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Abstract: A common approach to improve medical image classification is to add more 

features to the classifiers; however, this increases the time required for preprocessing raw 

data and training the classifiers, and the increase in features is not always beneficial. The 

number of commonly used features in the literature for training of image feature 

classifiers is over 50. Existing algorithms for selecting a subset of available features for 

image analysis fail to adequately eliminate redundant features. This paper presents a new 

selection algorithm based on graph analysis of interactions among features and between 

features to classifier decision. A modification of path analysis is done by applying 

regression analysis, multiple logistic and posterior Bayesian inference in order to 

eliminate features that provide the same contributions. A database of 113 mammograms 

from the Mammographic Image Analysis Society was used in the experiments. Tested on 

two classifiers – ANN and logistic regression – cancer detection accuracy (true positive 

and false-positive rates) using a 13-feature set selected by our algorithm yielded 

substantially similar accuracy as using a 26-feature set selected by SFS and results using 

all 50-features. However, the 13-feature greatly reduced the amount of computation 

needed. 
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1. Introduction 
 

Breast cancer is among the most frequent forms of cancers found in women [9]. Diagnosis of breast 

cancer typically includes biopsy, ultrasound, and/or imaging. Ultrasound can diagnose simple cysts in 

the breast with an accuracy of 96-100% [11]; however, the unequivocal differentiation between solid 

benign and malignant masses by ultrasound has proven to be difficult. Despite considerable efforts 

toward improving ultrasound, better imaging techniques are still necessary. Mammography is now 

commonly used in combination with computer-aided diagnosis (CAD). CAD is a computer diagnosis 

system to assist the radiologists in image interpretation [15] Since the causes of some types of cancer 

are still unknown, it can be difficult to decide whether a tissue is cancerous or not. Currently, 

radiologists can refer to an automated system as a second opinion to help distinguish malignant from 

normal healthy tissues. An automated system can detect and diagnose probable malignancy in 

suspicious regions of medical images for further evaluation. Since medical images for CAD (such as 

X-ray, CT scan, MRI, and mammogram), include a considerable number of image features, CAD 

improves the detection of suspected malignancies. 

Image features are conceptual descriptions of images that are needed in image processing for 

analyzing image content or meaning. Features are usually represented as data structures of directly 

extractable information, such as colors, grays, and higher derivatives from mathematical computation 

of the basic features such as its edges, histograms, and Fourier descriptors. Each type of feature 

requires a specific algorithm to process it. Therefore, only features that carry essential and non-

redundant information about an image should be considered. Moreover, feature-extraction techniques 

should be practical and feasible to compute. Many researchers have tried to improve the accuracy of 

CAD by introducing more features on the assumption that this will lead to better precision. However, 

adding more features necessarily increases the cost and computation time. 

The addition of more features does not always improve system efficiency, which has led to an 

investigation of feature pruning techniques [2, 3, 6, 20, 23, 30]. Foggia et al. [20] used a graph based 

method with only six features and found the performance was 82.83% true positive (TP) and 0.08% 

false positive (FP) per image, Fu et al. [13] used sequential forward search (SFS) and found that only 

25 features are required, with Mean Square Error (MSE) 0.02994 by using General Regression Neural 

Networks (GRNN). When a support vector machine (SVM) was applied, it further reduced this to 11 

features, with MSE of 0.0283.  

Among the algorithms to discard non-significant features are sequential forward search (SFS), 

sequential backward search (SBF), and stepwise regression. SFS and SBF focus on the reduction of 

MSE of the detection process while stepwise regression involves both the interaction of features and 

the MSE value. Using stepwise logistic regression is costly since this technique is based on 

calculations over all possible permutations of every feature in the prediction model. These techniques 

use an assumption to select features that has higher relation to the classifier decision output. However, 

an optimal set of features must be orthogonal. With the above techniques, it is possible that 

information from two or more candidate features may be redundant and a feature may be dependent  

on another.  
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To improve the effectiveness of feature-discarding techniques, we propose a new method using 

modified path analysis for feature pruning. A weighted dependency graph of features to the output of 

classifier and correlation matrices among features is constructed. Statistical quantitative analysis 

methods (regressions and posterior Bayes) and hypothesis testing are used to determine the 

effectiveness of each feature in the classifier decision. Experiments are performed using 50 features 

found in literature and evaluate feature selection effectiveness when applied on to two learning models: 

ANN and logistic regression. The resulting 13-feature set is compared with prediction using all 50 

original features and a 26-feature set selected by the SFS method. We found that the quality is nearly 

equal; however, the number of feature computations is reduced by one-half and 13/50 when compared 

to the 26-feature set and all-feature set, respectively.  

