ

θ
− =                                          (5) 

with LAIσ  is the standard deviation of LAI inside the coarse pixel, i.e. 

2

2 1

( )
N

i i pixel
i

LAI

s LAI LAI

S
σ =

−
=
∑

 

The relative scaling bias (RE) is therefore obtained 

2
2

2

( ) ( )

( ) 2cos ( )
pixel pixel

LAI
pixel

P P G
RE

P

θ θ
σ

θ θ
−

= =                                              (6) 

From Eq.6, we notice that the relative scaling bias is only dependent on the G, θ  and the spatial 

heterogeneity of LAI within a coarse pixel, but independent on the LAI value itself. 

2.3. Redefinition of clumping index 

In order to take into account the scaling effects of spatial heterogeneity of LAI on estimate of the 

directional gap fraction and to make the estimation of the directional gap fraction independent on the 

observation scale and the aggregation schemes used, a parameter Ĉ is introduced in Eq. 4 so that 
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                                                  ˆexp( / cos( ))pixel pixel pixelGC LAI Pθ− =                                                (7) 

Following the same development made by Wang and Li (2008), combining Eqs 4, 5 and 7, one gets: 

2
2

2

cos( )ˆ 1 ln(1 )
2cos ( )pixel LAI

pixel

G
C

GLAI

θ σ
θ

= − +                                          (8) 

As shown by this equation, the parameter Ĉ is directly proportional to the mean LAI and inversely 

proportional to the spatial heterogeneity of LAI (
2
LAIσ ) for given G function and direction. 

It should be noted that the parameter Ĉ introduced in Eq.7 compensate not only the scaling bias in 

the estimation of the gap probability, but also has the similar meaning as the so-called leaf dispersion 

parameter or clumping index (Ω). Traditionally, clumping index is generally used to quantify the 

heterogeneity of the foliage distribution based on Beer-Lambert’s law considering a non-random 

distribution of foliage in a forest canopy, as vegetation foliage is more often grouped together than 

regularly spaced relative to the random distribution case (Chen, 1996), and vegetative canopies have 

different levels of foliage organizations, which contribute to non-random distribution (Chen, 1999). 

For Ω= 1, canopy elements are randomly distributed. In clumped canopies, Ω is always less than unity. 

The smaller the value of Ω, the more the canopy is clumped.  

Foliage clumping affects the gap probability for the same LAI by delaying the occurrence of the 

saturation in reflectance as LAI increases. There have been some studies mostly concentrated on the 

estimation of clumping index with multi-angular data. Walter et al. (2003) has conducted an 

experiment involving hemispherical photographs of simulated and real forest canopies to determine 

clumping index. Leblanc et al. (2005) and Chen et al. (2005) mapped the foliage clumping index over 

Canada and at the global scale based on the simulated NDHD-clumping index relationships for 

different cover types. But the capability of clumping index for representing spatial heterogeneity and 

eliminating scaling bias is rarely concerned. 

3. Description of the data 

The data used here are part of the VALERI database which provides high spatial resolution (20 m) 

SPOT-HRV scenes for several landscapes sampled (including crops, forest, grassland and shrubs) 

around world (Baret et al., 2005). This wide coverage of landscape makes the conclusion of this study 

more general. Each site has an enough sampling size (about 3km by 3km). Detailed information about 

each site (including land cover type, location and the date of measurement) is given in table 1. More 

details on the data set and methodology concerned for leaf area index retrieval is referred to Baret et al. 

(2005) and the VALERI web site ( www.avignon.inra.fr/valeri ). 
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Table 1. Detailed information of remote sensing images used in this research. The last 

two columns represent the mean (m) and the standard deviation (σ ) of LAI respectively. 

