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Abstract: A flood mapping procedure based on a fuzzy sets theory has been developed. 

The method is based on the integration of Synthetic Aperture Radar (SAR) measurements 

with additional data on the inundated area, such as a land cover map and a digital elevation 

model (DEM). The information on land cover has allowed us to account for both specular 

reflection, typical of open water, and double bounce backscattering, typical of forested and 

urban areas. DEM has been exploited to include simple hydraulic considerations on the 

dependence of inundation probability on surface characteristics. Contextual information 

has been taken into account too. The proposed algorithm has been tested on a flood 

occurred in Italy on November 1994. A pair of ERS-1 images, collected before and after 

(three days later) the flood, has been used. The results have been compared with the data 

provided by a ground survey carried out when the flood reached its maximum extension. 

Despite the temporal mismatch between the survey and the post-inundation SAR image, 

the comparison has yielded encouraging results, with the 87% of the pixels correctly 

classified as inundated. 
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1. Introduction 

Mapping the extension of an inundation is fundamental for relief organization and to assess the 

damages. Remote sensing data are useful tools in this field, especially for events occurring in remote 

regions or in areas characterized by lack of rain-gauge stations, where hydrological information are 

difficult to be gathered. Among remote sensing sensors, Synthetic Aperture Radar (SAR) offers the 
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advantage of getting high spatial resolution images in almost all-weather conditions, as opposed to 

passive instruments operating at infrared and visible bands. This feature is particularly attractive and in 

most cases essential, since flooded areas are often obscured by heavy cloud coverage. The change 

detection potential of SAR, based on variations of the backscattering coefficient σ0 (i.e., the image 

intensity), or decrease of coherence derived from SAR image pairs (i.e., the interferometric phase), can 

be successfully exploited to remotely map inundations [1-3]. For instance, the Mississippi flood of 

1993 [4], the 1996 and 1997 inundations in the Red River Valley [5-7], the Elbe event of mid-August 

2002 in Germany [8], the Oder River inundation of 1997 [9] and the Yangtze River flooding occurred 

in China in summer 1998 [1] were monitored by using SAR images.  

The effect of an inundation may produce different changes in the SAR image, depending on the type 

of underlying terrain. Flooded bare soils have lower backscattering with respect to the surrounding 

non-inundated areas, since a smooth water surface acts like a specular reflector [2], and the flood 

detection is generally carried out by applying thresholds on a SAR image recorded after the event [10]. 

Note that wind roughening increases the backscattering from the inundated surface, thus lowering the 

contrast between flooded and non-flooded areas. On the contrary, inundated forest areas generally 

produce a large radar return, caused by a double bounce backscattering mechanism between the water 

surface and the trunks [11-12]. In this case, the difference between two SAR images, recorded before 

and after the event, is analyzed to identify areas where an increase of σ0 occurs. The double bounce 

mechanism may produce a significant radar return in inundated urban areas too.  

Methods based on thresholds applied to a SAR image were widely adopted in past investigations. 

Henry et al. [8] determined the thresholds by analyzing the histograms of both Envisat ASAR and 

ERS-2 observations of the Elbe river flood occurred in 2002. Cunjian et al. [13] applied a threshold to 

a RADARSAT image concerning an event occurred in China in 1998, and used a digital elevation 

model (DEM) to distinguish the dark shadow due to relief from water. Good results were achieved by 

using a SAR polarimetric system. For instance, a decision tree based on thresholds applied to 

multipolarization L-band and C-band SIR-C data concerning Amazonia was developed by Hess et al. 

[14] to discriminate five types of land cover, included water and flooded forest.  

Algorithms founded on sophisticated segmentation techniques were also developed to delineate the 

boundaries of a flooded area. An example is the active contour model, adopted by Horritt et al. [2]. In 

their study, the segmentation was applied to an ERS-1 image and to a coherence map built by 

employing two ERS-1 images collected before and after the flood of the river Thames in 1992. Better 

results were obtained by using other data, such as a digital terrain model (DTM) derived from airborne 

laser altimeters (Lidar), together with SAR data [15]. For the events of the River Alzette floodplain on 

2003 and the River Mosel on 1997, SAR flood extent and a high-resolution floodplain DEM were 

joined to compute flood depths [16]. 