The paper is organized as follows. Section 2 is the medical image features problems and survey on 

the features in medical image research. Section 3 describes the feature extraction domains. Section 4 

has details of the statistical collaborative methods. Section 5 describes our proposed algorithm and 

section 6 is the evaluation the experiments. 

 
2. Medical Image Feature Survey 

 

Medical image detection from mammograms is limited to analysis of gray-scale features. 

Distinction between normal and malignant tissue by image density is nearly impossible because of the 

minuteness of the differences [20]. Thus, most feature extraction methods are extended from the 

derivation of limited gray scale information [1, 2, 10, 27, 30]. Medical image features can be divided 

into three domains: spatial, texture, and spectral. Spatial domain refers to the gray-level information in 

an arbitrary window size. It includes gray levels, background and foreground information, shape 

features, and other statistics derived from image information intensity. Texture refers to properties that 

represent the surface or structure of an object in reflective and transmissive images. Texture analysis is 

important in many applications of computer image analysis for classification, detection or 

segmentation of images based on local spatial variations of intensity. Spectral density or spectrum of 

signal is a positive real value function of a frequency associated with a stationary stochastic process, 

which has dimensions of power or energy. However, all useful features must be represented in a 

computable form. 

In a previous study [12], we found that most features were extracted on the assumption that more 

features would enhance the detection system. There are many ways to extract new features such as 

modifying old features, using more knowledge from syntactic images [19], and using a knowledge base 

[18]. Much research has been devoted to finding the best feature or best combination of features that 

gives highest classification rate using appropriate classifier. Some perspectives on the situation of 

feature extraction and selection are reviewed next. 

Fu et al. [13] used 61 features to select a best subset of features that produced optimal identification 

of microcalcification using sequential forward search (SFS) and sequential backward search (SBS) 

reduction followed by a General Regression Neural Network (GRNN) and Support Vector Machine 

(SVM). W found inconsistency between the results of the two methods i.e. a feature which was in the 

top-five most significant using the SFS but was discarded by the SBS. 
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Zhang et al. [21] attempted to develop feature selection based on the neural-genetic algorithm. Each 

individual in the population represents a candidate solution to the feature subset selection problem. 

With 14 features on their experiment, there are 142 possible feature subsets. The results showed that a 

few feature subsets (5 features) achieved the highest classification rate of 85%. In the case of a huge 

number of features and mammography, however, it is very costly to select features using the neural-

genetic approach.  
 

Table 1. Feature selection and classification method from previous work. 

 

Researcher Domain Features used (examples) Classifier 
Fu et al. 
[13] 

Texture  Co-occurrence matrix rotation with angle 0°, 45°, 90°, 135°: 
Difference entropy, entropy, difference variance, contrast, 
angular second moment, correlation  

GRNN (SFS, 
SBS) 

 Spatial Mean, area, standard deviation, foreground/ background ratio, 
area, shape moment intensity variance, energy –variance 

 

 Spectral Block activity, Spectral entropy  

G. Samuel 
et al. [5] 

Spatial Volume, sphericity, mean gray level, gray level standard 
deviation, gray level threshold, radius of sphere, maximum 
eccentricity, maximum circularity, maximum compactness  

Rule-based, 
linear 
discriminant 
analysis 

E. Lori et 
al. [4] 

Spatial, 
Patient 
Profile 

Patient profile, nodule size, shape (measured with ordinal 
scale) 

Regression 
analysis 

Shiraishi et 
al. [12] 

Multi 
Domain 

Patient profile, root-mean-square of power spectrum, 
histograms frequency, full width at half maximum of the 
histogram for the outside region of the segmented nodule on 
the background–corrected image, degree of irregularity, full 
width at half maximum for inside region of segmented nodule 
on the original image  