 

Site name  Land cover type Date  Lat.  Lon.  LAIm  LAIσ  

Aekloba-May01  Palm tree plantation  1/Jun./2001  2.63  99.58  3.54  0.671  

Alpilles-March01  Crops  15/Mar./2001  43.81  4.74  0.93  1.15  

Barrax-July03  Cropland  3/Jul./2003  39.07  -2.10  0.97  1.41  

Fundulea-May02  Crops  9/Jun./2002  44.41  26.59  1.53  1.30  

Gilching-July02  Crops and forest  8/Jul./2002  48.08  11.32  5.39  1.79  

Hirsikangas-August03  Forest  2/Aug./2003  62.64  27.01  2.55  1.14  

Jarvselja-June02  Boreal forest  13/Jul./2002  58.30  27.26  4.20  1.09  

Laprida-November01  Grassland  3/Nov./2001  -36.99  -60.55  5.66  2.07  

Larose-August03  Mixed forest  18/Sep./2003  45.38  -75.21  5.87  2.00  

Larzac-July02  Grassland  12/Jul./2002  43.94  3.12  0.81  0.20  

Nezer-April02  Pine forest  21/Apr./2002  44.57  -1.04  2.38  1.11  

Rovaniemi-June04  Forest  23/Jul./2004  66.46  25.35  1.25  0.52  

Turco-August02  Shrubs  29/Aug./2002  -18.24  -68.19  0.04  0.03  

4. Results and Discussion 

4.1. Simulation of relative scaling bias of gap probability 

In this study, we adopt a simple formula proposed by Fuchs et al. (1984) to compute the projection 

value of leaf area in perpendicular to incident beam with mean leaf angle, 

 

cos( )LG θ=                                                                     (9) 

 

where Lθ  is the mean of leaf inclination angle. 

Inserting Eq.9 into Eq.6, we get relative scaling bias of gap probability,  

 

2
2

2

cos ( )

2cos ( )
L

LAIRE
θ σ
θ

= .                                                        (10) 

 

Figure 2 displays the results of RE conducted using Eq.10 for θ=0 and different G functions through 

different mean of leaf inclination angles Lθ  given in Eq.9. 
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Figure 2. Relative scaling bias of gap probability versus the variance of LAI for 

different mean of leaf inclination angles Lθ (0, 30, 45 and 60 degree) and view zenith 

angle 0=θ . 
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As shown in Figure 2, the relative scaling bias of gap probability is linearly related to the variation 

of LAI inside the coarse pixel for a given mean of leave inclination angle Lθ . As predicted by Eq.10, 

the slope of this linearity is equal to 
)(cos2

)(cos
2

2

θ
θL , and for a given variance of LAI, the larger leaf 

inclination angle is, the smaller relative error of directional gap probability is. On the other hand, we 

can conclude that the relative scaling bias varies seasonally since it has relationship with the variance 

of LAI which is a seasonal variable.   

4.2. Spatial scaling bias of gap probability obtained from the VALERI dataset 

In order to see the magnitude of the spatial scaling bias of directional gap probability with real 

scenarios, the VALERI dataset is used in this study. Three assumptions are made in the following 

calculations: 

1) Beer’s law used to retrieve gap probability from LAI (Eq.1) is assumed without any scaling bias 

at 20 m spatial resolution, because no satellite data are available to us at the spatial resolution 

finer than 20m. 
2) Incident beam is assumed to be vertical, i.e. 1)cos( =θ   

3) A spherical leaf angle distribution is assumed, i.e. G=0.5, which is a reasonable assumption for 

many conifer shoots and closed, broad-leaved canopies (Walter, 2003). 
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Following the schemes proposed and showed in figure 1, with the VALERI dataset described in 

table 1, we compute relative scaling bias of gap probability for each site at different spatial scales using 

Eq.6. Figure 3 displays the relative scaling bias of gap probability in function of the pixel size for 

different types of land surfaces, such as forest, cropland, grassland and shrubs.  

 

Figure 3. Relative scaling bias of gap probability against pixel size for different 

landscapes: six forest sites, five crops sites, one grassland site and one shrubs site.  
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From this figure, we notice that the relative scaling bias of gap probability increases with decreasing 

spatial resolution for most of land cover types. Larger relative bias occurs at crops (104%, 50%, 26%, 

14%, at pixel size of 1280m, respectively) than pure forest sites ( %20≤ at pixel size of 1280m except 

for the mixed forest (Larose-August03) which has relative bias of 120% at pixel size of 1280m), 

grassland and shrubs ( %5.0≤ at pixel size of 1280m), demonstrating that our crops sites are relatively 

more heterogeneous than forest, grassland and shrubs sites. Previous research conducted by Garrigues 

et al. (2006b) has gained same conclusion. A large bias occurs over mixed forest site (Larose-August03) 

due to large variance of LAI with this site, while very small relative biases occur over grassland and 

shrubs because the variance of LAI over these two sites are small (<0.2) as indicated in table 1. 
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As a result, a large uncertainty (bias) is introduced in estimate of the gap probability from low 

spatial resolution data such as NOAA-AVHRR or MODIS over large heterogeneous sites if the scaling 

effects are not considered.  