Our concern is that the shortcoming of most procedures is represented by the simplistic image 

processing methods that are used, generally based on fixed thresholds, which do not account for 

complications in SAR imagery due to the presence of vegetation or urban areas. On the other hand, 

advanced image processing procedures do not incorporate any prior information on the physics of 

surface scattering. Horrit et al. [2] stated that an improvement of the flood maps accuracy can be 
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expected through the adoption of a more model based approach, rather than a heuristic segmentation 

method. 

In this paper, we propose the application of the fuzzy theory [17] for flood boundary delineation 

from SAR images. The fuzzy sets basically represent an extension of the classical notion of set. While 

in classical set theory an element either belongs or does not belong to the set, elements of a fuzzy set 

have degrees of membership. These degrees are described by a membership function whose values are 

real numbers in the interval [0, 1].  The fuzzy theory is suitable for representing the sets for which the 

definition of a membership criterion is a difficult task. This is the case of the set of flooded pixels in 

SAR images. Even though the fuzzy logic has been widely used in the past for image elaboration and 

segmentation (e.g., [18-19]), to our knowledge this is the first attempt to apply such a method for flood 

mapping. 

Since the imaging of the water surface is complicated by factors such as wind roughening and the 

presence of vegetation [2], as previously discussed, several pieces of information should be included in 

the classification algorithm to improve the reliability of inundated area maps. The use of a fuzzy-based 

method has also allowed us to integrate in the classification procedure prior information (e.g., DEM of 

the involved area, land cover map), simple hydraulic considerations which are generally neglected in 

flood mapping methods (e.g. the dependence of inundation probability on surface characteristics), and 

contextual information. 

We have considered a case study concerning a flood occurred in the Alessandria district (Northern 

Italy) on November 5th-6th 1994. A pair of ERS images collected before (October 3rd) and after 

(November 9th) the inundation has been used, together with a DEM of the area and a land cover map 

(CORINE land cover). The result of our procedure for flood boundary delineation has been compared 

to a ground survey that refers to the maximum extension of the flood, whilst the post-flood SAR image 

has been collected few days later. Despite of this difficulty, the flood map derived using the proposed 

procedure seems to be able to identify the presence of water, better than a simple thresholding 

procedure. 

In Section 2 a preliminary analysis of the available data is described, whereas Section 3 depicts the 

adopted fuzzy approach. In Section 4, the results of our procedure are discussed and Section 5 draws 

the main conclusions. 

2. Dataset analysis 

In November 1994, because of heavy rainfall, the Tanaro River flooded the town of Alessandria, in 

Northern Italy, and the neighboring areas. The event caused a great deal of damage, with a loss of 70 

lives [20]. The peak of the event occurred on November 5th-6th. Such a disaster has been studied in 

the past by Boni et al. [21] through a multisensor analysis particularly focused on rain rate retrieved 

from passive microwave radiometric measurements. An attempt to map the extension of the flood by 

ERS has been carried out in [20] by means of a maximum likelihood classifier, developed for non-

forested areas only. 

We have used a pair of ERS-1 intensity images collected before (October 3rd) and after (November 

9th) the inundation. The two images, whose resolution is 12.5 m both in ground range and in azimuth, 

have been recorded in descending orbits. The original five look Precision Images (PRI) provided by 
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ESA have been filtered to reduce the speckle by using a Frost adaptive filter [22], and georeferenced. 

They are shown in Figure 1 (pre-inundation: left panel; post-inundation: right panel). In the post-event 

SAR image (November 9th), some dark areas can be clearly observed. They indicate the presence of 

water surfaces even three days after the peak of the inundation. 

Figure 1. Pre (left panel) and post-flood (right panel) SAR images of the Alessandria area. 

   
(a)                                                                           (b) 

Figure 2. Land cover map of the area derived by CORINE database. Eight main classes 

are distinguished. Industrial and commercial areas (blue); cultivations (magenta); 

grassland (aquamarine); road and rail networks (yellow); sowable lands (green); 

continuous urban (white); discontinuous urban (red); woodland/shrub (sea green). Black 

areas are unclassified. 

 
 

The orography of the Alessandria district has been characterized by a DEM with a resolution of 

40×40 m furnished by Piedmont region (to which the Alessandria district belongs). The DEM has been 

resampled at 12.5 m pixel-spacing through a bi-linear interpolation to be co-registered with the SAR 

images. As for land use and land cover, we have considered the data available through the CORINE 
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database. These data have been derived from Landsat Thematic Mapper images acquired in 1991-1992 

and are shown in Figure 2. It can be observed that most of the territory (about 71%) is covered by 

sowable land (green). This implies the prevalence of (forward) specular reflection from the water 

surface, thus explaining the presence of large dark areas in the post-inundation image (Figure 1b).  