Linear 
discriminant 
analysis 

Hening [18] Spatial Average gray level, standard deviation, skew, kurtosis, min-
max of the gray Level, gray level histogram 

SVM 

Zhao et 
al.[27] 

Spatial Number of pixels, histogram, average gray, boundary gray, 
contrast, difference, energy, modified energy, entropy, 
standard deviation, modified standard deviation, skewness, 
modified skewness 

ANN 

Ping et al. 
[21] 

Spatial Number of pixels, average, average gray level, average 
histogram, energy, modified energy, entropy, modified 
entropy, standard deviation, modified standard deviation, 
skew, modified skew, difference, contrast, average boundary 
gray level  

ANN and 
Statistical 
classifier 
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Table 1. Cont. 

 
The Information Retrieval in Medical Applications (IRMA) [3] project used global, local, and 

structure features in their studies of lung cancer. The global features consist of anatomy of the object; a 

local feature is based on local pixel segment; and structural features operate on medical apriori 

knowledge on a higher level of semantics. In addition to the constraints of the global feature 

construction and lack of prior medical semantic knowledge, this procedure was quite difficult  

and costly. 

The researchers’ choices of medical image features depend on the objectives of the individual 

research. Cosit et al. [2], Chiou and Hwang [6], and Zoran [30] used simple statistical features on gray 

scale intensity, while Samuel et al.[5] used volume, sphericity, mean of gray level, standard deviation 

of gray level, gray level threshold, radius of mass sphere, maximum eccentricity, maximum circularity, 

and maximum compactness in their CAD system. Hening [18] used average gray scale, standard 

deviation, skewness, kurtosis, maximum and minimum of gray scale, and gray level histogram to 

identify and detect lung cancer. Shiraishi [12] studied 150 images from the Japanese Society of 

Radiological Technology (JSRT) database by using patient age, RMS of power spectrum, background 

image, degree of irregularity, full width at half maximum for inside of segment region. Lori et al. [4] 

studied on personal profile, region of interest properties, nodule size, and shape. Ping et al. [21] 

extended the new modified features, number of pixel in ROI, average gray level, energy, modified 

energy, entropy, modified entropy, standard deviation, modified standard deviation, skewness, 

modified skewness, contrast, average boundary gray level. A further investigation on using more 

features unrelated to medical image analysis, Windodo [23] explored fault diagnosis of induction 

motors to improve the feature extraction process by proposing a kernel trick. On his study, 76 features 

were calculated from 10 statistics in the time domain. These statistics are mean, RMS, shape factor, 

skewness, kurtosis, crest factor, entropy error, entropy estimation, histogram lower and histogram 

upper. We cannot discern their common methods of selecting features; however, we can conclude that 

they added more features in order to increase the efficiency of their methods. Table 1 shows a summary 

of the features and classifiers from previous studies. 

Explorations of feature extraction analysis have been found that the effects of significant features 

can be direct or indirect and some features do not relate to the detection results at all. Therefore, 

ineffective and redundant features must be discarded. 

 
3. Feature Domains 

 

This section presents details on feature domains that are used for medical image classification. 

Generally, the original digital medical image is in the form of a gray-scale or multiple spectrum 

Songyang 
and Ling, 
[24] 

Mixed 
features 

Mean, standard deviation, edge, background, foreground-
background ratio, foreground-background difference, 
difference ratio of intensity, compactness, elongation, Shape 
Moment I-IV, Invariant Moment I-IV, Contrast, area, shape, 
entropy, angular second moment, inverse different moment, 
Correlation, Variance, Sum average 

Multi-layer 
Neural 
Network  
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bitmap, consisting of integer values corresponding to properties (i.e. brightness, color) of the 

corresponding pixel of the sampling grid. Image information in the bitmap is accessible through the 

coordinates of a pixel with row and column indices. All features that can be extracted directly using 

mathematical or statistical models are categorized as low-level features. High-level features are 

summarized from low-level features, usually by machine-learning models. Much research in medical 

image analysis has to deal with low-level features in order to identify high-level features. In this 

research, we investigate several types of low-level features in order to identify mammograms as benign 

or malignant. The low-level features are separated into spatial, textural, and spectral domains. 

The spatial domain is composed of features extracted and summarized directly from grid 

information. It implicitly contains spatial relations among semantically important parts of the image. 