4.3. “Clumping index” Ĉ for VALERI sites  

Letting Eq.8 equal to Eq.2, with VALERI dataset, “clumping index” Ĉ introduced in Eq.7 can be 

easily obtained for each site at different spatial scales. Figure 4 shows the mean value of “clumping 

index” against the pixel size for different types of land surfaces, such as forest, cropland, grassland and 

shrubs. Since the SPOT-HRV pixel is supposed to be homogeneous at 20m spatial resolution, the 

corresponding “clumping index” Ĉ at original scale is unity (not displayed in figure 4). 

 
Figure 4. same as figure 3, but with the mean value of clumping index. 
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As shown in Figure 4, “clumping index” varies much for different land cover types and different 

aggregated sizes. It decreases as aggregative levels increase, indicating that pixel becomes more 

heterogeneous as demonstrated by the analysis of the relative scaling bias of gap probability given 

above. Particularly a relative large variation of “clumping index” occurs at Larose-August03, very 
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similar to the relative scaling bias of gap probability. In addition, “clumping index” varies slowly in 

pure forest, grassland and shrubs sites and more significantly in crops and mixed forest in our cases 

study. The results demonstrate that less scaling effect correction should be performed for forest and 

grass sites than crops sites, which is in good agreement with the result shown in Figure 3.  

As far as sites with the same land cover type are concerned, the magnitude of “clumping index” also 

varies at different aggregated sizes, and mostly is inversely proportional to the spatial heterogeneity of 

LAI (
2
LAIσ ). For example, among forest sites, “clumping index” is minimum at Aekloba-May01, then 

Rovaniemi-June04, Jarvselja-June02, Nezer-April02, Hirsikangas-August03, and maximum is at 

Larose-August03, whose 
2
LAIσ  are 0.671, 0.52, 1.09, 1.11, 1.14, 2.00, respectively.  

Therefore “clumping index” redefined by Eq.8 has the capability of representing and eliminating 

scaling bias of directional gap probability induced by the heterogeneity of LAI. 

5. Conclusion 

In this study, spatial scaling effect of the gap probability based on Beer’s law for different types of 

land cover is analyzed and corrected for by introducing an extension of the “clumping index”, Ĉ which 

accounts for the spatial heterogeneity.  

Analytical expressions developed in this paper show that: 

(1) relative scaling bias is only dependent on the G function and the spatial heterogeneity of LAI, 

but independent on the LAI value itself, and  

(2) extension of “clumping index” Ĉ is directly proportional to the mean value of LAI and 

inversely proportional to the spatial heterogeneity of LAI for given G function and direction. 

 With the VALERI dataset, this study shows that relative scaling bias of gap probability increases 

and “clumping index” value decreases with decreasing spatial resolution for most of land cover types. 

Large relative biases and large variation of “clumping index” Ĉ are found for most of crops sites and a 

mixed forest site due to their relative large variance of LAI, while very small biases and small variation 

of clumping index are found for grassland and shrubs sites. 

The parameters introduced in this paper has endowed a new significance to traditional clumping 

index and provided evidence to the utility of clumping index as an improvement of the estimate of gap 

probability from LAI. The results exhibit the capability of clumping index for scaling Beer’ law and 

representing spatial heterogeneity, as well as the feasibility of the inversion approach for gap 

probability from remote sensing data. Meanwhile a simple and feasible method to estimate “clumping 

index” from remote sensing data is also explored from the above experiment, which will provide a 

support to global mapping of the vegetation clumping index. 

Acknowledgements 

This research is partly supported by 973 program (Grant No 2007CB714402) and partly supported 

by the Knowledge Innovation Program of Chinese Academy of Sciences through contract No. KGCX3-

SYW-408. 

The data used in this study are acquired from VALERI project (www.avignon.inra.fr/valeri). 