The dataset has been integrated by a ground truth, provided by the local authorities, indicating the 

maximum extension of the flood. Unfortunately, it cannot be directly compared with the post-

inundation SAR image which has been collected three days later. However, it has yielded some useful 

indications for validating the results.  

To study the scattering behavior of different cover classes when the land is inundated, we have 

performed a preliminary analysis of the dataset. We have derived the histogram and the mean value of 

σ0 for each different type of land cover, both for flooded and non-flooded areas, distinguished 

according to the ground truth. Figure 3 shows the histograms for the classes of sowable lands (left 

panel) and grassland (right panel). The mode of the histograms related to the post-inundation image 

(blue solid lines) is almost at the same value of σ0 (0.02 m2/m2). The same occurs for the class of 

cultivations (not shown). This means that, where water surfaces act as specular reflectors, the pre-

existent land cover does not influence the value of σ0. 

Figure 3. Histograms of σ0 before and after the inundation. Left panel: sowable lands; 

right panel: grassland. Red and blue lines concern pre-flood and post-flooded images, 

respectively. 

 
(a)                                       (b) 

 

Figure 4 shows the difference between the mean values of σ0 extracted from pre-flood [σ0(pre)] and 

post-flood [σ0(post)] images. The classes of urban areas (continuous and discontinuous urban), rail and 

road networks, grassland and transitional woodland/shrub present an increase in 

mean[σ0(post)]−mean[σ0(pre)]. While this increase could be expected for woodland and urban areas 

because of the enhanced double bounce effect, it is surprising for grassland. After a deeper analysis, we 

have found the presence in both SAR images of some very bright pixels in the areas labeled as 
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grassland (outside the range of abscissas in Figure 3). This may imply that manmade structures were 

located in this area at the time of SAR overpasses and the increase of σ0 could be ascribed to double 

bounce backscattering. It is worth reminding that, whilst the SAR observations regard 1994, the 

CORINE database has been derived from data collected in 1991-1992, so that such a temporal 

mismatch may have caused the missing of new urban settlements in the land cover map. Moreover, it 

must be considered that part of the areas labeled as inundated by the ground survey were probably non-

flooded at the time of the second SAR observation. Therefore, we guess that the increase shown in 

Figure 4 is underestimated. 

Figure 4. Difference between the mean values of σ0 measured after and before the flood 

in the area near the town of Alessandria. Note that industrial areas are neglected since 

they were not involved in the flood, according to the ground truth. 
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3. Methodology 

The procedure for flood boundary delineation has been designed to account for physics of the 

scattering mechanisms, hydraulic considerations and prior information on land cover and topography. 

The requirement to avoid noisy maps with isolated points has been pursued as well, by introducing the 

contextual information. The fuzzy approach has revealed a very valuable tool to integrate these 

different pieces of information. 

3.1. The fuzzy sets 

We have followed a method based on standard membership functions. Pal et al. [18] proposed a 

function for pixel intensity, named standard S function and shown in Figure 5a (upper left panel). It is 

characterized by three parameters a, b and c, with usually b = (c+a)/2. According to the standard S 

function, the higher the intensity of the pixel, the higher is its degree of membership. We have adopted 

the S function to assess the membership to the flooded areas having σ0(post)>σ0(pre), i.e., urban and 

forested areas. As for the choice of the parameters, b has been computed, for each land cover class 
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exhibiting a rise of σ0, as the mean increase in inundated zones, derived from the analysis presented in 

Figure 4. Subsequently, for a and c, a variation equal to 25% with respect to b has been supposed. 

To define the membership of a pixel to the set of open water surfaces, i.e., flooded areas having low 

σ0(post), we have selected the function Z=1-S (standard Z function). In this case, the parameter a has 

been chosen in correspondence to the mode of the histograms related to the post-inundation image, 

which have revealed independent on land cover (Figure 3, blue lines), whilst c corresponds to the 

intersection between the histograms of pre- and post-inundation images for sowable lands (Figure 3). 

Figure 5. Membership functions used in this work. 

 

Figure 6. Portion of the post-inundation SAR image. A DEM contour line is 

superimposed (in red). 