Examples of spatial features are shapes, edges, foreground information, background information, 

contrasts and set of intensity statistics, such as mean, median, standard deviation, coefficient of 

variation, variance, skewness, kurtosis, entropy, and modified moment. In this research, we also use 

radian of mass.  

Texture features are relations among pixels in a bitmap. Representation of texture features 

commonly uses co-occurrence matrices to describe their properties. The co-occurrence matrix of 

texture describes the repeated occurrence of gray-level configuration in an image. For a texture image, 

Pϕ,d(a, b) ,denotes the frequency that two pixels with gray levels a, b appear in the window separated 

by a distance d in direction φ.  

The frequencies of co-occurrence as functions of angle and distance can be defined as: 

P0˚, d(a, b) = | {  [(k, l), (m, n)] ∈D : k-m = 0, | l-n | = d, f(k, l) = a, f(m, n) = b} | 

P45˚, d(a, b) = | {  [(k, l), (m, n) ] ∈D : (k-m = d), l-n = -d ˅  (k-m =-d, l-n=d),  

 f(k, l) = a, f(m, n) = b} | 

P90˚, d(a, b) = | {  [(k, l), (m, n) ] ∈ D : | k-m |= d, l-n = 0, f(k, l) = a, f(m, n) = b} | 

P135˚, d(a, b) = | { [(k, l), (m, n)] ∈D : (k-m = d, l-n = d ) ˅  (k-m = -d, l-n =-d),  

 f(k, l) = a, f(m, n) = b}| 

where | {…} | refers to set cardinality, f(⋅,⋅) is a gray value and D = (M ×  N) ×  (M ×  N)  

In this paper, we take φ to be 0˚, 45˚, 90˚, and 135˚, and d=1. Examples of features in texture 

domain are: 
Energy or angular second moment (an image homogeneity measure): ),(

,
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Spectral features [3] are used to describe the frequency characteristics of the input image. The 

features are based on transformation from the spatial and time domains. Most frequently-used spectral 

features are based on discrete cosine transform (DCT) and wavelets. Examples of features based on the 

frequency domain are: 

Spectral entropy: )),((),( jiXhjiX
i j
∑∑−  

Block activity: |),(| jiXA
i j
∑∑−= where i, j are window size and 

A

jiX
jiX

|),(|
),( =  

The above features are frequently found in the literature of medical image analysis; there are many 

more features available.  

 
4. Methodology 

 

We hypothesize that using only one statistical method for classification will not be successful 

because of the restriction on measurement values of features and output. As this restriction, we 

investigate statistical techniques to fulfill the feature selection process. These statistical techniques 

consist of four parts: 1) feature classification, 2) path analysis, 3) exploration on relations among 

features and outputs, and 4) hypothesis testing. In the feature classification, we use correlation analysis 

to transform a number of features into a number of groups. In path analysis, the conceptual relations 

among different feature classes are constructed. Then, relations among features and between features 

and outputs are determined by three methods: logistic regression, simple regression, and multiple 

regression. Finally, hypotheses of feature relationships are tested by a Bayesian technique. 

 

4.1. Feature classification 

 

Since most low-level features are extracted from spatial and texture based, which are highly 

correlated, the feature selection strategy is subject to this limitation. The correlation coefficient is used 
to analyze these features. The correlation coefficient p between random variables x and y is defined as 

)()(

),cov(
),(

yVxV

yx
yxp = where ),cov( yx  denotes the covariance of x and y, )(xV and )(yV  are variances 

of x and y. p is between -1 and 1, and p = 0 indicates no linear relation between x and y.  

Correlation coefficients of features can be used to classify many highly related features into groups. 

 

4.2. Path analysis 

 

By the previous phase, we can identify groups of highly-related features. We find that the 

relationships of features within each group and relationships among groups to final output can be 

determined by path analysis. 

Path analysis utilizes multiple regression analysis. Regression analysis is an analysis of causal 

models when single indicators are endogenous variables of the model. In a path model, there are two 

types of variables: exogenous and endogenous. Exogenous variables may be correlated and may have 
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direct effects as well as indirect effects on endogenous variables. Causality is a relationship between an 

exogenous variable and endogenous variable(s); philosophical causation refers to the set of all 

particular “causal” relations. 