 



Sensors 2008, 8                            

 

 

3777

References 

1. Baret, F.; Weiss, M.; Allard, D.; Garrigues, S.; Leroy, M.; Jeanjean, H.; Fernandes, R.; Myneni, 

R.; Morissette, J.; Privette, J.; Bohbot, H.; Bosseno, R.;Dedieu, G.; Bella, C.D.; Espana, M.; Gond, 

V.; Gu, X.; Guyon, D.; Lelong,C.; Maisongrande, P.; Mougin, E.; Nilson, T.; Veroustraete, F.; 

Vintilla, R. in press. Valeri: a network of sites and a methodology for the validation of medium 

spatial resolution land satellite product. Remote Sensing of Environment. (in press) 

2. Chen, J.M. Canopy architecture and remote sensing of the fraction of photonsynthetically active 

radiation absorbed by boreal conifer forests. IEEE Transactions on Geoscience and Remote 

Sensing 1996, 34, 1353-1368. 

3. Chen, J.M. Spatial scaling of a remotely sensed surface parameter by contexture. Remote Sensing 

of Environment 1999, 69, 30-42. 

4. Chen, J.M.; Pavlic, G.; Brown, L.; Cihlar, J.; Leblanc, S.G.; White, H.P.; Hall, R.J.; Peddle; D.; 

King, D.J.; Trofymow, J.A.; Swift, E.; Van der Sanden, J.; Pellikka, P. Derivation and validation 

of Canada-wide coarse resolution leaf area index maps using high resolution satellite imagery and 

ground measurements. Remote Sensing of Environment  2002, 80, 165-184. 

5. Chen, J.M.; Menges, C.H.; Leblanc, S.G. Global mapping of the foliage clumping index using 

multi-angular satellite data. Remote Sensing of Environment 2005, 97 (4), 447-457. 

6. Fernandes, R.; Butson, C.; Leblanc, S.; Latifovic, R. Landsat-5 TM and Landsat-7 ETM+ based 

accuracy assessment of leaf area index products for Canada derived from SPOT-4 VEGETATION 

data. Canadian Journal of Remote Sensing 2003, 29 (2), 241-258. 

7. Francois, C. The potential of directional radiometric temperatures for monitoring soil and leaf 

temperature and soil moisture status. Remote Sensing of Environment 2002, 80, 122-133. 

8. Francois, C.; Ottle, C.; Prevot, L. Analytical parameterization of canopy directional emissivity and 

directional radiance in thermal infrared. Application on the retrieval of soil and foliage 

temperatures using two directional measurements. International Journal of Remote Sensing 1997, 

18 (12), 2587-2612. 

9. Friedl, M.A.; Davis, F.W.; Michaelsen, J.; Moritz, M.A. Scaling and uncertainty in the relationship 

between the NDVI and land surface biophysical variables: An analysis using a scene simulation 

model and data from FIFE. Remote Sensing of Environment 1995, 54, 233-246. 

10. Fuchs, M.; Asrar, G.; Kanemasu, E.; Hipps, L. Leaf area estimates from measurements of 

photosynthetically active radiation in wheat canopies. Agricultural and Forest Meteorology 1984, 

32, 13-22. 

11. Garrigues, S.; Allard, D.; Baret, F.; Weiss, M. Quantifying spatial heterogeneity at the landscape 

scale using variogram models. Remote Sensing of Environment 2006a, 103, 81-96. 

12. Garrigues, S.; Allard, D.; Baret, F.; Weiss, F. Influence of the spatial heterogeneity on the non-

linear estimation of Leaf Area Index from moderate resolution remote sensing data. Remote 

Sensing of Environment 2006b, 105 (4): 286-298. 

13. Hall, F.G.; Huemmrich, K.F.; Goetz, S.J. Satellite remote sensing of surface energy balance: 

success, failures, and unsolved idles in FIFE. Journal of Geophysical Research 1992, 97, 19 061-

19 089. 



Sensors 2008, 8                            

 

 

3778

14. Jonckheere, I.; Fleck, S.; Nackaerts, K.; Muys, B.; Coppin, P.; Weiss, M.; Baret, F. Methods for 

leaf area index determination. Part I: Theories, techniques and instruments. Agricultural and 

Forest Meteorology 2004, 121, 19-35. 

15. Kotz, B.; Schaepman, M.; Morsdorf, F.; Bowyer, P.; Itten, K. Allgower, B. Radiative transfer 

modeling within a heterogeneous canopy for estimation of forest fire fuel properties. Remote 

Sensing of Environment 2004, 92, 332-344. 