 
We have accounted for the information provided by the DEM too. Figure 6 shows a portion of the 

post-inundation image on which a DEM contour line is superimposed (in red). It can be clearly 

observed that the boundary of the dark area (flooded zone) exactly follows the red line, as it could be 
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expected from very simple hydraulic considerations. A high probability of flood occurrence in low-

altitude areas has been therefore supposed and the fuzzy set of the low-altitude pixels has been 

introduced. We have also considered that the probability of finding inundated surfaces is large in low-

slope areas and in concave areas. DEM has been processed to compute slope and concavity, the latter 

being derived from DEM Laplacian. Correspondingly, other two fuzzy sets have been defined. The 

shape of the functions representing the degree of membership of the fuzzy sets introduced above is the 

same and is shown in Figure 5b (upper right panel). It is a piecewise linear function characterized by 

two parameters (e and f). For the fuzzy set of low-altitude pixels, e and f have been set equal to the 

minimum (80 m) and maximum (110 m) values of the heights in the area observed by SAR, whilst for 

the slopes we have chosen 0° and 10.3° and for the Laplacian −0.01 and 0.01.  

3.2. The fuzzy-based method 

The block diagram of our fuzzy-based procedure is shown in Figure 7. From the fuzzy sets of the 

pixels with low σ0(post) (whose membership degree, assessed by the standard Z function, is d1) and of 

the pixels with high σ0(post)− σ0(pre) (membership degree d2, defined by the standard S function), a 

new set has been derived by means of the fuzzy union, that is, by assigning to each element the largest 

degree of membership between d1 and d2, i.e., max(d1,d2). This new set has been combined with the 

three ones obtained by exploiting the DEM information (membership degrees d3, d4, d5) for producing 

the first fuzzy set of pixels classified as inundated. To do this, a weighted average of max(d1,d2), d3, 

d4 and d5 has been accomplished, giving a larger weight to the first one, i.e. that derived from the SAR 

measurements, with respect to those extracted from the DEM features. 

The following step of our procedure aimed at taking into account some contextual information. 

Simply speaking, for each pixel, a correction based on the statistics of the degree of membership of the 

neighbors has been performed. This second part of the algorithm is founded on the following 

considerations: (i) the probability of the presence of one isolated flooded pixel inside an area of non-

flooded ones (or vice versa) is low; (ii) the probability of the presence of a non-inundated pixel close to 

inundated ones located at higher altitude is low; (iii) the probability of the presence of an inundated 

pixel close to non-inundated ones located at lower altitude is low.  

The degree of membership of the pixels has been therefore modified according to its neighbors. To 

account for condition (i), for each pixel we have computed the mean value m and the standard 

deviation s of the degrees of membership to the class of inundated pixels in a 5×5 window around the 

pixel itself (whose membership degree is denoted by d0). Then, the quantity δ=(d0−m)(1−s) has been 

calculated and, for δ, a new membership function has been defined. It is shown in Figure 5c (lower left 

panel) and its parameters are g=−0.3, h=−0.1, k=0.1, n=0.3. Through this function, we have assigned 

the window mean degree m to a pixel surrounded by a uniform background (this implies s~0) and 

having d0 considerably different from m. For the opposite situation (background far from being 

uniform, i.e., s~1 that implies δ~0), we have retained the original degree of membership d0.   

To account for condition (ii), we have computed, within a 3×3 window, the degree of membership 

dM of the pixels located at higher altitude with respect to the central one, having degree d0. Then, the 

membership function shown in Figure 5d (lower right panel), has been applied to d0−dM, choosing 

p=−0.2, q=0.0, z0=d0 and z1=dM. In this way the degree of a pixel surrounded by neighbors located at 
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higher altitude with a larger degree (probably flooded) has been increased. A similar procedure has 

been used to consider condition (iii). Indicating by dm the degree of membership of the pixels located 

at lower altitude with respect to the central one, the function shown in Figure 5d has been applied to 

d0−dm, choosing p=0.0, q=0.2, z0=dm and z1=d0. In this case we have aimed at decreasing the degree 

of membership of a pixel surrounded by neighbors located at lower altitude with a smaller degree 

(probably non-flooded). 

Figure 7.  Block diagram of the fuzzy algorithm. 

 
From the three fuzzy sets created to take into account contextual information and from the first 

fuzzy set of pixels classified as inundated, the final set of pixels classified as inundated has been 

produced (see Figure 7). A weighted average has been applied giving the largest weight to the 

membership to the first fuzzy set of inundated pixels. The resulting fuzzy set has been finally 

transformed in the flooded area map by marking as inundated every pixel having membership degree 

greater than 0.5 (the so called defuzzification process to transform a fuzzy number into a crisp 

number). 
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4. Results 

The final result of the procedure is shown in Figure 8. Blue regions correspond to the flooded areas 

according to the ground survey, whereas white regions represent the flood retrieved by our fuzzy 

procedure.  It is worth underlining that the large blue areas not covered by white ones in Figure 7 do 

not imply that our algorithm underestimates the inundation. They are due to the temporal mismatch 

between ground survey and post-flood SAR observation. In other words, because of the late SAR 

acquisition, only commissioning errors (false alarm) can be quantified. 