Being a regression-based technique, path analysis is limited by the requirement that all variables be 

continuous. Because our study involves continuous cause variables while the endogenous output 

variable is dichotomous (discrete), we cannot use path analysis directly; however, the analysis is still a 

graph-based process. Causal relation analysis can be explained by dependent variables that are 

measured on an interval or ratio scale [17]. Thus, for path analysis involving continuous endogenous 

variables, the categorical endogenous might have difficulty both in theoretical terms and prediction 

implication. Goodman [9] considered path analysis of binary variables by using logistic regression. 

Hagenaars [10] made a general discussion of path analysis of recursive causal systems of categorical 

variables by using the directed log-linear model approach, which is a combination of Goodman’s 

approach and graphical modeling. Example of the different models of trait effects on output y is 

illustrated in Figure 1. Figure 1A shows a multiple regression model where each trait operates 

simultaneously on fitness y. Figure 1B is the path analysis model showing four traits at four  

time periods.  

 
Figure 1. An example of a general recursive causal system with four independent features 

and a dependent output. (A) Illustration of possible relations among features and output. 

(B) The result of feature selection by analogy with graph base. 

  
(A) (B) 

 

A path diagram not only shows the nature and direction of causal relationships but also estimates 

the strength of relationships. Comparatively weak relationships can be discarded; thus some features 

are eliminated. A path coefficient is the standardized slope of the regression model. This standardized 

coefficient is a Pearson product – moment correlation. Basically, these relationships are assumed to be 

unidirectional and linear. To overcome this limitation, we use regressions and Bayesian inference to 

construct  a graphical model. 

 

4.3. Relations among features and outputs 

 

From the previous details about features and the path analysis, it is necessary to explore the cause 

and effect features by regression analysis. In our purpose, we suggest to use logistic regression, simple 

regression, and multiple regressions. 
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a) Using logistic regression. Logistic regression is a regression model for Bernoulli-distributed 

dependent variables. It is a linear model that utilizes the logit as its link function. Logistic 

regression has been used extensively in medical and social sciences [4, 11]. The logit model 

takes the form: niexxx
p

p
ikikii

i

i
K2,1;...)

1
log( 2211 =+++++=

−
βββα ,  

where pi=Pr(yi=1), βj>0; j =1, 2 … k are parameters (weight) of feature xi and ei is a random error 

(bias) of feature vector of a sample data. 

Logistic regression model can be used to predict the response features to be 0 or 1 (benign or 

malignant in the case of mammogram detection). Rather than classifying an observation into one group 

or the other, logistic regression predicts the probability p of being in either group. The model predicts 

the log odds (p/(1-p)) that an observation later be transformed to p as value of 0 or 1 with an optimal 

threshold. The general prediction model is log(p/(1-p)) = xβ+є, where x is feature vector; β is a 

parameter vector; and є is a random error vector. 

b)  Using simple regression and multiple regression. Simple regression has the same basic 

concepts and assumptions as logistic regression but the dependent variable is continuous and 

the model has only a single independent variable. The simple regression can be modeled as 
nieXY iii K2,1;110 =++= ββ  where iY  is the dependent variable, 10 ,ββ  are parameters 

(weights), and n is the size of training data. iX1 is an explained variable of data record i and 

ie is a random error. Regression yields a p value for the estimator of 1β  that can be used to 

decide whether Y  has a linear relation toX . Multiple regression is an extension of simple 

regression model to multiple variables. 

 

Simple logistic regression and multiple logistic regression are used to explore the cause features to 

effect output. 

 

4.4. Hypothesis testing 

 

Although the statistical techniques in previous Section can be used to identify causal features, they 

cannot classify those features as direct or indirect. We use hypothesis testing for this. 

An appropriate way to test the hypothesis about the direction of causal relationships is easier to 

illustrate an abstract concept by analogy with Bayesian inference. Bayesian inference uses the scientific 

method, which involves collecting evidence that may or may not be relevant to a given phenomenon. 