16. Leblanc, S.G.; Chen, J.M.; White, H.P.; Latifvic, R. Canadawide foliage clumping index mapping 

from multi-angular POLDER measurements. Canadian Journal of Remote Sensing 2005, 31 (5), 

364-376. 

17. Li, Z.-L.; Stoll, M.P.; Zhang, R.H.; Jia, L.; Su, Z. On the separate retrieval of soil and vegetation 

temperatures from ATSR2 data. Science in China, Series D 2001, 44 (2) 97-111 

18. Menenti, M.; Jia, L.; Li, Z.-L. Multi-angular thermal infrared observations of terrestrial vegetation. 

In Advances in Land Remote Sensing: System, Modeling, Inversion and Application, Springer 

Verlag, 2008, 51-93 

19. Menenti, M.; Jia, L.; Li, Z.-L.; Djepa, V.; Wang, J.; Stoll, M. P.; Su, Z.; Rast, M. Estimation of 

soil and vegetation temperatures with multiangular thermal infrared observations: the HEIHE, 

SGP’97, IMGRASS. Journal of Geophysical Research 2001, 106 (D11), 11997-12010. 

20. Myneni, R.B.; Nemani, R.R.; Running, E.W. Algorithm for the estimation of global land cover, 

LAI and FPAR based on radiative transfer models. IEEE Transactions on Geoscience and Remote 

Sensing 1997, 35, 1380-1393. 

21. Nilson, T. A theoretical analysis of the frequency of gaps in plant stands. Agricultural 

Meteorology 1971, 8, 25-38. 

22. Norman, J.; Kustas, W.; Humes, K. Source approach for estimating soil and vegetation energy 

fluxes in observations of directional radiometric surface temperature. Agricultural and Forest 

Meteorology 1995, 77, 263-293. 

23. Nouvellon, Y.; Begue, A.; Moran, M.; Seen, D.; Rambal, S.; Luquet, D.; Chehbouni, G.; Inoue, Y. 

Par extinction in shortgrass ecosystems: effects of clumping, sky conditions and soil albedo. 

Agricultural and Forest Meteorology 2000, 105, 21-41. 

24. Pelgrum, H. Spatial Aggregation of Land Surface Characteristics. PhD thesis, Wageningen 

University, Netherlands, 2000, 33-39. 

25. Pinty, B.; Govron, N.; Widlowski, J.-L; Lavergne, T.; Verstraete, M.M. Synergy between 1-D and 

3-D radiation transfer models to retrieve vegetation canopy properties from remote sensing data. 

Journal of Geophysical Research 2004, 109, D21205 

26. Rochdi, N.; Ad, M.; Chelle, R.F. An assessment of needles clumping within shoots when 

modeling radiative transfer within homogeneous canopies. Remote Sensing of Environment 2006, 

102, 116-134. 

27. Smolander, S.; Stenberg, P. A method to account for the shot scale clumping in coniferous canopy 

reflectance models. Remote Sensing of Environment 2003, 88, 363-373. 

28. Walter, J.-M.N.; Fournier, R.A.; Soudani, K.; Meyer, E. Integrating clumping effects in forest 

canopy structure: an assessment through hemispherical photographs. Canadian Journal of Remote 

Sensing 2003, 29 (3), 388-410. 



Sensors 2008, 8                            

 

 

3779

29. Wang, W.-M.; Li, Z.-L. Scaling directional gap probability over heterogeneous land surface: 

influences on the estimates of component temperatures. Remote Sensing of Environment 

(submitted in 2008). 

30. Wang, W.-M.; Li, Z.-L.; Su, H.-B. Comparison of leaf angle distribution functions: effects on 

extinction coeffcient and fraction sunlit foliage. Agricultural and Forest Meteorology 2007, 143, 

106-122. 

31. Weiss, M.; Baret, F.; Smith, G.J.; Jonckheere, I.; Coppin, P. Review of methods for in situ leaf 

area index (LAI) determination Part II: Estimation of LAI, errors and sampling. Agricultural and 

Forest Meteorology 2004, 121, 37-53 

32. Weiss, M.; Baret, F. Evaluation of canopy biophysical variable retrieval performances from the 

accumulation of large swath satellite data. Remote Sensing of Environment 1999, 70, 293−306. 

© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 

This article is an open-access article distributed under the terms and conditions of the Creative 

Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 

 