Among the 771610 pixels of the SAR image, the algorithm has detected about 76000 pixels as 

flooded, the 87% of which are in agreement with the ground truth classification. The commissioning 

error is in the order of 5%, whereas the residual 8% corresponds to rivers. The false alarms are 

represented in Figure 8 by white pixels surrounded by black ones. It is worth noting that in the lower 

part of the map they are aligned along the Bormida River (affluent of Tanaro), which overflowed as 

well, so that we suspect that they have been misclassified or skipped during the ground survey. Other 

commissioning errors are due to pixels which have low radar backscattering in the post-flood SAR 

image, probably associated to agricultural fields particularly flat or small water basins. 

Figure 8. Map of the flooded area (white regions) derived from the fuzzy algorithm. 

The blue areas represent the inundation according to ground survey (maximum flood 

extension). 

 
 

It is interesting to analyze the impact of some of the fuzzy rules introduced in the procedure. As 

discussed in the introduction, a simple thresholding technique, assuming that the water surface acts as a 

specular reflector, fails where the water surface enhances the double bounce mechanism. This is the 

case of an urban area. Figure 9 shows a little portion of the image derived by computing the difference 
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between post-flood and pre-flood SAR data. This portion concerns the city of Alessandria. For the sake 

of figure clarity, the areas classified as inundated by our algorithm are contoured in magenta. Bright 

pixels correspond to σ0(post) considerably larger than σ0(pre) because of the enhancement of the 

double bounce backscattering. It can be seen that most of these bright pixels are detected as flooded by 

the fuzzy classifier. They would have been considered as non-inundated using a thresholding method, 

or any method not accounting for such a scattering mechanism, while the ground truth agrees with our 

classification. Note that the grey pixels contoured by magenta lines correspond to the Tanaro river. 

Figure 9. Portion, regarding the city of Alessandria, of the image derived by calculating 

σ0(post)−σ0(pre). Magenta contours correspond to areas classified as inundated by our 

algorithm. 

 

Figure 10. Effect of the inclusion of the DEM information in the classification 

procedure. Flood maps obtained by either including (polygons filled with magenta lines) 

or discarding (white pixels) this information are compared. 
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Being the Alessandria district a plain region, we can expect that the information provided by the 

DEM has a small impact on the classification result. Nevertheless, we believe that a map of flooded 

areas should account for hydraulic considerations about the surface orography. In Figure 10, we show a 

portion of the map, concerning a flooded area according to ground truth, in which the effect of 

including the DEM information in the classification procedure can be evaluated. The polygons filled 

with magenta lines represent the zones classified as flooded if the DEM information is taken into 

account. White pixels correspond to the results achieved by neglecting the DEM. It can be observed 

that the consideration of the DEM widens the region classified as flooded. Although this widening is 

small, it produces a better agreement with the ground truth. 

5. Conclusions 

A method based on a fuzzy classification approach has been applied to the problem of flood 

mapping from SAR imagery. The method accounts for the surface characteristics of the area involved 

in the inundation, exploiting the information extracted from a Digital Elevation Model. The type of 

land cover is also taken into account by considering two different scattering mechanisms, i.e., the 

specular reflection, occurring in open water, and the double bounce effect, occurring in flooded urban 

and forested areas. Contextual analyses on the neighboring pixels are also introduced to avoid 

producing noisy maps. The algorithm has been tuned and tested on the inundation occurred in the 

Alessandria district (Northern Italy) on November 1994. Although the accuracy of the final map cannot 

be assessed, since the SAR post-inundation acquisition refers to 3 days after the ground survey, while 

the latter regards the peak of the inundation, the results seems to be encouraging, with the 87% of 

pixels correctly classified as flooded and a 5% of false alarm. Due to the mentioned unavailability of 

ground truth at the time of the SAR overpass, it is likely the procedure may require some better tuning 

of the parameters of the membership functions. However, the proposed scheme based on the fuzzy 

approach can represent a useful tool to integrate different sources of information and classification 

rules within an operational system for disaster management.  
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