The more evidence is accumulated, the degree of belief in a hypothesis changes. With enough 

evidence, the degree of belief will often become very high or very low. It can be used to discriminate 

conflicting hypotheses. Bayesian inference usually relies on degrees of belief, or subjective 

probabilities. Bayes’s theorem adjusts probabilities based on new evidence 

as
)(

)()|(
)|( 00

0 EP

HPHEP
EHP = , where Ho represents the hypothesis; P(Ho) is the prior probability of 

Ho; P(E|Ho) is the conditional probability of availability the evidence E given that the hypothesis Ho is 

true; and P(E) is the marginal probability of E, which is the probability of witnessing the new evidence 

E under all mutually exclusive hypotheses. P(E|Ho) is the posterior probability of Ho given E. 

Using hypothesis testing on the regression, we can use path analysis for the discrete output. 
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5. Proposed Algorithm 
 

To solve this solution, simple regression, logistic regression, and Bayesian inference take into 

account of causality extraction problem. The algorithm is described as following steps. 

Step 1: Partition the original feature sets (x1, x2 … xn) into subsets using coefficients of the 

correlation matrix. Let the feature subsets be Si = (x1i, x2i ... xji), i=1, 2 … k with pij being the 

correlation coefficient between xi and xj . 

This step is to partition all features into feature subsets Si, where Si and Sj (i ≠j) are lowly dependent 

based on the correlations. 

Step 2: Perform simple logistic regression of each independent feature xji є Si, j=1, 2 ... Ri and 

dependent output y and then select the possible solution which satisfies a threshold value P. 

The result from this step is a subset Ai = (xri, xpi … xki) of features from Si is where each element of 

Ai is a direct causal feature of output y. 

Step 3: Perform multiple logistic regression by using all features in set Si, i=1, 2 … k in the model 

and selecting the signified features Bi = (xti, xli ... xzi) from the model, where Bi is a set of direct 

features and indirect cause features.  
Step 4: Let Di = Ai Ə Bi; where Ə is our testing hypothesis operator for exploring the causal 

relations using the Bayesian inference conceptual framework. 

This step is performed using Bayesian inference as in the following example for two features: 

If feature xni is the cause of y   ≈  P(y| xni) > C  (1) 

If feature xti is related (highly correlated) to xni ≈  P(xni, xti) > C  (2) 

If feature xti is not significant to y   ≈  P(y| xti) < C  (3) 

If features xni and, xti are significant to y  ≈  P(y| xni, xti) > C  (4) 

where C is a given threshold. 

This step iteratively refines the search for the indirect cause feature with the highest correlation with 

the direct cause xmi.  

Through the above predicates (1) to (4), we can accept the hypothesis that xni and the combination 

of xni and xti cause y. Figure 2 illustrates the relations among xni, xti, and y. 
 
Figure 2. The connected graph on two cause features and effect y. There is no direct effect 

of feature xti on y in (A) but, as shows in (B), there is an interaction effect of feature xti in 

addition with xni on y. 

  
(A) (B) 

 

Step 5: Repeat from Step 2 while i ≤ k. This step produces sets Di, where i= 1, 2 ... k. Note that some 

of Di may be null sets. 

Xni 

xti 

PY|Xi 
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Step 6: Construct graph G by merging subgraphsiD ; i= 1, 2 … k;  

ii
k DYEVG 1)|,( =∪= ; )( ivV = ; )( ieE = ;Y  is the effect or dependent vertex. 

 
6. Experiment and Results 
 

6.1. Experiment 

 

Our experiment is based on a training set of 113 ROIs from the Mammographic Image Analysis 

Society (MIAS) mammogram images that are segmented by radiologists. After image segmentation, 50 

features from the spatial, texture, and spectral domains are extracted. The feature set consists of mass 

radian, mean, maximum, median, standard deviation, skewness, kurtosis of gray level from spatial 

domain, energy, entropy, modified-entropy, contrast, inverse different moment, correlation, maximum, 

SDx (standard deviation) and SDy from the co-occurrence matrix of gray scale used ),(, baP dφ  with 

distance d =1 and angle φ = 0˚, 45˚, 90˚, 135˚ from texture domain and block activity, spectral entropy 

from the spectral domain. Step 1 of the experiment is to classify homogeneous features into 12 feature 

sets, using the bivariate correlation coefficient. Table 2 shows list of features in each set. 

 
Table 2. Partition of the 50 original features into 12 feature sets. 

Feature set Number of features List of Features 

#1 4 Entropy rotations from 0˚, 45˚, 90˚, 135˚ 

#2 4 Energy rotations from 0˚, 45˚, 90˚, 135˚ 

#3 4 Inverse difference Moment rotations from 0˚, 45˚, 90˚, 135˚ 

#4 4 Mean Co-occurrence rotations from 0˚, 45˚, 90˚, 135 

#5 4 Max Co-occurrence rotations from 0˚, 45˚, 90˚, 135 

#6 4 Contrast rotations from 0˚, 45˚, 90˚, 135˚ 

#7 4 Homogeneity rotations from 0˚, 45˚, 90˚, 135˚ 

#8 4 Standard deviations on X rotation from 0˚, 45˚, 90˚, 135˚ 

#9 4 Standard deviations on Y rotation from 0˚, 45˚, 90˚, 135˚ 

#10 4 Modified entropy rotations from 0˚, 45˚, 90˚, 135˚ 

#11 7 mean, maximum, median, standard deviation (SD), coefficient 

of variation (CV), skewness, kurtosis (intensity of gray level)  

#12 3 block activity, spectral entropy, mass radian 

 

After Step 1, the simple and multiple logistic regression analysis in each feature set are performed. 

Tables 3 and 4 illustrate example results from Step 2 to Step 4 by using features in feature set #1. 
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Table 3. The effects among features in feature set #1. 

Relations in Feature set #1 
Effects of dependent features  

(using simple linear regression) 

Entropy 0˚ to Entropy 45˚ 0.000 **  

Entropy 0˚ to Entropy 90˚ 0.004 * 

Entropy 0˚ to Entropy 135˚ 0.000 * 

Entropy 45˚ to Entropy 90˚ 0.000 **  

Entropy 45˚ to Entropy 135˚ 0.022 * 

Entropy 90˚ to Entropy 135˚ 0.000 **  

* denotes significant with 5% threshold and **  denotes highly significant with 1% threshold. 

 

Table 3 shows the effects among features in set #1. Values in Table 3 are used to test null 

hypotheses that two testing features are not correlated. If any effects that have p-value less than 0.05, 

those pairs of features are accepted as correlated. 

Tables 3 and 4 show that: 

• From Table 3: Entropy 0˚ and Entropy 45˚ are highly significantly related. 

• From the second column of Table 4: based on the simple logistic model, only Entropy 0˚ 

causes y (Entropy 0˚ is significant to y). 

• From the third column of Table 4: on the multiple logistic regression model, Entropy 0˚ and 

Entropy 45˚ cause y. 

• Finally, with Bayes inference, the direct effect is Entropy 0˚ and the indirect effect is the 

interaction of Entropy 0˚ and Entropy 45˚ cause y. 

Table 4 shows the result of Step 4, Di = Ai Ə Bi where i =1. After k iterations of the algorithm, the 

experiment results in the number of features being reduced from the original 50 to 13 features. Those 

features are Entropy 0˚, Entropy 45˚, Max Co-occurrence 45˚, Max Co-occurrence 135˚, Mean Co-

occurrence 0˚, Mean Co-occurrence 90˚, Energy 45˚, Homogeneity 0˚, Homogeneity 45˚, Homogeneity 

90˚, Homogeneity 135˚, Standard deviation and Skewness of intensity value. The constructive cause 

and effect graph, G(V,E|y), is shown as Figure 3. 

 
Table 4. The effects of features in feature set #1 on output. 

Feature set #1 
Effects on output 

Using simple logistic regression Using multiple logistic regression 

Entropy 0˚  0.034 *  0.026 * 

Entropy 45˚  0.433  0.031 * 

Entropy 90˚  0.363  0.241 

Entropy 135˚  0.159  0.169 

* denotes significant with 5% threshold and **  denotes highly significant with 1% threshold. 
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Figure 3. Complete graph on the experiment with direct and indirect effect from retaining 

process. (Dotted lines show indirect effects). 

 
6.2. Verification 

 

The effectiveness of our selected 13-feature set (our-13) is compared to the results of the all-feature 

set (all-50) and 26-feature set from SFS (SFS-26) on two learning systems: ANN and logistic 

regression. True positive (TP), false positive rate (FP) and minimum squared error (MSE) are metrics 

in the comparison. Tables 5 and 6 show the results from ANN and logistic regression, respectively. 

Both tables show that the effectiveness of our-13 is better than of SFS-26 and it is much closer to all-

50. This shows that our method can detect comparably the same results while the feature computation 

is reduced by half compared to SFS and 13/50 compared to using all features.  

 

Table 5. Performance of logistic regression using all-50, SFS-26 and our-13 feature sets. 

Logistic regression TP (%) FP (%) MSE 
Using original 50 features (all-50) 82.94 14.51 0.052 
Using selected 26 features (SFS-26) 77.41 18.72 0.102 
Using selected 13 features (our-13) 81.64 15.06 0.084 

 
Table 6. Performance of ANN using all-50, SFS-26, and our-13 feature sets. 

ANN TP (%) FP (%) MSE 
Using original 50 features (all-50) 83.32 14.42 0.034 
Using selected 26 features (SFS-26) 78.59 16.02 0.083 
Using selected 13 features (our-13) 82.35 15.02 0.065 

 

6.3. Analysis of results 

 

Graph-based analysis was examined using statistical techniques to identify the crucial direct or 

indirect features for breast cancer detection in medical images. Our algorithm requires time complexity 

O(n2). We can accept the hypothesis that there is no significance between 50 features and 13 features 

for ANN and logistic regression with threshold 5%. A comparison of the performance between the 

Entropy 45˚ 

y 

Entropy 0˚ 

Mean Co-occurrence 90˚ 

Homogeneity 45˚ Homogeneity 0˚ 

Homogeneity 90˚ 

Energy 45˚ 

Std intensity 

Homogeneity 135˚ 

Max Co-occurrence 45˚ 

Mean Co-occurrence 0˚ 

Skewness intensity 

Max Co-occurrence 135˚ 

Output Yes or No 
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different configurations of architectures over two set of features (50 and 13 features) with two 

classifiers (ANN and logistic regression) indicates that the selected 13 features provide the best results 

in terms of precision with respect to computation time. Using our approach, the detection step 

improves the temporal ratio of computation by number of features by 50:13. Moreover, the proposed 

method demonstrates satisfactory performance and cost compared to SFS. 

In our experiment, the 50 features were partitioned into 12 feature sets with S11 being the largest set. 

With this set, the search space for direct cause features (A7) is (7C1) while indirect cause (B7) 

exploration was (7Ci) i=2, 3 … 7. We also found that there were 11 features from the texture domain 

and two features from the spatial domain that were eliminated from the selection process. The mass 

radian was not a significant feature because some masses on benign images were larger than on 

malignant images. Instead of using mass radian (microcalcification), the distribution of micro-

calcification is more advantageous. 

On the theoretical aspect of finding a best combination feature set, the only way to guarantee the 

selection of an optimal feature set is an exhaustive search of all possible subsets of features. However, 

the search space could be very large: 2N for a set of N features. Our algorithm provides a divide and 

conquer strategy; with N features (assume that there are r groups with k features each), the number of 

possible subsets for examining the feature selection is r kCi; i= 1, 2 … k. 

 
7. Conclusions  

 

In this research, a method to reduce a number of features for medical image detection is proposed. 

We use mammograms from the Mammographic Image Analysis Society (MIAS) as test data and 

applied the proposed algorithm to reduce the number of features from a frequently-used 50 features to 

13 features, while the accuracies using two learning models are substantially the same. Our method can 

reduce the computation cost of mammogram image analysis and can be applied to other image analysis 

applications. The algorithm uses simple statistical techniques (path analysis, simple logistic regression, 

multiple logistic regressions, and hypothesis testing) in collaboration to develop a novel feature 

selection technique for medical image analysis. The value of this technique is that it not only tackles 

the measurement problem by path analysis but also provides a visualization of the relation among 

features. In addition to ease of use, this approach effectively addresses the feature redundancy problem. 

The method proposed has been proven that it is easier and it requires less computing time than using 

SFS, SBF and genetic algorithms. For further research, a deeper analysis of the texture domain and the 

dispersion of microcalcification may provide a more efficient breast CAD system, with cost reduction 

and higher precision. 
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